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Université Paris-Est and University of Copenhagen

Abstract. We consider a multidimensional diffusion X with drift coefficient

b(Xt, α) and diffusion coefficient εa(Xt, β) where α and β are two unknown pa-

rameters, while ε is known. For a high-frequency sample of observations of the

diffusion at the time points k/n, k = 1, . . . , n, we propose a class of contrast

functions and thus obtain estimators of (α, β). The estimators are shown to be

consistent and asymptotically normal when n→∞ and ε→ 0 in such a way that

ε−1n−ρ remains bounded for some ρ > 0. The main focus is on the construction

of explicit contrast functions, but it is noted that the theory covers quadratic

martingale estimating functions as a special case. In a simulation study we con-

sider the finite sample behaviour and the applicability to a financial model of an

estimator obtained from a simple explicit contrast function.

1. Introduction

In this paper we consider a family of d-dimensional processes defined as the solu-

tion of

dXt = b(Xt, α)dt+ εσ(Xt, β)dWt, t ∈ [0, 1],(1)

X0 = x0,

where (α, β) ∈ Θα×Θβ with Θα and Θβ being two open convex bounded subsets of

respectively Rp and Rq. The process (Wt) is an r-dimensional Wiener process; the

function b is Rd-valued and defined on Rd×Θα; the function σ is defined on Rd×Θβ
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and takes values on the space of matrices Rd ⊗Rr; the initial value of the diffusion,

x0 ∈ Rd, and ε > 0 are known. The only unknown quantity in (1) is the parameter

θ = (α, β). We denote the true value of the parameter by θ0 = (α0, β0) and assume

that θ0 ∈ Θ = Θα ×Θβ.

The small diffusion asymptotic ε → 0 has been widely studied and has proved

fruitful in applied problems. For illustrations of applications to contingent claim

pricing, see Uchida & Yoshida (2004b) and references therein; for filtering problems,

see e.g. Picard (1986, 1991). Several papers have been devoted to small diffusion

asymptotics for parameter estimators in diffusion models. If the diffusion X is

continuously observed on some finite interval, then the problem of estimation of the

parameter α was treated by Kutoyants (1994), while semi-parametric problems were

studied later (Kutoyants 1998; Iacus & Kutoyants 2001). Information criteria were

studied by Uchida & Yoshida (2004a).

For a discretely observed process (Xtk)k=0,...,n, Sørensen (2000) showed that by us-

ing martingale estimating functions parameters in the drift and diffusion coefficient

may be estimated at rate the ε−1 as ε → 0 even when the number of observations

is fixed. For high-frequency data, where the process is observed at times tk = k/n

with n → ∞ and ε = O(n−1/2), Genon–Catalot (1990) obtained an estimator of a

drift coefficient parameter that is asymptotically equivalent to the maximum like-

lihood estimator based of the continuous time observation (Xt)t∈[0,1] and thus is

efficient. Uchida (2004) considered a similar situation and obtained an efficient esti-

mator from an approximate martingale estimating function. In Sørensen & Uchida

(2003) estimation of both drift and diffusion coefficients parameters from the discrete

time sampling (Xtk)k=0,...,n was treated. They obtained estimators that in a high-

frequency and small-diffusion asymptotics are consistent, asymptotically Gaussian,

and efficient for the estimation of the drift component parameter. However, they

needed the restrictive condition that lim(ε
√
n)−1 = M <∞.

In this paper, we extend the result of Sørensen & Uchida (2003) by proposing

estimators for which the weaker condition that lim (εnρ)−1 < ∞ for some ρ > 0 is

sufficient. More precisely we obtain the following result. Let X0 be the solution of
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the underlying deterministic system under the true value of the drift parameter:

dX0
t = b(X0

t , α0)dt, X0
0 = x0,

and introduce the matrix:

(2) I(θ0) =


(
Ii,j
b (θ0)

)
1≤i,j≤p

0

0
(
Ii,j
σ (θ0)

)
1≤i,j≤q

 ,

with

Ii,j
b (θ0) =

∫ 1

0

(
∂

∂αi
b(X0

s , α0)
)∗

[σσ∗]−1(X0
s , β0)

(
∂

∂αj
b(X0

s , α0)
)

ds,

Ii,j
σ (θ0) =

1
2

∫ 1

0
tr
[(

∂

∂βi
[σσ∗]

)
[σσ∗]−1

(
∂

∂βj
[σσ∗]

)
[σσ∗]−1(X0

s , β0)
]

ds.

By M∗ we denote the transpose of a matrix M . We will present an estimator

(α̂ε,n, β̂ε,n) obtained by minimizing an explicit contrast function based on the obser-

vations (Xtk)k=0,...,n (with tk = k/n) for which(
ε−1(α̂ε,n − α0)√
n(β̂ε,n − β0)

)
→ N (0, I(θ0)−1).

The estimator of the drift parameter is efficient. The asymptotic variance of the

diffusion parameter equals that of the estimator in Sørensen & Uchida (2003).

The structure of the paper is as follow. In Section 2 we present the construction

of the contrast based estimator. Then we state the main result precisely and show

that martingale estimating functions appear as a special case of this work. Let us

emphasize that the conditions needed on the diffusion X are less restrictive than

those needed in Sørensen & Uchida (2003). In particular, the coefficient σ need not

be a Lipschitz function. As an example, we consider in detail the case of a two

factor model with Cox–Ingersoll–Ross component and explore the applicability of

the estimator to financial data in a simulation study in Section 3. The Section 4 is

devoted to the proofs of the results.
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2. Main results

We start this section by presenting the necessary conditions and the construction

of the estimator.

2.1. Basic assumptions. Let us first introduce the following set of assumptions.

[A1] For all ε > 0, the equation (1), with the true value of the parameter, admits

a unique strong solution X = Xε on some probability space (Ω,A,P).

[A2] The function b is smooth and Lipschitz on Rd × Θα (by smooth we mean

that b is the restriction of some C∞ function defined on a larger open set).

[A3] σ is continuous, and there exists some open convex subset U of Rd such that

X0
t ∈ U for all t ∈ [0, 1], and σ is smooth on U ×Θβ. Moreover σσ∗(x, β) is

invertible on U ×Θβ .

[A4] If α 6= α0 then the two functions t 7→ b(X0
t , α0) and t 7→ b(X0

t , α) are

not equal.

If β 6= β0 then the two functions t 7→ σσ∗(X0
t , β0) and t 7→ σσ∗(X0

t , β)

are not equal.

[B] ε = εn → 0 and there exists a ρ > 0 such that limn→∞ (εnnρ)−1 <∞.

In Section 1 we introduced (X0
t ), the solution of the ordinary differential equation

corresponding to ε = 0. Now more generally let us consider the flow (ξt(x, α))t

defined by

(3)
∂

∂t
ξt(x, α) = b(ξt(x, α), α), ξ0(x, α) = x.

The condition [A2] ensures that the flow (ξt(x, α))t exists and is smooth; [A3] means

that the coefficients are smooth on a convex neighborhood of the deterministic lim-

iting path, (X0
t ).

2.2. The estimator and its properties. In the following the function

(4) δ̃n(x, α) = ξ1/n(x, α)− x

plays a crucial role. The quantity δ̃n(Xtk−1
, α0) is an approximation of Xtk −Xtk−1

as ε → 0 and n → ∞ (recall that tk = k/n). Basic properties of δ̃n(x, α) are

given in Section 4.3. We introduce a contrast function approximating the law of the
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observations in a way analogous to the approach in Kessler (1997) or Sørensen &

Uchida (2003):

Ũε,n(θ) =

(
n∑

k=1

{log det Ξk−1(β) + ε−2nP̃ ∗k (α)Ξk−1(β)−1P̃k(α)}

)
�|{Z>0},

where

(5) P̃k(α) = Xtk −Xtk−1
− δ̃n(Xtk−1

, α),

(6) Ξk(β) = [σσ∗](Xtk , β)

and the random variable Z = infk=0,...,n−1;β∈Θβ
det Ξk(β) is introduced to insure

that Ũε,n is well defined.

