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X is the adjaeny matrix of size n×n de�ned suh that Xij = 1 if nodes i and j areonneted. Z is de�ned suh that {Ziq = 1} if node i belongs to lass q.We distinguishformulas for graphs with undireted verties (Xij = Xji ) for graphs with or withoutself loops (Xii 6= 0 or Xii = 0).1 Initialization with Hierarhial lustering on a randomly-drawn subgraph1.1 DistaneWe use the lassial Ward distane between groups.1.1.1 Undireted graphsDistane between verties. This distane represents the number of disordanesbetween verties i and j.

d(i, j) =
∑

k

(xik − xjk)
2 = ‖xi − xj‖

2. (1)Distane between groups. Denoting gq the baryenter of group q de�ned suh that
∀i ∈ {1, . . . , n}, gqi =

∑

k∈q xki

nq
,and nq = #(k ∈ q), we de�ne the following distane between groups:

∆(q, ℓ) =
nqnℓ

nq + nℓ

‖gq − gℓ‖
2. (2)1.1.2 Direted graphsDistane between verties.

d(i, j) =
∑

k

(xik − xjk)
2 +

∑

k

(xki − xkj)
2

= d+(i, j) + d−(i, j)1



Distane between groups. Denoting (g+
q , g−q ) the baryenters of group q for rowsand olumns, de�ned suh that

∀i ∈ {1, . . . , n},







g+
qi =

P

k∈q xik

nq
,

g−qi =
P

k∈q xki

nq
,

(3)and nq = #(k ∈ q). Similarly we de�ne the following distane between groups:
∆(q, ℓ) =

nqnℓ

nq + nℓ

(

‖g+
q − g+

ℓ ‖
2 + ‖g−q − g−ℓ ‖2

)

.1.2 Hierarhial lustering algorithmWe perform the hierarhial lustering step on a randomly-drawn subgraph to reduethe omputational burden.1. Shu�e the verties,2. Build the adjaeny matrix XO of size n0 × n0 (i.e. the subgraph) from theedges onneting the n0 �rst verties, with n0 = min(max(n/3, 200), n) or a user-spei�ed n0.then1. Initialization: alulate ∆ the distane between the n0 verties onsidered asgroups.2. Merging step: two groups are merged if their distane ∆ is the smallest. If twodistanes are equal, groups to merge are randomly hosen. The label of the newformed group is the smallest of the two previous label.3. Calulate distane between groups,4. Iterate (1)-(2)-(3) until the number of lasses equals 1.2 Online Classi�ation algorithmDé�nitions. We begin at (m) = n0 with (m) the urrent index for iterations. Q thenumber of lasses, (nq)1≤q≤Q and (nql)1≤q,l≤Q suh that:� nql =
∑

i>j xijziqzjl, the number of egdes having nodes in lass q and l,� nq =
∑

i ziq, the number of nodes of lass q.We de�ne i(m) = mod(m − 1, n).
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2.1 M-stepIf m ≤ n

n(m)
q = n(m−1)

q + z(m)
mq , (4)

n
(m)
ql = n

(m−1)
ql +

∑

j 6=m

z(m)
mq z

(m)
jl xmj, (5)else

n(m)
q = n(m−1)

q − z
(m−1)
i(m)q + z

(m)
i(m)q , (6)

n
(m)
ql = n

(m−1)
ql + (z

(m)
i(m)q − z

(m−1)
i(m)q )

∑

j 6=i(m)

zjl(m)xi(m)j , (7)In any ase, we have α
(m)
q =

n
(m)
q

min(n,m) and the estimator for parameter πql is suhthat
π

(m)
ql =

n
(m)
ql

n
(m)
q n

(m)
l

, (8)(9)Without self loop:
π(m)

qq =
n

(m)
qq

1
2 ∗ n

(m)
q (n

(m)
q − 1)

. (10)With self loop:
π(m)

qq =
n

(m)
qq

1
2 ∗ n

(m)
q (n

(m)
q − 1)) + nq

. (11)- αqs are bounded at ǫα suh that no empty lass is reated.- πql is left and right bounded with ǫπ and (1 − ǫπ).2.2 E-stepWe de�ne β
(m)
ijql , suh that:

