kerfdr: a semi-parametric kernel-based algorithm to Local FDR estimation

M Guedj^{1,4}, A Célisse^{2,4}, S Robin^{2,4} and G Nuel^{3,4}

SMPGD 2008, Rennes

1 Ligue Nationale contre le Cancer, the '*Carte d'Identité des Tumeurs*' group, Paris

- ² Statistics and Genome group, AgroParisTech, INRA, Paris
- ³ University Paris Descartes V, MAP5, UMR CNRS 8145, Paris
- 4 Statistics for System Biology working group, Paris

Thanks to advances in Molecular Biology and improvments of microarray technologies :

D Genome-Wide Associations

Genomic alterations (CGH, CVN)

Gene-Expressions

Genomic alterations (CGH, CNV):

Normal caryotype Tumoral caryotype

L : lost N : normal G : gained

Genomic alterations (CGH, CNV):

Thanks to advances in Molecular Biology and improvments of microarray technologies:

D Genome-Wide Associations

D Genomic alterations (CGH, CVN)

D Gene-Expressions

The use of large-scale data requires the simultaneous evaluation of a huge number of statistical hypotheses. 30,000 genes / 1,000,000 genetic markers (SNPs) ...

‣ multiple-testing

 \Box *n* tests at the α level:

true-positive

 \Box n tests at the α level:

 \Box n tests at the α level:

- $n = 100,000$ $\alpha = 5\%$
- \triangleright 5,000 false-positives >> # true-positives

 \Box n tests at the α level:

 $n = 100,000$ $\alpha = 5\%$

- 5,000 false-positives \geq # true-positives
- ‣ the control of the *fp* is a crucial issue.
- ‣ type-I error-rate not adapted anymore

(Benjamini et Hochberg 95) (Forner et al 07)

FDR - less conservative than the FWER
- more intuitive interpretation - more intuitive interpretation

False Discovery Rate: $FDR = \mathbb{E}(Q),$ with $Q = \frac{fp}{B}$ if $R > 0$ or $Q = 0$ otherwise.

(Benjamini et Hochberg 95) (Forner et al 07)

FDR - less conservative than the FWER
- more intuitive interpretation - more intuitive interpretation

False Discovery Rate:

 $FDR = \mathbb{E}(Q),$ with $Q = \frac{fp}{B}$ if $R > 0$ or $Q = 0$ otherwise.

Benjamini-Hochberg's majoration:

$$
\text{FDR} \leqslant \text{ min} \left(\frac{n\alpha}{R(\alpha)}; 1 \right)
$$

Estimation with Monte-Carlo simulations.

FDR

False Discovery Rate:

- Global criterion, can not be used to assess the reliability of a specific hypothesis.
- ‣ Associated to a given rejection region without distinguishing statistics/*p*-values that are close to the threshold and those that are not.

FDR

False Discovery Rate:

- Global criterion, can not be used to assess the reliability of a specific hypothesis.
- ‣ Associated to a given rejection region without distinguishing statistics/*p*-values that are close to the threshold and those that are not.

FDR

False Discovery Rate:

- Global criterion, can not be used to assess the reliability of a specific hypothesis.
- ‣ Associated to a given rejection region without distinguishing statistics/*p*-values that are close to the threshold and those that are not.

(Efron 04)

Local FDR

Local False Discovery Rate:

$$
\mathrm{fdr}_{i} = \mathbb{P}\left(H = H0 | \mathcal{S} = \mathcal{S}_{i}\right)
$$

Mixture model: general and statistically convenient framework

$$
f = \pi_0 f_0 + \pi_1 f_1,
$$

$$
f \, \mathrm{d} \,
$$

(Efron 04)

Local FDR

Local False Discovery Rate:

$$
\mathrm{fdr}_{i} = \mathbb{P}\left(H = H0 | \mathcal{S} = \mathcal{S}_{i}\right)
$$

Mixture model: general and statistically convenient framework

$$
f=\pi_0f_0+\pi_1f_1,
$$

$$
f \mathrm{d} r_i \equiv \frac{\pi_0 f_0 \left(p \mathbf{v}_i \right)}{f \left(p \mathbf{v}_i \right)}
$$

(Efron 04)

Local FDR

Local False Discovery Rate:

$$
\mathrm{fdr}_{i} = \mathbb{P}\left(H = H0 | \mathcal{S} = \mathcal{S}_{i}\right)
$$

Mixture model: general and statistically convenient framework

(Efron 04) (McLachlan et al 06)

Local FDR

2-components Gaussian mixture model: EM

 $f = \pi_0 f_0 + \pi_1 f_1, \quad x_i = \text{probit}(p v_i) = \Phi^{-1}(p v_i),$

$$
f_{\theta_j}(x_i) = \frac{1}{\sigma_j \sqrt{2\pi}} e^{\frac{-(x_i - \widehat{\mu}_j)^2}{2(\sigma_j)^2}}
$$