This contrast function is only explicit (due to δ̃n) if the flow (3) admits an explicit

expression, which is not generally the case. However, useful explicit approximations

are often available (see Section 2.3 for details). Therefore we denote by δn(x, α) an

approximation of the quantity δ̃n(x, α) and make the following assumptions on the

quality of this approximation.

[C1] The function δn is smooth on Rd×Θα, and for any compact subset K of Rd,

there exists c(K) such that

sup
x∈K,α∈Θα

∣∣∣δn(x, α)− δ̃n(x, α)
∣∣∣ ≤ c(K)εn−3/2.

Similar bounds hold for the first two derivatives of δn and δ̃n with respect

to the parameter α.

[C2] The functions nδn are Lipschitz in the variable α, with a constant indepen-

dent of n, on any compact subset of Rd×Θα. The same holds for derivatives

of any order with respect to α.

By Proposition 2 in Section 4.3, the choice δn = δ̃n satisfies these conditions under

[A2] (of course, only [C2] needs verification in this case).

We can define a more general contrast function using the approximation δn instead

of δ̃n:

(7) Uε,n(θ) =

(
n∑

k=1

{log det Ξk−1(β) + ε−2nP ∗k (α)Ξk−1(β)−1Pk(α)}

)
�|{Z>0},



6 ARNAUD GLOTER AND MICHAEL SØRENSEN

where now

(8) Pk(α) = Xtk −Xtk−1
− δn(Xtk−1

, α).

Let θ̂ε,n = (α̂ε,n, β̂ε,n) be a minimum contrast estimator; i.e. a family of random

variables satisfying

(9) θ̂ε,n = argmin
θ∈Θ

Uε,n(θ).

The main result of the paper is the following.

Theorem 1. Assume [A1]–[A4], [B], [C1]–[C2] and that θ0 ∈ Θ with the matrix

I(θ0) (given in (2)) being positive definite. Then

θ̂ε,n → θ0

in P-probability as ε→ 0 and n→∞. Further, we have the convergence(
ε−1(α̂ε,n − α0)√
n(β̂ε,n − β0)

)
→ N (0, I(θ0)−1)

in distribution under P as ε→ 0 and n→∞.

Thus the estimator of the diffusion parameter, α̂ε,n, and the estimator of the

diffusion parameter, β̂ε,n, are asymptotically independent. The matrix Ib(θ0) is

equal to the Fisher information matrix for estimation of α0 from the continuous

time observation (Xt)t∈[0,1]; see Kutoyants (1994). Hence the estimator of the drift

parameter α is efficient. The asymptotic information matrix Iσ(θ0), is related to

the expression for the Fisher information matrix for estimation of the the diffusion

parameter β from high frequency data with fixed ε found by Gobet (2002) in the

same way that Ib(θ0) is related to Gobet’s expression for the Fisher information

matrix for estimation of the drift parameter. This leads us to conjecture that our

estimator for the diffusion parameter is efficient too.

The proof of Theorem 1 is given in Section 4.



ESTIMATION WITH SMALL DIFFUSION ASYMPTOTIC 7

2.3. A possible choice of δn. As stated previously the choice δn(x, α) = δ̃n(x, α) =

ξ1/n(x, α) − x is possible under [A2], but typically this choice does not provide an

explicit contrast function. Hence it can be useful to let δn equal the following

approximation of δ̃n. Define the operator L0
α(f)(x) =

∑d
i=1 b

i(x, α) ∂
∂xi
f(x) for any

differentiable function f , and set for any integer v ≥ 1

δv
n =

v∑
u=1

(
L0

α

)u−1 (b(., α))
n−u

u!
.

For instance, we have the approximations δ1n(x, α) = n−1b(x, α) and δ2n(x, α) =

n−1b(x, α) + (1/2)n−2
∑d

i=1 b
i(x, α) ∂

∂xi
b(x, α). The same approach was used by

Uchida (2004) to approximate martingale estimating functions.

By the Assumption [A2] and (3), we easily prove that for any compact subset K

of Rd:

(10) sup
x∈K,α∈Θα

∣∣∣δv
n(x, α)− δ̃n(x, α)

∣∣∣ ≤ cn−(v+1).

Moreover both δv
n and δ̃n are smooth (see Proposition 2 for details) and one may

show that (10) hold too for any derivatives with respect to α.

Hence by Assumption [B], δv
n satisfies [C1] provided that v is large enough, or ρ is

small enough. Since [C2] is immediate, the choice δn = δv
n is valid when n−(v+1) =

O(εn−3/2), i.e. if (εnv−1/2)−1 is bounded, or if v − 1/2 ≥ ρ.

Remark 1. The choice δn(x, α) = b(x, α)n−1, which was considered in the paper by

Sørensen & Uchida (2003), is sufficient by (10) when (εn1/2)−1 is bounded. Hence

we find the set-up of Sørensen & Uchida (2003) as a particular case of the general

framework considered here.

Remark 2. By inspecting the step 1 in the proof of consistency in Section 4.4.1

bellow, it can be seen that if the parameter β0 is known and the contrast function

(7) is used to estimate the parameter α, then the condition [B] is not necessary for

consistency and might be replaced by ε = εn
n→∞−−−→ 0.

2.4. Martingale estimating functions. A useful tool for estimating parameters

in diffusion models is provided by quadratic martingale estimating functions, see

Bibby, Jacobsen & Sørensen (2004). These estimators work well for low frequency
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data too. Here we briefly consider how our theory covers quadratic martingale

estimating functions. Such an estimating function can be obtained by differen-

tiation as the pseudo-score corresponding to a contrast function like (7), but with

exact conditional moments instead of approximations. In particular, we must choose

Pk(α) = Xtk −mn(Xtk−1
, α) where mn(x, α) is the conditional expectation of X1/n

given X0 = x (under the assumption that this conditional expectation depends only

on α). The corresponding choice δn(x, α) = mn(x, α)− x is not always explicit, but

it is interesting to note that this choice automatically satisfies the approximation

condition [C1]. Indeed we have, by using (1) and then (3):

δn(x, α) =Eθ

[∫ 1/n

0
b(Xs, α)ds | X0 = x

]
(11)

= δ̃n(x, α) + Eθ

[∫ 1/n

0
{b(Xs, α)− b(ξs(x, α), α)}ds | X0 = x

]
,

and under smoothness conditions on b and σ we can prove (for details see condition

[A3’] and Lemma 3 in Section 4):

(12) sup
0≤s≤1/n

Eθ [|Xs − ξs(x, α)| | X0 = x] ≤ cεn−1/2(1 + |x|c).

It follows that δn − δ̃n is of the order of magnitude required in [C1]. To see that

the same order of approximation holds for the two first derivatives with respect

to α is more delicate. Under smoothness assumptions on the coefficients, one can

differentiate (11) with respect to α and then use that we have bounds analogous to

(12) for
∣∣∣ ∂i

∂αiXs − ∂i

∂αi ξs(x, α)
∣∣∣ with i = 1, 2. We omit the details here.

