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X is the adja
en
y matrix of size n×n de�ned su
h that Xij = 1 if nodes i and j are
onne
ted. Z is de�ned su
h that {Ziq = 1} if node i belongs to 
lass q.We distinguishformulas for graphs with undire
ted verti
es (Xij = Xji ) for graphs with or withoutself loops (Xii 6= 0 or Xii = 0).1 Initialization with Hierar
hi
al 
lustering on a randomly-drawn subgraph1.1 Distan
eWe use the 
lassi
al Ward distan
e between groups.1.1.1 Undire
ted graphsDistan
e between verti
es. This distan
e represents the number of dis
ordan
esbetween verti
es i and j.

d(i, j) =
∑

k

(xik − xjk)
2 = ‖xi − xj‖

2. (1)Distan
e between groups. Denoting gq the bary
enter of group q de�ned su
h that
∀i ∈ {1, . . . , n}, gqi =

∑

k∈q xki

nq
,and nq = #(k ∈ q), we de�ne the following distan
e between groups:

∆(q, ℓ) =
nqnℓ

nq + nℓ

‖gq − gℓ‖
2. (2)1.1.2 Dire
ted graphsDistan
e between verti
es.

d(i, j) =
∑

k

(xik − xjk)
2 +

∑

k

(xki − xkj)
2

= d+(i, j) + d−(i, j)1



Distan
e between groups. Denoting (g+
q , g−q ) the bary
enters of group q for rowsand 
olumns, de�ned su
h that

∀i ∈ {1, . . . , n},







g+
qi =

P

k∈q xik

nq
,

g−qi =
P

k∈q xki

nq
,

(3)and nq = #(k ∈ q). Similarly we de�ne the following distan
e between groups:
∆(q, ℓ) =

nqnℓ

nq + nℓ

(

‖g+
q − g+

ℓ ‖
2 + ‖g−q − g−ℓ ‖2

)

.1.2 Hierar
hi
al 
lustering algorithmWe perform the hierar
hi
al 
lustering step on a randomly-drawn subgraph to redu
ethe 
omputational burden.1. Shu�e the verti
es,2. Build the adja
en
y matrix XO of size n0 × n0 (i.e. the subgraph) from theedges 
onne
ting the n0 �rst verti
es, with n0 = min(max(n/3, 200), n) or a user-spe
i�ed n0.then1. Initialization: 
al
ulate ∆ the distan
e between the n0 verti
es 
onsidered asgroups.2. Merging step: two groups are merged if their distan
e ∆ is the smallest. If twodistan
es are equal, groups to merge are randomly 
hosen. The label of the newformed group is the smallest of the two previous label.3. Cal
ulate distan
e between groups,4. Iterate (1)-(2)-(3) until the number of 
lasses equals 1.2 Online Classi�
ation algorithmDé�nitions. We begin at (m) = n0 with (m) the 
urrent index for iterations. Q thenumber of 
lasses, (nq)1≤q≤Q and (nql)1≤q,l≤Q su
h that:� nql =
∑

i>j xijziqzjl, the number of egdes having nodes in 
lass q and l,� nq =
∑

i ziq, the number of nodes of 
lass q.We de�ne i(m) = mod(m − 1, n).
2



2.1 M-stepIf m ≤ n

n(m)
q = n(m−1)

q + z(m)
mq , (4)

n
(m)
ql = n

(m−1)
ql +

∑

j 6=m

z(m)
mq z

(m)
jl xmj, (5)else

n(m)
q = n(m−1)

q − z
(m−1)
i(m)q + z

(m)
i(m)q , (6)

n
(m)
ql = n

(m−1)
ql + (z

(m)
i(m)q − z

(m−1)
i(m)q )

∑

j 6=i(m)

zjl(m)xi(m)j , (7)In any 
ase, we have α
(m)
q =

n
(m)
q

min(n,m) and the estimator for parameter πql is su
hthat
π

(m)
ql =

n
(m)
ql

n
(m)
q n

(m)
l

, (8)(9)Without self loop:
π(m)

qq =
n

(m)
qq

1
2 ∗ n

(m)
q (n

(m)
q − 1)

