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X is the adjacency matrix of size n X n defined such that X;; = 1 if nodes ¢ and j are
connected. Z is defined such that {Z;, = 1} if node i belongs to class ¢.We distinguish
formulas for graphs with undirected vertices (X;; = Xj; ) for graphs with or without
self loops (X;; # 0 or X;; = 0).

1 Initialization with Hierarchical clustering on a randomly-
drawn subgraph
1.1 Distance

We use the classical Ward distance between groups.

1.1.1 Undirected graphs

Distance between vertices. This distance represents the number of discordances
between vertices ¢ and j.
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Distance between groups.  Denoting g, the barycenter of group ¢ defined such that
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and n, = #(k € q), we define the following distance between groups:

A(g,0) =

Nngnyg
Ng + ¢

l9q — gel*. (2)

1.1.2 Directed graphs
Distance between vertices.
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Distance between groups. Denoting (g;r,gq_) the barycenters of group ¢ for rows
and columns, defined such that
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and ng = #(k € ¢). Similarly we define the following distance between groups:
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1.2 Hierarchical clustering algorithm

We perform the hierarchical clustering step on a randomly-drawn subgraph to reduce
the computational burden.

1. Shuffle the vertices,

2. Build the adjacency matrix Xo of size ng X ng (i.e. the subgraph) from the
edges connecting the ng first vertices, with ng = min(max(n/3,200),n) or a user-
specified ng.

then

1. Initialization: calculate A the distance between the ng vertices considered as
groups.

2. Merging step: two groups are merged if their distance A is the smallest. If two
distances are equal, groups to merge are randomly chosen. The label of the new
formed group is the smallest of the two previous label.

3. Calculate distance between groups,

4. Tterate (1)-(2)-(3) until the number of classes equals 1.

2 Online Classification algorithm

Définitions.  We begin at (m) = ng with (m) the current index for iterations. @ the
number of classes, (ng)1<q<@ and (ng)1<q1<@ such that:

® Ny = ij T;j2iqzji, the number of egdes having nodes in class ¢ and [,
e ng =) .Zg4, the number of nodes of class g.

We define i(m) = mod(m — 1,n).



2.1 M-step

Iftm<n
nf]m) = ngm b +z,(qi’?1), (4)
m m—1 m
R R DR )
JFm
else
m m— m—1 m
m m—1 m m—1)
nt(zl ) — ((]l ) + (Zz((m Z((m Z Zﬂ(m):E,(m (7)
j#i(m)
(m)
In any case, we have agm) = m:l%n ™) and the estimator for parameter m is such
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- ags are bounded at €, such that no empty class is created.

- mq is left and right bounded with e; and (1 — ).

2.2 E-step
We define ﬁz(]TZl) such that:
gim —x--ln(ﬂ(m))+(1—a;~)ln(1—7r(m))
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Note that 7y is bounded in the M-step.
We recall i(m) = mod(m — 1,n).

At step (m), assign the node i(m) to the class ¢* such that ¢* = argmax, L, where:



Without self loop:
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2.3 Stopping rule and Likelihoods.
Stopping rule The EM algorithm stops when m = N xn where N is user-specified.

Complete-data loglikelihood

Without self loop:
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With self loop:
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3 Online Stochastic Classification algorithm

TO DO.



4 Online Variational algorithm

Définitions.  We begin at (m) = ng with (m) the current index for iterations. @ the
number of classes, 7 the matrix of posterior probabilities (n, Q) defined such that:

Tiq = Pr{Z;; = 1|X} (16)
where Z;; = 1 if i € class(q)
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We define i(m) = mod(m — 1,n).

4.1 M-step
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With self loops:
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- ays are bounded at €, such that no empty class is created.

- mq is left and right bounded with e; and (1 — ).
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- if ZZ#] iq m) — 0 7y is set to 0.5. This configuration corresponds to the case
where one class tends to contain only one node.

4.2 E-step

We define ﬂi(;zl), such that:

i) = wig (") + (1= 245) In(1 = 7).

Note that 7y is bounded in the M-step.
We recall i(m) = mod(m — 1,n).

Without self loop:
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With self loops:
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In any case, 7;4s are normalized such that:
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- T;qs are bounded such that e; < 75y <1 — €,

- A factorization is used to avoid numerical zeros in the calculus of posterior prob-
abilities. Considering that 7;, o< exp(—d;q), and denoting 0 = max, diq, Tiq IS
calculated such that:
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4.3 Stopping rule and Likelihoods.
Stopping rule The EM algorithm stops when m = N % n where N is user-specified.

Incomplete-data log-likelihood approximation.
Jo=Qqo —Hq
Complete-data log-likelihood.

Undirected case without self loop:
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Undirected case with self loops:
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Entropy.
Hg = Z Z Tiq log Tiq
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