Remark 3. To obtain exactly a quadratic martingale estimating function, the

contrast function must be defined by means of the exact second conditional mo-

ment v(x, β) = covθ(X1/n | X0 = x) instead of its short time approximation

ε2n−1[σσ∗](x, β) (assuming here that v only depends on β). The modification of

the contrast (7) obtained by replacing the approximation Ξk−1(β) by the exact mo-

ment v(Xtk−1
, β) is not considered here because it is not important for high frequency

data; however one could prove directly that Theorem 1 holds too for the modified

contrast.
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3. An example: a two factor model

As illustration we consider a two factor model X = (Y,R) given by:

dYt = (Rt + µ1)dt+ εκ1dW 1
t , Y0 = y0 ∈ R,(13)

dRt = µ2(m−Rt)dt+ εκ2

√
Rt(ρdW 1

t + (1− ρ2)
1
2 dW 2

t ), R0 = r0 > 0,(14)

with parameter θ = (µ1, µ2,m, κ
2
1, κ

2
2, ρ) ∈ R× (0,∞)4 × (−1, 1).

The second component represents the short term rate while Y is the log price

of some asset (see e.g. Longstaff & Schwartz 1995, Overhaus et al 2006). The

parameter ρ allows correlation between innovation terms of the two factors. This

diffusion satisfies [A1]–[A3], and [A4] holds if r0 6= m0. The bi-dimension equation

(3) is linear and has the solution:

ξt(y, r, µ1, µ2,m) =

(
y + µ1t+ y + r−m

µ2
(1− e−µ2t)

m+ (r −m)e−µ2t

)
,

yielding to an explicit expression for the contrast function with the choice δn = δ̃n.

The information matrix I(θ) is explicit too, and one can check that I(θ0) is invertible

if r0 6= m0 with:

Ib(θ)−1 = (1− ρ2)


1
κ2
1

0 0

0 −mµ2−m ln(q)+(m−r0)(e−µ2−1)
κ2
2µ2

−µ+ln(q)
κ2
2

0 −µ+ln(q)
κ2
2

−µ2 ln(q)
mκ2

2


−1

where q = r0/[r0 +m(eµ2 − 1)], and

Iσ(θ)−1 =

 2κ4
1 2ρ2κ2

1κ
2
2 ρ(1− ρ2)κ2

1

2ρ2κ2
1κ

2
2 2κ4

2 ρ(1− ρ2)κ2
2

ρ(1− ρ2)κ2
1 ρ(1− ρ2)κ2

2 (1− ρ2)2


Let us remark that the asymptotic variance for the estimation of drift parameters

decreases to zero as the correlation parameter ρ2 increases to 1.

We explore the behaviour of the estimator for finite samples using Monte Carlo

simulations. For each of the following situations and for each sample size a number

of independent realizations of the process were simulated by means of the Euler

scheme, and the estimators were calculated for each realization. Means and standard
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deviations of the simulated estimator values are reported in the Tables 1, 2 and 3.

The Tables 1 and 2 are based on 400 replications, while 1000 replications were used

for Table 3.

First the parameters are set to µ1 = µ2 = m = κ2
1 = κ2

2 = 1, ρ = 0.3 and

(y0, r0) = (0, 1.5). In Table 1 with ε = 0.01 the estimator gives good results, and it

is very noticeable that the estimation of the drift remains good even if n is small.

This is not surprising since for the model (14) our estimators for µ2,m are the same

one as considered in Sørensen (2000), and it is proved in this paper that for n fixed

and ε → 0 these estimators are consistent and asymptotically normal. That the

estimating function obtained from our contrast function is a martingale is due to

the fact that when the drift is linear, the conditional expectation of Xtk given Xtk−1

equals ξ1/n(Xtk−1
, α). We made additional simulations that showed that, for the

different choice δn(x, α) = b(x, α)n−1, the estimation is biased when n is too small.

In Table 2 we give results for ε = 0.1, and it clearly appears that the behaviour of

the estimators worsen.

To investigate how the estimator could perform on real financial data, we set the

parameters to µ1 = 5.7, m = 2, κ2
2 = 450, ε = 0.1, x0 = 3 and n = 300. This set

of parameter values corresponds to the estimates obtained in Chan et al. (1992)

for 300 monthly observations over 25 years, if r(t)/25 is the annualized short time

interest rate. We set arbitrarily ρ = 0, κ2
1 = 25 and µ1 = −0.125 so that the risk

premium of the asset is null. The estimator of µ2 appears biased and µ1 is clearly

too small to be sharply estimated, but the other parameters are well estimated (see

Table 3).

4. Proof of the main result

The details of the proof of the main result are split into 4 subsections. First, we

introduce a set of more restrictive assumptions under which the proof will be easier

and show that it is enough to prove the result under these assumptions. Then we

present some crucial lemmas on the random variables Pk(α0) (section 4.2). Third,

we study the asymptotic behaviour of the functions δ̃n(x, α), and finally we study

the contrast function Uε,n and prove Theorem 1 in section 4.4.
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4.1. A stronger set of assumptions. Before proving Theorem 1, let us introduce

a set of more restrictive assumptions under which the proof will be easier.

[A3’] For all (x, β) ∈ Rd×Θβ, the matrix σσ∗(x, β) is positive definite. Moreover,

the functions σ and [σσ∗]−1 (respectively b) are bounded and smooth with

bounded derivatives of any order on Rp ×Θβ (respectively Rp ×Θα).

[A5] sup0≤t≤1

∣∣Xt −X0
t

∣∣ tends to zero in P-probability as ε→ 0.

[C1’] The function δn is smooth and there exists a constant c, such that

sup
x∈Rd,α∈Θα

∣∣∣δn(x, α)− δ̃n(x, α)
∣∣∣ ≤ cεn−3/2,

and similar approximations hold for the first two derivatives of δn and δ̃n

with respect to the parameter α.

[C2’] The functions nδn are bounded and Lipschitz in the variable α, on Rd×Θα,

with constants independent of n. The same holds for derivatives of any order

with respect to α.

By the following proposition, it is enough to prove Theorem 1 under [A1], [A2],

[A3’], [A4], [A5], [B], [C1’]–[C2’].

Proposition 1. To prove that the conclusions of Theorem 1 hold under [A1]–[A4],

[B] and [C1]–[C2], it is enough to prove that they hold under the stronger conditions

[A1], [A2], [A3’], [A4], [A5], [B], [C1’]–[C2’].

Proof. Assume [A1]–[A4], [B] and [C1]–[C2]. By [A3] we can find two compact sets

K, K ′ such that K ′ ⊂
◦
K ⊂ K ⊂ U with X0

t ∈
◦
K ′, ∀t ∈ [0, 1]. Now, by Lemma 6

below, smooth modifications, b′ and σ′, of b and σ exist such that:

1. ∀x ∈ K,∀α ∈ Θα, b′(x, α) = b(x, α) and b′ has compact support

2. ∀x ∈ K,∀β ∈ Θβ , σ′(x, β) = σ(x, β), σ′ is constant except on some compact

set, and infx∈Rd,β∈Θβ
detσ′σ′∗(x, β) > 0.

Clearly these new coefficients satisfy the condition [A3’]. Define X ′ε = X ′ as a

solution of (1) with the coefficients σ and b replaced by σ′(., β0) and b′(., α0).

Then by the uniqueness of solutions of stochastic differential equations (see for

instance Gihman & Skorohod (1972), p.44) we have, P(X = X ′;X ′
t ∈ K ′, ∀t ∈

[0, 1]) = P (X ′
t ∈ K ′, ∀t ∈ [0, 1]). Using that by theorem 1.2 at p.45 of Freidlin
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& Wentzell (1998), sup0≤s≤1

∣∣X ′ε
s −X ′0

s

∣∣ ε→0−−−→
P

0, it follows that for any r > 0,

P(sup0≤s≤1

∣∣Xε
s −X0

s

∣∣ ≥ r) ≤ P(sup0≤s≤1

∣∣X ′ε
s −X ′0

s

∣∣ ≥ r) + P(∃t ∈ [0, 1], X ′
t /∈ K ′)

converges to zero as ε→ 0. Hence condition [A5] holds for the diffusion X ′ε, and in

turn we deduce that P(X = X ′;X ′
t ∈ K ′, ∀t ∈ [0, 1]) tends to one as ε→ 0.

