kerfdr kerfdr

Description

This function computes local fdr values by using a two-components mixture model with a semi-parametric density estimation. The code is freely inspired from the density function. For a simple use, we recommand the default setting (most parameters are optional).

Usage

```
kerfdr(pv,x=NULL,trans=c("probit","log","none"),f0=NULL,localfdr=NULL,pi1="storey",lambda=0.5,}
```

Arguments

pv	the vector of raw p-values.
x	a transformation of $\tt pv.$ It can be given by the user or (if <code>NULL</code>) computed via the <code>trans</code> parameter
trans	the transformation to apply on pv to produce x: "probit" (by default) returns qnorm(pv) and "log" returns log10(pv).
fO	the sample density under the null hypothesis. Can be specified by the user. If NULL (by default) the density under H0 is determined according to trans: if trans = "probit" then f0 is a standard Gaussian distribution; if trans = "log" then f0 is a standard Exponential distribution; if trans = "none" then f0 is a standard Uniform distribution
localfdr	values to initiate the iterative algorithm. If NULL (by default) initial values are then sampled in a Uniform distribution $[0,1]$
pi1	a priori proportion of alternative hypothesis or a method (string) to com- pute it; by default it uses the method proposed by Storey and Tibshirani (2003).
lambda	p-value threshold for the Storey's calculation of pi1 (0.5 by default). See qvalue for more details.
bw	a bandwidth value or a method to determine it among "nrd0", "nrd", "ucv", "bcv", "sj-ste", "sj-dpi". See bandwidth for more details.
kernel	the kernel used (string) among "gaussian" (by default), "epanechnikov", "rectangular", "triangular", "biweight","cosine". For more de- tails on kernels: http://stat.genopole.cnrs.fr/sg/software/kerfdr/ kernels
truncat	an interval on p-values to deal with truncated distributions such as those obtained with Monte-Carlo simulations.
plot	if TRUE, it returns graphics of local fdr estimations. Some plots are in- spired from qvalue.
cuts	vector of significance values to use in summary (see below)

Value

A list of parameters (pv, x, pi1, bw, f0 ...) and the following results:

f	the observed mixture density
f1	the estimated density under H1
localfdr	the local fdr values resulting from the algorithm
summary	a summary table comparing the number of significant calls for the raw p-values, Bonferroni and Benjamini-Hochberg corrections and for the cal- culated local fdr, using a set of cutoffs given by cuts

Author(s)

M Guedj, A Celisse, S Robin, G Nuel

References

http://stat.genopole.cnrs.fr/sg/software/kerfdr, Robin et al (2007), Strimmer (2008), Guedj et al (under review)

Examples

```
# Example 1: kerfdr with different plots
n = 10000
pi0 = 0.8
# plot in a probit scale (default)
pv = 1-pnorm(c(rnorm(n*pi0), rnorm(n*(1-pi0), 4)))
res = kerfdr(pv)
res$pi0
res$summary
# plot in a log scale
kerfdr(pv, trans = "log")
# plot in the raw p-values scale
kerfdr(pv, trans = "none")
# Example 2: truncation on a vector of null p-values (resulting local fdr should be 1 for each point)
n = 10000
pv = runif(n)
# truncation on [0.1;0.9]
pv[which(pv < 0.1)] = 0.1
pv[which(pv > 0.9)] = 0.9
# kerfdr WITHOUT taking the truncation into account (local fdr is hence badly estimated)
kerfdr(pv, trans = "log")
# kerfdr by taking the truncation into account (local fdr is then well estimated)
kerfdr(pv, truncat = c(0.1, 0.9), trans = "log")
```