===== Machine Learning with Python (M2DSSAF) ===== === Slides === {{:members:aguilloux:enseignements:machinelearningpython:cours_boosting.pdf|Boosting}} {{:members:aguilloux:enseignements:machinelearningpython:cours_random_forests.pdf| Random forest}} === Labs === == Lab 1== * {{:members:aguilloux:enseignements:machinelearningpython:ml_lab_1.ipynb.zip| Lab 1}} * {{:members:aguilloux:enseignements:machinelearningpython:ml_lab_1_corrected.ipynb.zip| Lab 1 corrected}} == Lab 2 == * {{:members:aguilloux:enseignements:machinelearningpython:mnist.ipynb.zip| Lab 2}} == Lab 3 == * Lab 3 : comparer les algorithmes de ML sur https://archive.ics.uci.edu/ml/datasets/spambase * https://codeshare.io/5zPpwk === Challenge === The course will be evaluated via the Kaggle competition https://www.kaggle.com/c/porto-seguro-safe-driver-prediction#timeline. Vous devez former des équipes de 3 personnes maximum. Vous devrez rendre un rapport de 10 pages maximum (hors annexes) expliquant votre démarche. Your reports have to be send by **January 12.**