Consider now the flow defined by (3) with the coefficient b replaced by b′, and

the associated quantity defined by (4), which we denote by δ̃′n(x, α). It is easy to

see that for n sufficiently large, δ̃′n(x, α) = δ̃n(x, α) for all α ∈ Θα and all x in some

compact set K ′′ with K ′ ⊂
◦
K ′′ ⊂ K ′′ ⊂ K. Next, we modify the approximation

δn accordingly by defining δ′n(x, α) = δn(x, α)ψ(x) + δ̃′n(x, α)(1−ψ(x)), where ψ is

a non-negative smooth function that is equal to 1 on K ′ and vanishes outside K ′′.

Then for all (x, α) ∈ Rd ×Θα:

δ′n(x, α)− δ̃′n(x, α) = (δn(x, α)− δ̃′n(x, α))ψ(x) = (δn(x, α)− δ̃n(x, α))ψ(x).

Thus condition [C1] for (δn, δ̃n) implies [C1’] for (δ′n, δ̃′n) with c = c(K ′)‖ψ‖∞.

Moreover, nδ′n vanishes outside some compact set, so [C2’] follows from [C2].

By construction, we now have two statistical problems on the same probability

space. The one indicated by a ”prime” satisfies [A1], [A2], [A3’], [A4], [A5], [B],

[C1’]–[C2’]. We assume that theorem 1 has been proved under these conditions,

so the conclusions of theorem 1 hold for the ”prime”-model. On the event {X =

X ′;X ′
t ∈ K ′, ∀t ∈ [0, 1]}, the contrast functions of the two statistical problems

coincide, and asymptotically this event has probability equal to one. Hence the

conclusions of theorem 1 hold for the initial statistical problem too. �

4.2. Preliminary lemmas. We introduce the σ-field Gn
k = σ(Ws, s ≤ tk). Let us

denote by R(a, x) any function defined on Rd such that there exists c ≥ 0, with

|R(a, x)| ≤ ac(1 + |x|c) for all x. Moreover, denote by C∞↑ (Rd × Θ,R) the set of

smooth functions f on Rd × Θ for which the derivatives of any order have at most

polynomial growth: supθ∈Θ

∣∣ ∂r

∂θr
∂s

∂xs f(x, θ)
∣∣ ≤ c(1 + |x|c) while C∞↑ (Rd,R) denotes

the subset of C∞↑ (Rd ×Θ,R) consisting of the functions only dependent on x.

Finally, we denote by Lε the generator of the diffusion X: if f is smooth,

Lε(f)(x) =
d∑

i=1

bi(x, α0)
∂

∂xi
f(x) + 1/2ε2

d∑
i,j=1

[σσ∗]i,j(x, β0)
∂2

∂xi∂xj
f(x),



ESTIMATION WITH SMALL DIFFUSION ASYMPTOTIC 13

and set

L0(f)(x) =
d∑

i=1

bi(x, α0)
∂

∂xi
f(x).

Lemma 1. Assume [A1], [A2], [A3’], [B] and [C1’], then

1. ∣∣E [P i
k(α0) | Gn

k−1

]∣∣ = R(ε2n−1, Xtk−1
) + R(εn−3/2, Xtk−1

).

2.

E
[
P i1

k (α0)P i2
k (α0) | Gn

k−1

]
=
ε2

n
Ξi1,i2

k−1 (β0) + R(ε2n−2, Xtk−1
).

3. ∣∣∣E [P i1
k (α0)P i2

k (α0)P i3
k (α0) | Gn

k−1

]∣∣∣ = R(ε3n−2, Xtk−1
).

4.

E
[
Π4

j=1P
ij
k (α0) | Gn

k−1

]
= ε4

n2

{
Ξi1,i2

k−1Ξi3,i4
k−1 + Ξi1,i3

k−1Ξi2,i4
k−1 + Ξi1,i4

k−1Ξi2,i3
k−1

}
+R(ε4n−5/2, Xtk−1

).

5.

For all M ≥ 2, E
[∣∣P i

k(α0)
∣∣M | Gn

k−1

]
= R(εMn−M/2, Xtk−1

).

Proof. First, remark that we only need to establish these inequalities with P̃k(α0) in-

stead of Pk(α0). Indeed, we see that Pk(α0)−P̃k(α0) = δn(Xtk−1
, α0)− δ̃n(Xtk−1

, α0)

is properly bounded by Assumption [C1’] to enable the substitutions in 1)–5).

Set φk(y) = y − Xtk−1
− δ̃n(Xtk−1

, α0). Using the Markov property of X and

applying iteratively the Ito formula, we have for any integer v ≥ 1

(15)
E
[
P̃ i

k(α0) | Gn
k−1

]
= E

[
φi

k(Xtk) | Xtk−1

]
=
∑v−1

u=0 (Lε)u (φi
k)(Xtk−1

)n−u

u!

+
∫ tk
tk−1

∫ s1

tk−1
. . .
∫ sv−1

tk−1
E
[
(Lε)v (φi

k)(Xsv) | Xtk−1

]
dsv . . .ds1.

Now by (4), 0 = ξ1/n(Xtk−1
, α0) − Xtk−1

− δ̃n(Xtk−1
, α0) = φi

k(ξ1/n(Xtk−1
, α0)).

Hence, using a Taylor expansion, we obtain

(16) 0 =
v−1∑
u=0

(
L0
)u (φi

k)(Xtk−1
)
n−u

u!
+

∫ 1/n

0

∫ s1

0
. . .

∫ sv−1

0

(
L0
)v (φi

k)(ξsv(Xtk−1
, α0))dsv . . .ds1.
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Using that all derivatives of order ≥ 1 of φk are bounded and assumption [A3′],

we see that the multiple integrals in (15)–(16) are bounded by cn−v. Hence, by

(15)–(16):

E
[
P̃ i

k(α0) | Gn
k−1

]
=

v−1∑
u=0

{
(Lε)u −

(
L0
)u} (φi

k)(Xtk−1
)
n−u

u!
+ R(n−v, Xtk−1

).

Now, Lemma 2 below and an appropriate choice of v (in view of [B]) give∣∣∣E [P̃ i
k(α0) | Gn

k−1

]∣∣∣ = R(ε2n−1, Xtk−1
) + R(n−v, Xtk−1

) = R(ε2n−1, Xtk−1
).

To prove the second part of the theorem, we proceed analogously: now set φk,i,j =

{yi −Xi
tk−1

− δ̃i
n(Xtk−1

, α0)}{yj −Xj
tk−1

− δ̃j
n(Xtk−1

, α0)}. Then we have in analogy

with (15):

E
[
P̃ i

k(α0)P̃
j
k (α0) | Gn

k−1

]
= E

[
φk,i,j(Xtk) | Xtk−1

]
=

v−1∑
u=0

(Lε)u (φk,i,j)(Xtk−1
)
n−u

u!
+ R(n−v, Xtk−1

).

Using that φk,i,j(ξ1/n(Xtk−1
, α0)) = 0, we obtain by subtracting a Taylor expansion

similar to (16),

E
[
P̃ i

k(α0)P̃
j
k (α0) | Gn

k−1

]
=
{
(Lε)−

(
L0
)}

(φk,i,j)(Xtk−1
)n−1+

v−1∑
u=2

{
(Lε)u −

(
L0
)u} (φk,i,j)(Xtk−1

)
n−u

u!
+ R(n−v, Xtk−1

).