. (10)With self loop:
π(m)

qq =
n

(m)
qq

1
2 ∗ n

(m)
q (n

(m)
q − 1)) + nq

. (11)- αqs are bounded at ǫα su
h that no empty 
lass is 
reated.- πql is left and right bounded with ǫπ and (1 − ǫπ).2.2 E-stepWe de�ne β
(m)
ijql , su
h that:

β
(m)
ijql = xij ln(π

(m)
ql ) + (1 − xij) ln(1 − π

(m)
ql ).Note that πql is bounded in the M-step.We re
all i(m) = mod(m − 1, n).At step (m), assign the node i(m) to the 
lass q∗ su
h that q∗ = arg maxq Lq where:3



Without self loop:If m ≤ n
Lq = log α(m−1)

q +
∑

l=1,Q

∑

j<m

z
(m−1)
jl β

(m−1)
mjql .else

Lq = log α(m−1)
q +

∑

l=1,Q

∑

j 6=i(m)

z
(m−1)
jl β

(m−1)
i(m)jql

.With self loop:If m ≤ n
Lq = log α(m−1)

q +
∑

l=1,Q

∑

j<m

z
(m−1)
jl β

(m−1)
mjql + β(m−1)

mmqq (12)else
Lq = log α(m−1)

q +
∑

l=1,Q

∑

j 6=i(m)

z
(m−1)
jl β

(m−1)
i(m)jql

+ β
(m−1)
i(m)i(m)qq

(13)2.3 Stopping rule and Likelihoods.Stopping rule The EM algorithm stops when m = N ∗ n where N is user-spe
i�ed.Complete-data loglikelihoodWithout self loop:
QQ =

∑

q

log αq +
∑

q

∑

l

∑

j<i

ziqzjl log (π
xij

ql (1 − πql)
1−xij ). (14)With self loop:

QQ =
∑

q

log αq+
∑

q

∑

l

∑

j<i

ziqzjl log (π
xij

ql (1 − πql)
1−xij )+

∑

i,q

ziq log (πxii
qq (1 − πqq)

1−xii).(15)3 Online Sto
hasti
 Classi�
ation algorithmTO DO.
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4 Online Variational algorithmDé�nitions. We begin at (m) = n0 with (m) the 
urrent index for iterations. Q thenumber of 
lasses, τ the matrix of posterior probabilities (n,Q) de�ned su
h that:
τiq = Pr{Ziq = 1|X} (16)where Ziq = 1 if i ∈ class(q)

∀i
∑

q=1,Q

Ziq = 1 (17)and
∀i

∑

q=1,Q

τiq = 1 (18)We de�ne i(m) = mod(m − 1, n).4.1 M-stepIf m ≤ n
τ

(m)
•q = τ

(m−1)
•q + τ (m)

mq (19)else
τ

(m)
•q = τ

(m−1)
•q + τ

(m)
i(m)q − τ

(m−1)
i(m)q (20)Without self loop:If m ≤ n

γ
(m)
ql = γ

(m−1)
ql + τ (m)

mq τ
(m−1)
•l (21)

θ
(m)
ql = θ

(m−1)
ql + τ (m)

mq

∑

j<m

xmjτ
(m−1)
jl (22)(23)else

γ
(m)
ql = γ

(m−1)
ql + (τ

(m)
i(m)q − τ

(m−1)
i(m)q )τ

(m−1)
•l (24)

θ
(m)
ql = θ

(m−1)
ql + (τ

(m)
i(m)q − τ

(m−1)
i(m)q )

∑

j 6=i(m)

xi(m)jτ
(m−1)
jl (25)(26)
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With self loops:If m ≤ n

γ
(m)
ql,q 6=l = γ

(m−1)
ql + τ (m)

mq τ
(m−1)
•l (27)

γ(m)
qq = γ(m−1)

qq + τ (m)
mq (τ

(m−1)
•q + 1) (28)

θ
(m)
ql,q 6=l = θ

(m−1)
ql + τ (m)

mq

∑

j<m

xmjτ
(m−1)
jl (29)

θ(m)
qq = θ(m−1)

qq + τ (m)
mq

∑

j<m

xmjτ
(m−1)
jq + τ (m)

mq xmm (30)(31)else
γ

(m)
ql,q 6=l = γ

(m−1)
ql + (τ

(m)
i(m)q − τ

(m−1)
i(m)q )τ

(m−1)
•l (32)

