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Parameter Estimation for a Discretely
Observed Integrated Diffusion Process
ARNAUD GLOTER

Département d’Economie, Université Bordeaux 4

ABSTRACT. We consider the estimation of unknown parameters in the drift and diffusion coeffi-
cients of a one-dimensional ergodic diffusion X when the observation is a discrete sampling of the
integral of X at times i�, i=1, . . ., n. Assuming that the sampling interval tends to 0 while the total
length time interval tends to infinity, we first prove limit theorems for functionals associated with
our observations. We apply these results to obtain a contrast function. The associated minimum
contrast estimators are shown to be consistent and asymptotically Gaussian with different rates for
drift and diffusion coefficient parameters.

Key words: contrast function, diffusion processes, discrete time observations, non-Markovian
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1. Introduction

The statistics of one-dimensional diffusion processes with ergodic properties and when the
sample path is discretely observed has been the subject of many recent papers. More pre-
cisely, let (Xt) be given by the stochastic differential equation:

dXt =b(Xt, �) dt +a(Xt, �) dBt, X0 =� (1)

with B a standard Wiener process and � a random variable independent of B. Suppose that
for some positive �, a sample (Xi�, i ≤n) is observed and that it is required to estimate (�, �)∈
R2. The exact likelihood of such an observation being generally intractable, other methods
have been developed to obtain explicit estimators. Under the assumption of fixed sampling
interval, different kinds of estimating functions have been studied (see e.g. Barndorff-Nielsen
& Sørensen, 1994; Kessler & Sørensen, 1999; Sørensen, 1999, 2000; Kessler, 2000; Bibby &
Sørensen, 2001).

Another point of view which is also classical and complementary to the former one is to
assume that the sampling interval �=�n tends to 0 as n →∞ and n�n →∞. In this frame-
work, the likelihood of the Euler scheme of (1) is a contrast function and provides consis-
tent and asymptotically Gaussian estimators. A noteworthy result is that drift and diffusion
coefficient parameters are estimated with different rates, (n�n)1/2 for the drift parameters and
n1/2 for diffusion coefficient parameters (see e.g. Dorogovtsev, 1976; Florens-Zmirou, 1989;
Kessler, 1997).

In this paper, we consider a new type of observation. Our aim is to estimate the parameter
(�, �) of (1) when we observe a discrete �-sampling of the integrated process It =

∫ t
0 Xs ds.

Integrals of diffusion process have been recently considered in the field of finance in rela-
tion to stochastic volatility models (see e.g. Leblanc, 1996; Barndorff-Nielsen, 1998; Genon-
Catalot et al., 1998; Barndorff-Nielsen & Sheppard, 2002; Bollerslev & Zhou, 2002). Data
may be obtained from option prices and their associated implied volatilities (see e.g. Pasto-
rello et al., 1994)

For fixed sampling interval �, the exact distribution of (Ii�, i ≤n) is difficult to compute except
for few models. For example, the case of X a stationary Ornstein–Uhlenbeck is treated in Gloter
(2001) and the case of a Cox–Ingersoll–Ross model is studied in Ditlevsen & Sørensen (2004).
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To deal with a general diffusion X , we shall assume that the sampling interval �=�n tends
to 0. Now, let

X
n
i =�−1

n

∫ (i+1)�n

i�n

Xs ds =�−1
n (I(i+1)�n − Ii�n ). (2)

We shall base our estimation on the sample (X
n
i )i≤n−1 which is in one-to-one correspondence

with the observation (Ii�n )i≤n. Our starting idea is that, for small �n, the law of (X
n
i , i ≤ n − 1)

may be close to the law of (Xi�n , i ≤n−1), so that methods available for the discrete sampling
(Xi�n ) apply for (X

n
i ). In fact such a substitution fails mainly because (X

n
i ) is not Markovian.

As preliminary steps, in Gloter (2000) we have obtained asymptotic expansions of X
n
i as

�n →0. The results of Gloter (2000) hold without ergodicity assumptions on model (1).
In this paper, we assume that the diffusion (Xt) has ergodic properties with invariant proba-

bility d�0(x). We first prove limit theorems concerning the variation and the quadratic vari-
ation of (X

n
i ), which enlight the difference between (X

n
i ) and the discrete sampling (Xi�n ).

These theorems enable us to construct a contrast by introducing the appropriate corrections
on the Euler contrast of the diffusion.