Now simple computations shows that
{
(Lε)−

(
L0
)}

(φk,i,j) = ε2[σσ∗]i,j and 2) then

follows by Lemma 2.

To prove 3)–5), we first show the following expansion

(17) P̃k(α0) = εσ(Xtk−1
, β0)(Wtk −Wtk−1

) + Ek

where the remainder term Ek satisfies that for all M ≥ 2, E
[
|Ek|M | Gn

k−1

]
≤

c(M)εMn−M . By (1) and (5), we can write P̃k(α0) = εσ(Xtk−1
, β0)(Wtk −Wtk−1

) +
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Ek,1 + Ek,2 with:

Ek,1 = ε

∫ tk

tk−1

{
σ(Xs, β0)− σ(Xtk−1

, β0)
}

dWs,

Ek,2 = δ̃n(Xtk−1
, α0)−

∫ tk

tk−1

b(Xs, α0)ds.

Using the Burkhölder–Davis–Gundy inequality and then Jensen’s inequality, we have

E
[
|Ek,1|M | Gn

k−1

]
≤ c(M)εME

∣∣∣∣∣
∫ tk

tk−1

∣∣σ(Xs, β0)− σ(Xtk−1
, β0)

∣∣2 ds

∣∣∣∣∣
M
2

| Gn
k−1


≤ c(M)εMn−M/2+1

∫ tk

tk−1

E
[∣∣σ(Xs, β0)− σ(Xtk−1

, β0)
∣∣M | Gn

k−1

]
ds

Using the Ito formula and [A3’], we obtain E
[∣∣σ(Xs, β0)− σ(Xtk−1

, β0)
∣∣M | Gn

k−1

]
≤ c |s− tk−1|M/2, and deduce that E

[
|Ek,1|M | Gn

k−1

]
≤ c(M)εMn−M .

To evaluate Ek,2, remark that by (3)–(4), we can write

Ek,2 =
∫ 1/n

0
b(ξs(Xtk−1

, α0), α0)ds−
∫ tk

tk−1

b(Xs, α0)ds.

Then, the function b being Lipschitz, we deduce

E
[
|Ek,2|M | Gn

k−1

]
≤ cn−M+1

∫ 1/n

0
E
[∣∣ξs(Xtk−1

, α0)−Xtk−1+s

∣∣M | Gn
k−1

]
ds.

Direct application of Lemma 3 gives E
[
|Ek,2|M | Gn

k−1

]
≤ R(εMn−(3/2)M , Xtk−1

) and

(17) follows.

Now, 3)–4) are deduced from (17), using the expressions for the moments of order

≤ 4 of Gaussian variables with covariance matrix given by (6), and by application

of the Cauchy–Schwarz inequality to the remainder terms. Finally, 5) is immediate

by (17). �

Remark that point 5 in Lemma 1 still holds true without the condition [B].
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Lemma 2. Assume [A2], [A3’] and let f ∈ C∞↑ (Rd,R). Then,

(Lε)0 (f)−
(
L0
)0 (f) = 0

∀u ≥ 1, ∃c(u),∀x,
∣∣(Lε)u (f)(x)−

(
L0
)u (f)(x)

∣∣ ≤ ε2c(u)(1 + |x|c(u))

Proof. The first property is immediate since (Lε)0 =
(
L0
)0 = Id. The second one

follows easily because, by induction on u, that we have,

∀u ≥ 1, (Lε)u (f) =
(
L0
)u (f) + ε2gu

where gu is some element of C∞↑ (Rd,R). �

Lemma 3. Assume [A1], [A2], [A3’]. Then for all M ≥ 1, for all k ∈ {1, . . . , n}
and t ∈ [0, 1],

E
[∣∣Xt − ξt−tk−1

(Xtk−1
, α0)

∣∣M | Gn
k−1

]
≤ R(εM |t− tk−1|M/2 , Xtk−1

).

Proof. The result is obtained in the proof of Theorem 1.2 p.45–47 of Freidlin &

Wentzell (1998) for the case M = 2. The proof extends classically to any M ≥ 1. �

Lemma 4. Assume [A1], [A2], [A3’], [A5], [C1’] and let fn, f ∈ C∞↑
(
Rd ×Θ,R

)
such that the sequence fn converges uniformly on any compact subset of Rd × Θ to

f . Further, assume that the two following conditions hold for some constant c:

∀θ, n, x, |fn(x, θ)| ≤ c(1 + |x|c)(18)

∀θ, θ′, n, x,
∣∣fn(x, θ)− fn(x, θ′)

∣∣ ≤ ∣∣θ − θ′
∣∣ c(1 + |x|c).(19)

Then,

1) n−1
∑n

k=1 fn(Xtk−1
, θ)

n→∞,ε→0−−−−−−−→
∫ 1
0 f(X0

s , θ) uniformly in P-probability.

2) Under the additional condition [B], the following sequence is bounded in P-

probability (
sup
θ∈Θ

ε−1
n∑

k=1

fn(Xtk−1
, θ)Pk(α0)

)
n≥1

.

Proof. 1) Using [A2] and [A5], X takes values on some compact set with any

probability arbitrary closed to 1. Hence the uniform convergence property for fn

implies that supθ∈Θ

∣∣n−1
∑n

k=1 fn(Xtk−1
, θ)− n−1

∑n
k=1 f(Xtk−1

, θ)
∣∣ converges to 0
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in P-probability. Then the convergence of n−1
∑n

k=1 f(Xtk−1
, θ) is obtained as in

Sørensen & Uchida (2003).

2) We set Cn(θ) = ε−1
∑n

k=1 fn(Xtk−1
, θ)E

[
Pk(α0) | Gn

k−1

]
andMn(θ) =

∑n
k=1$k,n(θ)

with $k,n(θ) = ε−1fn(Xtk−1
, θ)
{
Pk(α0)− E

[
Pk(α0) | Gn

k−1

]}
. First, using (18) and

Lemma 1 1), we have |Cn(θ)| ≤ (εn−1 +n−3/2)
∑n

k=1 c(1+
∣∣Xtk−1

∣∣c) which converges

to 0 in P-probability.

Finally, it remains to prove the tightness of Mn(.). For this it is sufficient to show

that (see Theorem 20 in Appendix I of Ibragimov & Has’minskii (1981) or Lemma

3.1 of Yoshida (1992)):

E

∣∣∣∣∣
n∑

k=1

$k,n(θ)

∣∣∣∣∣
2l
 ≤ c(20)

E

∣∣∣∣∣
n∑

k=1

$k,n(θ1)−
n∑

k=1

$k,n(θ2)

∣∣∣∣∣
2l
 ≤ c |θ1 − θ2|2l(21)

for any θ, θ1, θ2 ∈ Θ and 2l an even integer greater than the dimension p+ q of the

parameter space Θ.

We only give details for the proof of (21) since the other one may be proved

similarly. Using Rosenthal’s inequality for martingales (see Burkhölder (1973), Hall

& Heyde (1980)), we have:

(22) E

∣∣∣∣∣
n∑

k=1

$k,n(θ1)−$k,n(θ2)

∣∣∣∣∣
2l
 ≤

cE

( n∑
k=1

E
[
|$k,n(θ1)−$k,n(θ2)|2 | Gn

k−1

])l

+

(
n∑

k=1

|$k,n(θ1)−$k,n(θ2)|2l

)
Using Lemma 1 5) and the Lipschitz condition (19), we can prove that

∀M, E
[
|$k,n(θ1)−$k,n(θ2)|M | Gn

k−1

]
≤ cn−M/2 |θ1 − θ2|M (1 +

∣∣Xtk−1

∣∣c).
Using this bound, in (22) with M = 2 and M = 2l, and the fact that Xt has finite

moments, gives (21). �
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Lemma 5. Assume [A1], [A2], [A3’], [A5], [B], [C1’] and let f ∈ C∞↑
(
Rd ×Θ,R

)
.