γ(m)
qq = γ(m−1)

qq + (τ
(m)
i(m)q

− τ
(m−1)
i(m)q

)(τ
(m−1)
•q + 1) (33)

θ
(m)
ql,q 6=l = θ

(m−1)
ql + (τ

(m)
i(m)q − τ

(m−1)
i(m)q )

∑

j 6=i(m)

xi(m)jτ
(m−1)
jl (34)

θ(m)
qq = θ(m−1)

qq + (τ
(m)
i(m)q − τ

(m−1)
i(m)q )(

∑

j 6=i(m)

xi(m)jτ
(m−1)
jq + xi(m)i(m)) (35)where

τ
(m)
•q =

m
∑

i=1

τ
(m)
iq

γ
(m)
ql =

m
∑

i=1

∑

j<i

τ
(m)
iq τ

(m)
jl (only for q 6= l with self loops)

γ(m)
qq =

m
∑

i=1

τ
(m)
iq (

∑

j<i

τ
(m)
jq + 1) (with self loops)

θ
(m)
ql =

m
∑

i=1

∑

j<i

τ
(m)
iq xijτ

(m)
jl (only for q 6= l with self loops)

θqq =
m

∑

i=1

τ
(m)
iq (

∑

j<i

xijτ
(m)
jl + xii) (with self loops)In any 
ase, we have α

(m)
q =

τ
(m)
•q

min(n,m) and the estimator for parameter πql is su
hthat
π

(m)
ql =

θ
(m)
ql

γ
(m)
ql

. (36)- αqs are bounded at ǫα su
h that no empty 
lass is 
reated.- πql is left and right bounded with ǫπ and (1 − ǫπ).6



- if ∑

i6=j τ
(m)
iq τ

(m)
jl → 0 πql is set to 0.5. This 
on�guration 
orresponds to the 
asewhere one 
lass tends to 
ontain only one node.4.2 E-stepWe de�ne β

(m)
ijql , su
h that:

β
(m)
ijql = xij ln(π

(m)
ql ) + (1 − xij) ln(1 − π

(m)
ql ).Note that πql is bounded in the M-step.We re
all i(m) = mod(m − 1, n).Without self loop:

log τ
(m)
i(m)q = log α(m−1)

q +
∑

j 6=i(m)

∑

l=1,Q

τ
(m−1)
jl β

(m−1)
i(m)jql

, (37)With self loops:
log τ

(m)
i(m)q = log α(m−1)

q +
∑

j 6=i

∑

l=1,Q

τ
(m−1)
jl β

(m−1)
i(m)jql

+ β
(m−1)
i(m)i(m)qq

, (38)In any 
ase, τiqs are normalized su
h that:
τiq =

τiq
∑

l τil

.- τiqs are bounded su
h that ǫτ < τiq < 1 − ǫτ ,- A fa
torization is used to avoid numeri
al zeros in the 
al
ulus of posterior prob-abilities. Considering that τiq ∝ exp(−δiq), and denoting δ⋆
i = maxq δiq, τiq is
al
ulated su
h that:

τiq ∝
e−(δiq−δ⋆

i )

∑

l e
−(δil−δ⋆

i )4.3 Stopping rule and Likelihoods.Stopping rule The EM algorithm stops when m = N ∗ n where N is user-spe
i�ed.In
omplete-data log-likelihood approximation.
JQ = QQ −HQComplete-data log-likelihood.Undire
ted 
ase without self loop:

QQ =
∑

i

∑

q

τiq log αq +
∑

i

∑

j<i

∑

q,l

τiqτjlβijql7



Undire
ted 
ase with self loops:
QQ =

∑

i

∑

q

τiq log αq +
∑

i

∑

j<i

∑

q,l

τiqτjlβijql +
∑

i,q

τiqβiiqq,Entropy.
HQ =

∑

i

∑

q

τiq log τiq5 CriteriaBIC.
BICQ = JQ −

Q(Q + 1)

4
log

n(n − 1)

2
−

(Q − 1)

2
log nICL.

ICLQ = QQ −
Q(Q + 1)

4
log

n(n − 1)

2
−

(Q − 1)

2
log n
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