β
(m)
ijql = xij ln(π

(m)
ql ) + (1 − xij) ln(1 − π

(m)
ql ).Note that πql is bounded in the M-step.We reall i(m) = mod(m − 1, n).At step (m), assign the node i(m) to the lass q∗ suh that q∗ = arg maxq Lq where:3



Without self loop:If m ≤ n
Lq = log α(m−1)

q +
∑

l=1,Q

∑

j<m

z
(m−1)
jl β

(m−1)
mjql .else

Lq = log α(m−1)
q +

∑

l=1,Q

∑

j 6=i(m)

z
(m−1)
jl β

(m−1)
i(m)jql

.With self loop:If m ≤ n
Lq = log α(m−1)

q +
∑

l=1,Q

∑

j<m

z
(m−1)
jl β

(m−1)
mjql + β(m−1)

mmqq (12)else
Lq = log α(m−1)

q +
∑

l=1,Q

∑

j 6=i(m)

z
(m−1)
jl β

(m−1)
i(m)jql

+ β
(m−1)
i(m)i(m)qq

(13)2.3 Stopping rule and Likelihoods.Stopping rule The EM algorithm stops when m = N ∗ n where N is user-spei�ed.Complete-data loglikelihoodWithout self loop:
QQ =

∑

q

log αq +
∑

q

∑

l

∑

j<i

ziqzjl log (π
xij

ql (1 − πql)
1−xij ). (14)With self loop:

QQ =
∑

q

log αq+
∑

q

∑

l

∑

j<i

ziqzjl log (π
xij

ql (1 − πql)
1−xij )+

∑

i,q

ziq log (πxii
qq (1 − πqq)

1−xii).(15)3 Online Stohasti Classi�ation algorithmTO DO.
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4 Online Variational algorithmDé�nitions. We begin at (m) = n0 with (m) the urrent index for iterations. Q thenumber of lasses, τ the matrix of posterior probabilities (n,Q) de�ned suh that:
τiq = Pr{Ziq = 1|X} (16)where Ziq = 1 if i ∈ class(q)

∀i
∑

q=1,Q

Ziq = 1 (17)and
∀i

∑

q=1,Q

τiq = 1 (18)We de�ne i(m) = mod(m − 1, n).4.1 M-stepIf m ≤ n
τ

(m)
•q = τ

(m−1)
•q + τ (m)

mq (19)else
τ

(m)
•q = τ

(m−1)
•q + τ

(m)
i(m)q − τ

(m−1)
i(m)q (20)Without self loop:If m ≤ n

γ
(m)
ql = γ

(m−1)
ql + τ (m)

mq τ
(m−1)
•l (21)

θ
(m)
ql = θ

(m−1)
ql + τ (m)

mq

∑

j<m

xmjτ
(m−1)
jl (22)(23)else

γ
(m)
ql = γ

(m−1)
ql + (τ

(m)
i(m)q − τ

(m−1)
i(m)q )τ

(m−1)
•l (24)

θ
(m)
ql = θ

(m−1)
ql + (τ

(m)
i(m)q − τ

(m−1)
i(m)q )

∑

j 6=i(m)

xi(m)jτ
(m−1)
jl (25)(26)
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With self loops:If m ≤ n

γ
(m)
ql,q 6=l = γ

(m−1)
ql + τ (m)

mq τ
(m−1)
•l (27)

γ(m)
qq = γ(m−1)

qq + τ (m)
mq (τ

(m−1)
•q + 1) (28)

θ
(m)
ql,q 6=l = θ

(m−1)
ql + τ (m)

mq

∑

j<m

xmjτ
(m−1)
jl (29)

θ(m)
qq = θ(m−1)

qq + τ (m)
mq

∑

j<m

xmjτ
(m−1)
jq + τ (m)

mq xmm (30)(31)else
γ

(m)
ql,q 6=l = γ

(m−1)
ql + (τ

(m)
i(m)q − τ

(m−1)
i(m)q )τ

(m−1)
•l (32)