Then we have the convergence, uniform with respect to θ, in P-probability:

ε−2
n∑

k=1

f(Xtk−1
, θ)P i

k(α0)P
j
k (α0)

n→∞,ε→0−−−−−−−→
∫ 1

0
f(X0

s , θ)[σσ
∗]i,j(X0

s , β0)ds.

Proof. We follow the scheme of proof of Lemma 3 in Sørensen & Uchida (2003) (see

Lemma 9 from Genon–Catalot & Jacod (1993) too). It is sufficient to prove the

three following facts:

n∑
k=1

E
[
ε−2f(Xtk−1

, θ)P i
k(α0)P

j
k (α0) | Gn

k−1

]
P−→
∫ 1

0
f(X0

s , θ)[σσ
∗]i,j(X0

s , β0)ds,

n∑
k=1

E
[
ε−4f2(Xtk−1

, θ)
(
P i

k(α0)P
j
k (α0)

)2
| Gn

k−1

]
P−→ 0,

sup
ε,n

E

[
sup

θ

∣∣∣∣∣ ∂∂θ
n∑

k=1

ε−2f(Xtk−1
, θ)P i

k(α0)P
j
k (α0)

∣∣∣∣∣
]
<∞.

The first point is shown by using first Lemma 1 2) and then Lemma 4 1). The

second and third points follows from Lemma 1 5). �

We end this section by the following lemma used in the proof of Proposition 1.

Lemma 6. Let K and U be as in the proof of Proposition 1. Then there exist smooth

functions b′ and σ′ such that:

1. ∀x ∈ K,∀α ∈ Θα, b′(x, α) = b(x, α) and b′ has compact support

2. ∀x ∈ K,∀β ∈ Θβ, σ′(x, β) = σ(x, β); infx∈Rd,β∈Θβ
detσ′σ′∗(x, β) > 0 and σ′

is constant except on some compact set.

Proof. The construction of b′ is immediate by multiplication of b by a smooth func-

tion ψK(x) equal to 1 on K with compact support. For 2), using that U×Θβ ⊂ Rd×
Θβ are two convex sets, there exists a smooth retraction φ(t, x, β) : [0, 1]×Rd ×Θβ

such that φ(1, x, β) = (x, β) and φ(0, x, β) = (x, θ) is some fixed element of U ×Θβ

and for all t ∈ [0, 1], φ(t,U × Θβ) ⊂ U × Θβ . Let ψK,U be a smooth function

with compact support on Rd, equal to 1 on K, and vanishing on Rd − U . We set

σ′(x, β) = σ(φ(ψK,U (x), x, β)), which by [A3] satisfies 2). �
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4.3. Properties of δ̃n. First, we compare nδ̃n(x, α) with b(x, α).

Proposition 2. 1) Assume [A2], then the flow (ξt(x, α))t≥0 is well defined and is

smooth on Rd×Θα. Further the functions nδ̃n and all their derivatives with respect

to α are bounded independently of n on compact subsets of Rd ×Θα.

2) Assume [A2] and [A3’], then the sequence nδ̃n converges to b uniformly:

sup
x∈Rd,α∈Θα

∣∣∣nδ̃n(x, α)− b(x, α)
∣∣∣ ≤ cn−1,

and a similar bound holds for all derivatives of order ≤ 2 with respect to α of δ̃n and

b.

Proof. Using well known results on the dependence of solution of an ordinary dif-

ferential equation on a parameter (see for instance Walter (1998) p.151), all the

derivatives of ξ(x, α)t with respect to α and x exist and they satisfy the differential

equation obtain by formal differentiation of (3). Since, using (3), we have

(23) nδ̃n(x, α) = n

∫ 1
n

0
b(ξ(x, α)s, α)ds,

point 1) follows.

Now under [A3’], we have supx,α |ξ(x, α)s − x| ≤ cs, and we deduce from (23)

that

sup
x∈Rd,α∈Θα

∣∣∣nδ̃n(x, α)− b(x, α)
∣∣∣ ≤ cn−1.

To show that an analogous bound hold for the derivatives, we write

∂(nδ̃n)
∂α

(x, α) = n

∫ 1
n

0

∂b

∂α
(ξ(x, α)s, α)ds+ n

∫ 1
n

0

∂b

∂x
(ξ(x, α)s, α)

∂ξ

∂α
(x, α)sds.

Then using that ∂ξ
∂α(x, α)0 = 0, and hence that

∣∣∣ ∂ξ
∂α(x, α)s

∣∣∣ ≤ cs we deduce

sup
x∈Rd,α∈Θα

∣∣∣∣∣∂(nδ̃n)
∂α

(x, α)− ∂b

∂α
(x, α)

∣∣∣∣∣ ≤ cn−1.

By differentiating (23) twice, we deduce similarly the approximation for the second

order derivatives. �
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Remark that by 1) in the previous proposition, we see that the choice δn = δ̃n

satisfies the condition [C2]. Note too that if we choose δn so that it satisfies [C1’],

then, by 2) of the above proposition, we can deduce the following lemma.

Lemma 7. Assume [A2], [A3’], [C1’] then the sequence nδn converges uniformly to

b: supx∈Rd,α∈Θα
|nδn(x, α)− b(x, α)| ≤ c(n−1 + εn−1/2), and a similar bound holds

for all derivatives of order ≤ 2 with respect to α.

4.4. Proof of Theorem 1. Let us introduce the following quantities that we will

use in the proof:

U1(α, α0, β) =
∫ 1

0
(b(X0

s , α)− b(X0
s , α0))∗[σσ∗]−1(X0

s , β)(b(X0
s , α)− b(X0

s , α0))ds

U2(β, β0) =
∫ 1
0 log det[σσ∗](X0

s , β)[σσ∗]−1(X0
s , β0)ds

+
∫ 1
0 tr

[
[σσ∗](X0

s , β)[σσ∗]−1(X0
s , β0)

]
ds− d.

We rewrite the expression of the contrast function (7) in a more convenient form

(and use the fact that under [A3’] we can suppress �|{Z>0}):

Uε,n(θ) =
n∑

k=1

log det Ξk−1(β) + ε−2n

n∑
k=1

P ∗k (α0)Ξk−1(β)−1Pk(α0)

+ ε−2n
n∑

k=1

(δn(Xtk−1
, α0)− δn(Xtk−1

, α))∗Ξ−1
k−1(β)(δn(Xtk−1

, α0)

− δn(Xtk−1
, α))

+ 2ε−2n
n∑

k=1

(δn(Xtk−1
, α0)− δn(Xtk−1

, α))∗Ξ−1
k−1(β)Pk(α0).

4.4.1. Consistency of the estimator. 1st step. We prove the consistency for the drift

parameter. For this, repeating the arguments of Theorem 1 in Sørensen & Uchida

(2003), it is sufficient to show the following convergence uniformly with respect to

(α, β):

ε2{Uε,n(α, β)− Uε,n(α0, β)} n→∞,ε→0−−−−−−−→
P

U1(α, α0, β).
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By the expression of the contrast function, we have

ε2{Uε,n(α, β)− Uε,n(α0, β)} =

n−1
n∑

k=1

(nδn(Xtk−1
, α0)− nδn(Xtk−1

, α))∗Ξ−1
k−1(β)(nδn(Xtk−1

, α0)− nδn(Xtk−1
, α))

+2
n∑

k=1

(nδn(Xtk−1
, α0)− nδn(Xtk−1

, α))∗Ξ−1
k−1(β)Pk(α0).