 $f_0 = \mathcal{N}(\mu_0, \sigma_0)$

 $f_1 = \mathcal{N}(\mu_1, \sigma_1)$

Local FDR

2-components Gaussian mixture model: EM

Local FDR

2-components Gaussian mixture model: EM

Kernel-based estimation: non-parametric estimation by convolving the data with a kernel

2 parameters

Kernel-based estimation: non-parametric estimation by convolving the data with a kernel

2 parameters

observed density - kernel function (shape)

Kernel-based estimation: non-parametric estimation by convolving the data with a kernel

2 parameters

Kernel-based estimation: non-parametric estimation by convolving the data with a kernel

2 parameters

- kernel function (shape) - bandwidth (smoothing)

kerfdr

Kernel-based estimation:

$$
f = \pi_0 f_0 + \pi_1 f_1, \qquad f_0 = \mathcal{N}(\mu_0, \sigma_0)
$$

\n
$$
\widehat{\tau}_{i0} = \widehat{\pi}_0 f_0(x_i) / \widehat{f}(x_i), \qquad \text{kernel function}
$$

\n
$$
\widehat{f}_1(x) = \left[\sum_{i=1}^n \frac{1 - \widehat{\tau}_{i0}}{h} k' \left(\frac{x - x_i}{h'} \right) \right] / \left(n - \sum_{j=1}^n \widehat{\tau}_{j0} \right)
$$

kerfdr

Kernel-based estimation:

$$
f = \pi_0 f_0 + \pi_1 f_1, \qquad f_0 = \mathcal{N}(\mu_0, \sigma_0)
$$

$$
\widehat{\tau}_{i0} = \widehat{\pi}_0 f_0(x_i) / \widehat{f}(x_i),
$$
\n
$$
\widehat{f}_1(x) = \left[\sum_{i=1}^n \frac{1 - \widehat{\tau}_{i0}}{h} k\left(\frac{x - x_i}{h}\right) \right] / \left(n - \sum_{j=1}^n \widehat{\tau}_{j0} \right)
$$

kerfdr

Kernel-based estimation:

$$
f = \pi_0 f_0 + \pi_1 f_1, \qquad f_0 = \mathcal{N}(\mu_0, \sigma_0)
$$

$$
\widehat{\tau}_{i0} = \widehat{\pi}_0 f_0(x_i) / \widehat{f}(x_i),
$$
\n
$$
\widehat{f}_1(x) = \left[\sum_{i=1}^n \frac{1 - \widehat{\tau}_i}{h} k\left(\frac{x - x_i}{h}\right) \right] / \left(n - \sum_{j=1}^n \widehat{\tau}_{j0} \right)
$$

Step 'E'

kerfdr

Kernel-based estimation: EM-like algorithm

$$
f = \pi_0 f_0 + \pi_1 f_1, \qquad f_0 = \mathcal{N}(\mu_0, \sigma_0)
$$

$$
\widehat{\tau}_{i0} = \widehat{\pi}_0 f_0(x_i) / \widehat{f}(x_i),
$$
\n
$$
\widehat{f}_1(x) = \left[\sum_{i=1}^n \frac{1 - \widehat{\tau}_{i0}}{h} k\left(\frac{x - x_i}{h}\right) \right] / \left(n - \sum_{j=1}^n \widehat{\tau}_{j0} \right)
$$

Kernel-based estimation:

D Semi-parametric.

 \Box Do not require any assumption on the alternative distribution.

D Provide more realistic estimates.

 \Box π_0 , h and k must be pre-determined.

Tests must be independent.

Implementation

- Estimation of π_0
- Determination of the bandwitdh
- ‣ Computation of *f1*
- Semi-supervised situations
- ‣ Truncated distributions

practical generalizations

(Storey 01)

kerfdr

- Estimation of π_0
- Many methods already implemented

(Sheather and Jones 91) (Silverman 86) (Scott 92)

kerfdr

- Determination of the bandwidth
- Many methods already implemented : \cup
	- Biased and unbiased cross-validation estimations. \Box
	- Methods using estimation of derivatives. \cup
	- Simple heuristics in the special case of Gaussian kernels.

(Silverman 82)

kerfdr

- Use of Fast Fourier Transforms to compute $\widehat{f}_1(x)$
	- The naive computation requires a quadratic complexity. \Box
	- An algorithm based on fast discrete convolution through FFT allows a far more efficient linear complexity.

$$
\widehat{f}_1(x) = \left[\sum_{i=1}^n \frac{1 - \widehat{\tau}_{i0}}{h} k\left(\frac{x - x_i}{h}\right) \right] / \left(n - \sum_{j=1}^n \widehat{\tau}_{j0} \right)
$$

- Semi-supervised situations
	- Among the null hypotheses to be tested, some are known \Box to be true (control-genes in dge experiments) while other are known to be false (test genes in spike-in settings).
	- Prior information is taken into account in the estimation \Box procedure.
	- Known local FDR τ_{i0} are kept fixed : they contribute to the \Box estimation for the other observations but are not updated at each step of the algorithm.

