** Hakim Boumaza (Paris 13)** **Localisation pour un modèle de Dirac aléatoire quasi-unidimensionnel.** Dans cet exposé, nous nous intéresserons aux phénomènes de la localisation d'Anderson et de la localisation dynamique dans le cadre des modèles aléatoires quasi-unidimensionnels. Pour ces modèles, la question de la localisation se réduit à l'étude d'un objet algébrique, le groupe de Furstenberg. L'introduction de ce groupe se fera en lien avec celle d'objets typiques de la dimension un : les matrices de transfert, les exposants de Lyapunouv et un peu de théorie de Kotani. Nous présenterons, dans le cadre des opérateurs quasi-unidimensionnels de type Dirac, un critère de localisation ne faisant intervenir que des propriétés du groupe de Furstenberg. Je présenterai enfin l'étude du groupe de Furstenberg pour un exemple particulier de modèle quasi-unidimensionnel de type Dirac. Il s'agit d'un travail en collaboration avec S. Zalczer.