Using Lemma 7 and [C2’], we may apply the results of Lemma 4 to the two sums

above. This yields ε2{Uε,n(α, β)− Uε,n(α0, β)} → U1(α, α0, β).

2nd step. We prove that ε−1(α̂ε,n−α0) is tight. This is needed before proving the

consistency for the parameter β. By consistency the probability of the event {α̂ε,n ∈
Θα} tends to 1, and on this event, by a first order expansion around (α0, β̂ε,n), we

have 0 = ∂
∂αUε,n(α̂ε,n, β̂ε,n) = Dε,n +Nε,n(α̂n,ε−α0), where Dε,n = ∂

∂αUε,n(α0, β̂ε,n),

and Nε,n is the symmetric matrix Nε,n =
∫ 1
0

∂2

∂α2Uε,n(α0 + t(α̂ε,n − α0), β̂ε,n)dt. By

simple computations,

Dε,n = −2ε−2
n∑

k=1

P ∗k (α0)Ξ−1
k−1(β̂ε,n)

∂(nδn)
∂α

(Xtk−1
, α0).

Using Lemma 4 2),

sup
β
ε−1

∣∣∣∣∣
n∑

k=1

P ∗k (α0)Ξ−1
k−1(β)

∂(nδn)
∂α

(Xtk−1
, α0)

∣∣∣∣∣

is bounded in P-probability. Thus (εDε,n)ε,n is a tight sequence.
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We now focus on Nε,n. The second order derivative with respect to α of the

contrast function is given by

∂2

∂αi∂αj
Uε,n(α, β) =

−2ε−2n−1
n∑

k=1

∂2(nδn)
∂αi∂αj

(Xtk−1
, α)∗Ξ−1

k−1(β)
{
nδn(Xtk−1

, α0)− nδn(Xtk−1
, α)
}

+2ε−2n−1
n∑

k=1

∂(nδn)
∂αi

(Xtk−1
, α)∗Ξ−1

k−1(β)
∂(nδn)
∂αj

(Xtk−1
, α)

−2ε−2
n∑

k=1

Pk(α0)∗Ξ−1
k−1(β)

∂2(nδn)
∂αi∂αj

(Xtk−1
, α).

Again, application of Lemma 4 gives that ε2 ∂2Uε,n

∂αi∂αj
(α, β) converges to

− 2
∫ 1

0

∂2b

∂αi∂αj
(X0

s , α)∗[σσ∗]−1(X0
s , β)

{
b(X0

s , α0)− b(X0
s , α)

}
ds

+ 2
∫ 1

0

∂b

∂αi
(X0

s , α)∗[σσ∗]−1(X0
s , β)

∂b

∂αj
(X0

s , α)ds,

and by [A3’] and the positivity of Ib(θ0), we deduce that

(24) inf
β∈Θβ

det

([∫ 1

0

∂b

∂αi
(X0

s , α0)∗[σσ∗]−1(X0
s , β)

∂b

∂αj
(X0

s , α0)ds
]

1≤i,j≤p

)

≥ cdet

[(∫ 1

0

∂b

∂αi
(X0

s , α0)∗
∂b

∂αj
(X0

s , α0)ds
]

1≤i,j≤p

)
> 0.

Then the consistency of α̂ε,n implies that P(det(ε2Nε,n) > 0) tends to one. Thus,

we get, on some event with arbitrarily large probability, that ε−1(α̂ε,n − α) =

−(ε2Nε,n)−1εDε,n, and hence the sequence is tight.

3rd step. We prove the consistency for the diffusion parameter. Again by a

repetition of the arguments in Sørensen & Uchida (2003) it is sufficient to show the

following convergence uniformly with respect to β:

n−1{Uε,n(α̂ε,n, β)− Uε,n(α̂ε,n, β0)}
n→∞,ε→0−−−−−−−→

P
U2(β, β0).



ESTIMATION WITH SMALL DIFFUSION ASYMPTOTIC 23

Using the expression of the contrast function, we have:

n−1{Uε,n(α̂ε,n, β)− Uε,n(α̂ε,n, β0)} = n−1
n∑

k=1

log det Ξk−1(β)Ξ−1
k−1(β0)

+ε−2
n∑

k=1

Pk(α0)∗Ξ−1
k−1(β)Pk(α0)− ε−2

n∑
k=1

Pk(α0)∗Ξ−1
k−1(β0)Pk(α0)

+Λ(1)(α̂ε,n, α0, β) + Λ(2)(α̂ε,n, α0, β)− Λ(1)(α̂ε,n, α0, β0)− Λ(2)(α̂ε,n, α0, β0)

where

(25) Λ(1)(α, α0, β) = ε−2n−2
n∑

k=1

{
nδn(Xtk−1

, α0)− nδn(Xtk−1
, α)
}∗ Ξ−1

k−1(β)

{
nδn(Xtk−1

, α0)− nδn(Xtk−1
, α)
}
,

and

Λ(2)(α, α0, β) =

2ε−2n−1
n∑

k=1

Pk(α0)∗Ξ−1
k−1(β)

{
nδn(Xtk−1

, α0)− nδn(Xtk−1
, α)
}
.(26)

Using that nδn is Lipschitz and [A3’], we have
∣∣Λ(1)(α, α0, β)

∣∣ ≤ cn−1ε−2 |α− α0|2

and
∣∣Λ(2)(α, α0, β)

∣∣ ≤ cn−1ε−2 |α− α0|
∑n

k=1 |Pk(α0)|. Thus using the tightness of

ε−1 |α− α̂ε,n| and Lemma 1 5), we deduce that the four last terms in the expansion

of n−1{Uε,n(α̂ε,n, β)−Uε,n(α̂ε,n, β0)} tends to 0 uniformly. Now using Lemmas 4 1)

and 5, we deduce that the three first terms in this expansion converge to U2(β, β0).

4.4.2. Asymptotic normality of the estimator. We consider the derivatives of the

contrast function:

Γε,n(θ0) =

 −ε
(

∂
∂αi

Uε,n(θ)
)

1≤i≤p

− 1√
n

(
∂

∂βi
Uε,n(θ)

)
1≤i≤q


and

Cε,n(θ) =

 ε2
(

∂2

∂αi∂αj
Uε,n(θ)

)
1≤i,j≤p

ε 1√
n

(
∂2

∂αi∂βj
Uε,n(θ)

)
1≤i≤p,1≤j≤q

ε 1√
n

(
∂2

∂βi∂αj
Uε,n(θ)

)
1≤i≤p,1≤j≤q

1
n

(
∂2

∂βi∂βj
Uε,n(θ)

)
1≤i,j≤q

 .
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Following the proof of Theorem 1 in Sørensen & Uchida (2003), the asymptotic

normality follows from the two following properties:

Γε,n(θ0)
law−−→ N (0, 4I(θ0)),(27)

sup
t∈[0,1]

∣∣∣Cε,n(θ0 + t(θ̂ε,n − θ0))− 2I(θ0)
∣∣∣ P−→ 0.(28)

First, we prove (27). For this we compute,

−ε∂Uε,n

∂αi
(θ0) = 2ε−1

n∑
k=1

P ∗k (α0)Ξ−1
k−1(β0)

∂(nδn)
∂αi

(Xtk−1
, α0).

Using Lemma 7 and Lemma 1 5), we may write −ε∂Uε,n

∂αi
(θ0) =

∑n
k=1 ξ

i
k(θ0) +

OL1

(
ε+ n−1/2

)
where

ξi
k(θ0) = 2ε−1P ∗k (α0)Ξ−1

k−1(β0)
∂b

∂αi
(Xtk−1

, α0).

