

genome-wide association studies

Mickaël Guedj, D. Robelin, M. Hoebeke, M. Lamarine, K. Forner, J. Wojcik and G. Nuel

guedj@genopole.cnrs.fr

Genetic epidemiology aims at identifying biological mechanisms responsible for human diseases. Genome-wide association studies are now promisingly investigated. In these studies, commonly used strategies focus on marginal effects. Such approaches lead to multiple-testing and are unable to capture the possibly complex interplay between genetic factors. We have adapted to association studies the use of the **local score statistic**, a natural improvement of sliding-frames. Via sums statistics, this strategy combines **local** (Linkage Disequilibrium) and possibly **distant** dependences between markers. It is **fast** to compute, able to handle very **large datasets**, circumvents the **multiple-testing** problem and outlines a set of **genomic regions** (segments) possibly interesting for further analyses. Applied to real data, our approach outperforms classical Bonferroni and FDR corrections. It is implemented in a programm termed LHiSA for Local High-scoring Segments for Association and available at:

http://stat.ge nopole.cnrs.fr/webl hi sa

Methods

Definition

Let $\mathbb{X} = (X_i)_{i=1,...,n}$ a sequence of real random variables:

We define by:

$$= \max_{1 \leq i \leq j \leq n} \left(\sum_{i=1}^{j} X_k \right)$$

H =

the local score assigned to X. The variables X_i must have a negative expectation otherwise the maximal segment would easily reach the entire sequence.

Considering $H^{(1)} \ge ... \ge H^{(k)}$ as being the scores of the k successive and distinct highest-scoring segments, $H^{(i)}$ defines the local score of the initial sequence disjoint from the preceding k - 1 best segments.

Algorithm

- **1** Produce a sequence of marker scores: X_i can be based on classical statistics for association or corresponding p-values. X must generally substracted by a constant δ . In this case we consider $X' = (X'_i)_{i=1,...,n}$ with $X'_i = X_i \delta$ such as $\mathbb{E}(X'_i) < 0$. Markers with a score higher than δ will improve the cumulate score of a given segment.
- 2 Compute the highest-scoring segments: Identify the successive high-scoring segments and compute their local scores H⁽¹⁾, ..., H^(k). A naive approach is to use an iterative algorithm: (i) find the highest-scoring segment, (ii) remove it, (iii) iterate while the next best local score is positive.
- **3** Propose a set of segments: Successive local scores are combined into $T^{(1)}, ..., T^{(k)}$ such as $T^{(i)} = H^{(1)} + ... + H^{(i)}$. Corresponding p-values $p_{T_1}, ..., p_{T_k}$ are computed using results from the extreme values theory or Monte-Carlo simulations (permuting case and control labels). Interesting segments are assumed to be the r first ones with $r = \max(\arg \min_{1 \le i \le r} (p_{T_i}))$ and $p_{\min}^{(0)} = p_{T_r}$ is the statistic attached to this selection.
- **4** Global p-value: The global significance of the process p_G is assessed via Monte-Carlo simulations: iterate N times steps 1 to 3, permute each time case and controls labels and compute $p_{\min}^{(i)}$ corresponding to the *i*th iteration. Finally:

$$p_G = \frac{\operatorname{card}\left\{i, p^{(i)_{\min}} \leqslant p^{(0)_{\min}}\right\}}{N}$$

Implementation

• Instead of X, we use the processus $\mathbb{H} = (H_i)_{i=1,\dots,n}$ with $H_i = \max(0, H_{i-1} + X_i)$ and $H_0 = \max(0, X_0)$: finding the maximal scoring subsequence comes down to find $H = \max(H_i)$ what is O(n) instead of $O(n^2)$.

 \bullet Use the O(n) Ruzzo and Tompa algorithm (1999) instead of the naive $O(n^2)$ approach to find the successive high-scoring segments.

Application

Data: case-control data implicating G72 and DAAO genes in schizophrenia (Chumakov et al 2002). **Statistic:** χ^2 on allelic contingency tables and p_i is the p-value coresponding to the SNP *i*. **Marker scores:** $X'_i = X_i - \delta$ with $X_i = -\log_{10}(p_i)$ **Parameters:** $\delta = -\log_{10}(0.1)$ and N = 10000

Results: Our approach selects 3 segments localised in G72 and DAAO genes that have been proved to be involved to the disease and interacting with each other. The whole significance process is $p_{C} = 0.22$.

	-						-			
rank	chr	segment	H	T	p_T		SNP	p_i	Bonferroni	FD
1	13	149-153	2.542	2.542	0.2459	-	160	0.0046	0.79	0.7
2	13	159-161	1.978	4.520	0.1737		150	0.0062	1.00	0.5
3	12	5	1.165	5.686	0.1660		5	0.0068	1.00	0.3
4	13	84	0.758	6.444	0.1702		84	0.0175	1.00	0.7
5	13	49-51	0.587	7.031	0.1747					

Note that each segment differ in size from the others; this underline the advantage of the local score statistic over sliding-frames.

References

- Hoh, J., Wille, A. and Ott, J. (2001) Trimming, weigthing, and grouping SNPs in human case-control association studies. *Genome Research*, 11, 2115–2119.
- [2] Karlin, S. and Altschul, S. (1993) Application and statistics for multiple high-scoring segments in molecular sequences. PNAS, 90, 5873–5877.
- [3] Ruzzo, W.L. and Tompa, M. (1999) A linear time algorithm for finding all maximal scoring subsequences. 7th ISMB, 234–241.
- [4] Chumakov, I. et al (202) Genetic and physiological data implicating G72 and DAAO in schizophrenia. PNAS, 99, 13675–13680.