γ(m)
qq = γ(m−1)

qq + (τ
(m)
i(m)q

− τ
(m−1)
i(m)q

)(τ
(m−1)
•q + 1) (33)

θ
(m)
ql,q 6=l = θ

(m−1)
ql + (τ

(m)
i(m)q − τ

(m−1)
i(m)q )

∑

j 6=i(m)

xi(m)jτ
(m−1)
jl (34)

θ(m)
qq = θ(m−1)

qq + (τ
(m)
i(m)q − τ

(m−1)
i(m)q )(

∑

j 6=i(m)

xi(m)jτ
(m−1)
jq + xi(m)i(m)) (35)where

τ
(m)
•q =

m
∑

i=1

τ
(m)
iq

γ
(m)
ql =

m
∑

i=1

∑

j<i

τ
(m)
iq τ

(m)
jl (only for q 6= l with self loops)

γ(m)
qq =

m
∑

i=1

τ
(m)
iq (

∑

j<i

τ
(m)
jq + 1) (with self loops)

θ
(m)
ql =

m
∑

i=1

∑

j<i

τ
(m)
iq xijτ

(m)
jl (only for q 6= l with self loops)

θqq =
m

∑

i=1

τ
(m)
iq (

∑

j<i

xijτ
(m)
jl + xii) (with self loops)In any ase, we have α

(m)
q =

τ
(m)
•q

min(n,m) and the estimator for parameter πql is suhthat
π

(m)
ql =

θ
(m)
ql

γ
(m)
ql

. (36)- αqs are bounded at ǫα suh that no empty lass is reated.- πql is left and right bounded with ǫπ and (1 − ǫπ).6



- if ∑

i6=j τ
(m)
iq τ

(m)
jl → 0 πql is set to 0.5. This on�guration orresponds to the asewhere one lass tends to ontain only one node.4.2 E-stepWe de�ne β

(m)
ijql , suh that:

β
(m)
ijql = xij ln(π

(m)
ql ) + (1 − xij) ln(1 − π

(m)
ql ).Note that πql is bounded in the M-step.We reall i(m) = mod(m − 1, n).Without self loop:

log τ
(m)
i(m)q = log α(m−1)

q +
∑

j 6=i(m)

∑

l=1,Q

τ
(m−1)
jl β

(m−1)
i(m)jql

, (37)With self loops:
log τ

(m)
i(m)q = log α(m−1)

q +
∑

j 6=i

∑

l=1,Q

τ
(m−1)
jl β

(m−1)
i(m)jql

+ β
(m−1)
i(m)i(m)qq

, (38)In any ase, τiqs are normalized suh that:
τiq =

τiq
∑

l τil

.- τiqs are bounded suh that ǫτ < τiq < 1 − ǫτ ,- A fatorization is used to avoid numerial zeros in the alulus of posterior prob-abilities. Considering that τiq ∝ exp(−δiq), and denoting δ⋆
i = maxq δiq, τiq isalulated suh that:

τiq ∝
e−(δiq−δ⋆

i )

∑

l e
−(δil−δ⋆

i )4.3 Stopping rule and Likelihoods.Stopping rule The EM algorithm stops when m = N ∗ n where N is user-spei�ed.Inomplete-data log-likelihood approximation.
JQ = QQ −HQComplete-data log-likelihood.Undireted ase without self loop:

QQ =
∑

i

∑

q

τiq log αq +
∑

i

∑

j<i

∑

q,l

τiqτjlβijql7



Undireted ase with self loops:
QQ =

∑

i

∑

q

τiq log αq +
∑

i

∑

j<i

∑

q,l

τiqτjlβijql +
∑

i,q

τiqβiiqq,Entropy.
HQ =

∑

i

∑

q

τiq log τiq5 CriteriaBIC.
BICQ = JQ −

Q(Q + 1)

4
log

n(n − 1)

2
−

(Q − 1)

2
log nICL.

ICLQ = QQ −
Q(Q + 1)

4
log

n(n − 1)

2
−

(Q − 1)

2
log n
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