- ‣ Truncated distributions within an interval *I*
	- *e.g. : p*-values computed by Monte-Carlo ➞ *p*-values > 1/*S*
	- the restrictions of f_1 , f_0 and f to I need to be normalized \Box with *q1*, *q0* and *q* the corresponding normalization factors.

$$
q=\int_I f(x)dx=\pi_0\underbrace{\int_I f_0(x)dx}_{q_0}+\pi_1\underbrace{\int_I f_1(x)dx}_{q_1}
$$

- ‣ R package 'kerfdr'
	- Simple and straightforward to use
	- Many options for more advanced users
	- Fast thanks to Fast Fourier Transforms
	- Includes the estimation of π_0 and of the bandwidth 1
121 122
121 122 123
	- \blacksquare Handles semi-supervised situations and truncated distributions
	- Produces graphics

Application 1: simulations

- ‣ *p*-values simulated according to the mixture model
- ‣ *f*0 is the uniform distribution over [0,1]
- 4 proportions of null hypotheses: $π₀ = 0.99 / 0.95 / 0.90 / 0.70$
- \triangleright *f*₁ is either an exponential $\epsilon(\mu_1)$ or a uniform distribution over [0,2 μ_1]
- 2 different means for f_1 : μ_1 = 0.01 / 0.001
- ‣ Number of observations: *n* = 1,000
- ‣ Number of simulations: *S* = 500

Application 1: simulations

- ‣ *p*-values simulated according to the mixture model
- ‣ *f*0 is the uniform distribution over [0,1]
- 4 proportions of null hypotheses: $π₀ = 0.99 / 0.95 / 0.90 / 0.70$
- \triangleright *f*₁ is either an exponential $\epsilon(\mu_1)$ or a uniform distribution over [0,2 μ_1]
- 2 different means for f_1 : μ_1 = 0.01 / 0.001
- ‣ Number of observations: *n* = 1,000
- ‣ Number of simulations: *S* = 500
- ‣ Performances are assessed by means of the Root Mean Square Error :

$$
RMSE(\pi_0, f) = \frac{1}{S} \sum_{s} \sqrt{\frac{1}{n} \sum_{i} (\hat{\tau}_i^s - \tau_i)^2}.
$$

estimated value
estimated value

Application 1: simulations

- ‣ *p*-values simulated according to the mixture model
- ‣ *f*0 is the uniform distribution over [0,1]
- 4 proportions of null hypotheses: $π₀ = 0.99 / 0.95 / 0.90 / 0.70$
- \triangleright *f*₁ is either an exponential $\epsilon(\mu_1)$ or a uniform distribution over [0,2 μ_1]
- 2 different means for f_1 : μ_1 = 0.01 / 0.001
- ‣ Number of observations: *n* = 1,000
- ‣ Number of simulations: *S* = 500
- ‣ Performances are assessed by means of the Root Mean Square Error :

$$
RMSE(\pi_0, f) = \frac{1}{S} \sum_{s} \sqrt{\frac{1}{n} \sum_{i} (\widehat{\tau}_i^s - \tau_i)^2}.
$$

‣ The smaller the *RMSE***, the better the performances.**

Application 1: comparison with existing methods

Application 1: comparison with existing methods

- Estimates of *kerfdr* not very sensitive to the bandwidth
- ▶ *kerfdr* performs as well the other methods when *f*0 and *f*1 are well separated $(\mu_1 = 0.001, \text{data not shown})$
- It outperforms them in more difficult situations ($\mu_1 = 0.01$) especially in terms of stability.

Application 1: semi-supervised : from 0% to 50% of known hypotheses

The proportion of known hypotheses improves the estimates.

Even a small proportion of 1 or 5 % !!!

Application 1: truncated distributions : *p*-value are truncated to a given threshold *p**

* :
$$
p^* = 0
$$
 (reference)
\nO : $p^* = 10^{-3}$
\n+ : $p^* = 10^{-2}$

dotted : naive estimation lines : corrected estimation

Application 1: truncated distributions : *p*-value are truncated to a given threshold *p**

The correction improves the quality of the estimates.

The corrected estimates can be almost as good as the untrucated reference !!!

(Hedenfalk et al 01)

kerfdr

Application 2: differential gene-expressions

3,226 genes studied among two groups of BRCA1 (7 patients) and BRCA2 (8 patients). \Box

(data provided by Merck-Serono)

kerfdr

Application 3: genome-wide association

203 controls from Rennes genotyped using a 100K Affy (100,000 SNPs covering the \Box genome).

Initial method fully described in *Robin et al* 07.

Algorithm available *via* the CRAN or at

[http://stat.genopole.cnrs.fr/software/kerfdr](http://stat)

Manuscript under revision in BMC Bioinformatics.

Acknowledgements

the Statistics for System Biology working group the Statistics and Genome laboratory, Evry, FRANCE Merck-Serono for the data.

S Robin,A Bar-Hen and JJ Daudin for the initial method

e-mail: [mickael.guedj@gmail.com](mailto:mickael.guedj@genopole.cnrs.fr)

Any questions ??

« That's what I want to say. See if you can find some statistics to prove it! »