Differentiation of the contrast function with respect to βj yields, −n−1/2 ∂Uε,n

∂βj
(θ0) =

ηj
k(θ0) where

ηj
k(θ0) = n−1/2 tr

(
Ξ−1

k−1(β0)
∂Ξk−1

∂βj
(β0)

)
−

ε−2n1/2P ∗k (α0)Ξ−1
k−1(β0)

∂Ξk−1

∂βj
(β0)Ξ−1

k−1(β0)Pk(α0)

We know by Theorem 3.2 and 3.4 in Hall & Heyde (1980) that to obtain (27) it is

sufficient show the following results on convergence in P-probability
n∑

k=1

E
[
ξi
k(θ0) | Gn

k−1

]
→ 0

n∑
k=1

E
[
ηj

k(θ0) | G
n
k−1

]
→ 0

n∑
k=1

E
[
ξi1
k (θ0)ξi2

k (θ0) | Gn
k−1

]
→ 4Ii1,i2

b (θ0)

n∑
k=1

E
[
ηj1

k (θ0)η
j2
k (θ0) | Gn

k−1

]
→ 4Ij1,j2

σ (θ0)



ESTIMATION WITH SMALL DIFFUSION ASYMPTOTIC 25

n∑
k=1

E
[
ξi
k(θ0)η

j
k(θ0) | G

n
k−1

]
→ 0

n∑
k=1

E
[
(ξi

k(θ0))
4 | Gn

k−1

]
→ 0

n∑
k=1

E
[
(ηj

k(θ0))
4 | Gn

k−1

]
→ 0

Theses seven properties follow from the expressions of ξi
k(θ0), η

i
k(θ0), Lemma 1 and

Lemma 4 1); we omit the detailed proof.

Finally we show (28). For this, note that we have already shown in the 2nd

step of Section 4.4.1 that ε2 ∂2Uε,n

∂αi∂αj
(θ) converges uniformly to the quantity 2Ii,j

b (θ)−
2
∫ 1
0

∂2b
∂αi∂αj

(X0
s , α)∗[σσ∗]−1(X0

s , β)
{
b(X0

s , α0)− b(X0
s , α)

}
ds. Hence consistency of

the estimator yields

sup
t∈[0,1]

∣∣∣Cε,n(θ0 + t(θ̂ε,n − θ0))i,j − 2I(θ0)i,j
∣∣∣ P−→ 0, for 1 ≤ i, j ≤ p.

We now focus on the mixed term, for which we need to show that

(29) sup
t∈[0,1]

∣∣∣∣ ε√n ∂2

∂αi∂βj
Uε,n(θ0 + t(θ̂ε,n − θ0))

∣∣∣∣→ 0.

However, by the expression of the contrast, we compute

ε√
n

∂2Uε,n

∂αi∂βj
(θ) =− 2ε−1n−

1
2

n∑
k=1

Pk(α0)∗
∂(Ξ−1

k−1)
∂βj

(β)
∂(nδn)
∂αi

(Xtk−1
, α)

−2ε−1n−
3
2

n∑
k=1

∂(nδn)
∂αi

(Xtk−1
, α)∗

∂(Ξ−1
k−1)

∂βj
(β){nδn(Xtk−1

, α0)− nδn(Xtk−1
, α)}

Using Lemma 4 2), the first sum tends to 0 in P-probability, uniformly with respect

to θ. Using the Lipschitz condition on nδn, the second sum above is bounded by

cn−1/2 |α− α0| ε−1. Thus its contribution is negligible by the tightness of |α̂ε,n − α0| ε−1.

Hence (29) follows.

For the derivatives with respect to β, direct computation and application of Lem-

mas 4 1) and 5 gives (recall (25)–(26) too):

1
n

∂2Uε,n

∂βi∂βj
(θ) = C(β, β0)i,j + oP(1) +

∂2Λ(1)

∂βi∂βj
(α, α0, β) +

∂2Λ(2)

∂βi∂βj
(α, α0, β)
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where, with γ = σσ∗,

C(β, β0)i,j =
∫ 1

0
tr
(
γ−1∂2

βi,βj
(γ)(X0

s , θ)
)

ds

−
∫ 1

0
tr
(
γ−1∂βi

(γ)γ−1∂βj
(γ)(X0

s , θ)
)
ds

−
∫ 1

0
tr
(
(γ−1∂2

βi,βj
(γ)γ−1)(X0

s , θ)γ(X
0
s , θ0)

)
ds

+
∫ 1

0
tr
(
(γ−1∂βi

(γ)γ−1∂βj
(γ)γ−1)(X0

s , θ)γ(X
0
s , θ0)

)
ds

+
∫ 1

0
tr
(
(γ−1∂βj

(γ)γ−1∂βi
(γ)γ−1)(X0

s , θ)γ(X
0
s , θ0)

)
ds

Note that C(β0, β0)i,j = 2Ii,j
σ (θ0). Moreover, using [A3’], [C2’] and (25), we obtain

the bound
∣∣∣ ∂2Λ(1)

∂βi∂βj
(α, α0, β)

∣∣∣ ≤ cn−1ε−2 |α− α0|2; and using Lemma 1 5), we have∣∣∣ ∂2Λ(2)

∂βi∂βj
(α, α0, β)

∣∣∣ ≤ OL1(n−1/2)ε−1 |α− α0|. This is sufficient, with the tightness of

ε−1 |α̂ε,n − α0|, to conclude (28).
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n = 10 n = 20 n = 50 n = 100

µ̂1 1.000 (0.01) 1.000 (0.01) 1.000 (0.01) 1.007 (0.01)

µ̂2 1.006 (0.13) 0.998 (0.13) 1.005 (0.13) 0.997 (0.12)

m̂ 0.996 (0.04) 0.996 (0.04) 0.997 (0.04) 0.993 (0.04)

κ̂2
1 0.94 (0.43) 0.95 (0.30) 0.98 (0.19) 0.99 (0.14)

κ̂2
2 0.73 (0.27) 0.87 (0.29) 0.93 (0.18) 0.96 (0.13)

ρ̂ 0.392 (0.25) 0.34 (0.18) 0.31 (0.12) 0.30 (0.08)
Table 1. mean (s.d.) of the simulated estimator values (µ1 = µ2 =

m = κ2
1 = κ2

2 = 1, ρ = 0.3, ε = 0.01)

n = 10 n = 20 n = 50 n = 100

µ̂1 0.994 (0.10) 0.998 (0.10) 1.000 (0.10) 0.999 (0.10)

µ̂2 1.72 (1.19) 1.71 (1.26) 1.83 (1.21) 1.79 (1.25)

m̂ 0.94 (0.35) 0.93 (0.36) 0.97 (0.34) 0.96 (0.34)

κ̂2
1 0.92 (0.43) 0.95 (0.30) 0.98 (0.19) 0.99 (0.14)

κ̂2
2 0.73 (0.36) 0.85 (0.28) 0.92 (0.19) 0.96 (0.13)

ρ̂ 0.38 (0.24) 0.34 (0.19) 0.31 (0.12) 0.31 (0.09)
Table 2. mean (s.d.) of the simulated estimator values (µ1 = µ2 =

m = κ2
1 = κ2

2 = 1, ρ = 0.3, ε = 0.1)

µ̂1 -0.065 (0.53) µ̂2 10.02 (4.9) m̂ 2.06 (0.56)

κ̂2
1 24.9 (2.1) κ̂2

2 437 (33) ρ̂ 0.013 (0.06)

Table 3. mean (s.d.) of the simulated estimator values (µ1 =

−0.125, µ2 = 5.7, m = 2, κ2
1 = 25, κ2

2 = 450, ρ = 0)