The paper is organized as follows. Sections 2–4 are devoted to general limit theorems. In
these sections, parameters are omitted and we set a(x, �)=a(x), b(x, �)=b(x). Section 2 con-
tains the assumptions and a recap of some expansions obtained in Gloter (2000). In section
3, we introduce the following functionals of the observed process (where X i =X

n
i to simplify

notations):

�n( f )=n−1
n−2∑
i=0

f (X i) (3)

In( f )= (n�n)−1
n−2∑
i=0

f (X i)(X i+1 −X i −�nb(X i)) (4)

Qn( f )= (n�n)−1
n−2∑
i=0

f (X i)(X i+1 −X i)2. (5)

Section 3 contains convergence in probability results and section 4 some associated central limit
theorems. The main result is that, under smoothness assumptions on f, g,(

(n�n)1/2

(
In( f )− 1

4
Qn( f ′)

)
, n1/2

(
3
2
Qn(g)− �n(ga2)

))

converges in distribution to a N (0, �0( f 2a2))⊗N (0, 9/4�0(g2a4)) (where �0 is the invariant prob-
ability of the diffusion and �0( f )=∫ f (x) d�0(x)). This needs the additional (but classical, see
e.g. Florens-Zmirou, 1989) condition n�2

n →0.
In section 5, we give examples of diffusion models satisfying the set of assumptions intro-

duced in section 2.
Section 6 contains the statistical applications. Using results of sections 3 and 4, we define a

contrast function, see (51), and study the associated minimum contrast estimator �̂n = (�̂n, �̂n).
This estimator is shown to be consistent and ((n�n)1/2(�̂n −�0), n1/2(�̂n −�0)) asymptotically nor-
mal (�0 = (�0, �0) denotes the true value of the parameter). We compare the asymptotic vari-
ances with those obtained for estimators based on a discrete sampling of the diffusion itself (by
Kessler, 1997). The only difference is a slight increase in the asymptotic variance of the estima-
tor of �0. In section 7, examples of parametric models are fully treated. We provide simulation
results to see how our estimator behave on finite sample for small, but fixed, value of �n.

Some technical results are given in the appendix.
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To simplify notations and proofs we have chosen a one-dimensional parameter for the drift
and for the diffusion coefficient, but we could easily extend this work to multidimensional
parameters (see remark 5).

2. Assumptions and preliminary results

2.1. Model and assumptions

Let (Xt) be defined as the solution on a probability space (�, F , P) of the stochastic differ-
ential equation:

dXt =a(Xt) dBt +b(Xt) dt, X0 =� (6)

where (Bt)t≥0 is a standard one-dimensional Brownian motion, � is a random variable inde-
pendent of (Bt)t≥0. We make now some classical assumptions on functions b and a ensuring
that the solution of (6) is a positive recurrent diffusion on an interval (l, r)(−∞≤ l < r ≤∞).

To keep general notations, we introduce two positive measurable functions Bl and Br de-
fined on (l, r) satisfying the following property: ∀�, �, �′, �′, p≥0, ∃c, ∀x ∈ (l, r),

(B�
l (x)+B�

r (x))× (B�′
l (x)+B�′

r (x))≤ c(B�+�′
l (x)+B�+�′

r (x)) (7)

(B�
l (x)+B�

r (x))p ≤ c(Bp�
l (x)+Bp�

r (x)). (8)

These functions are used below to bound the growth of other functions near the boundaries
l, r of the state space. For example, if l =0, r =∞ we may take Bl (x)=1+x−1, Br(x)=1+x.

(A0) Equation (6) admits a unique strong solution such that P(Xt ∈ (l, r), ∀t ≥0)=1.
(A1) Function a and b are real valued, C2 on (l, r) and

∃c, �1, �2, �1, �2 ≥0, ∀x ∈ (l, r),

a(x) > 0, |a(x)| + |b(x)|≤ c(1+Br(x)),

|a′(x)|≤ c(B�1
l (x)+B�1

r (x)), |a′′(x)|≤ c(B�2
l (x)+B�2

r (x)),

|b′(x)|≤ c(B�1
l (x)+B�1

r (x)), |b′′(x)|≤ c(B�2
l (x)+B�2

r (x)).

Let Gt =�(Bs, s ≤ t;�).
(A2) There exists a positive constant Kl such that

∀k ∈ [0, Kl ), ∃c, ∀t > 0, E
(
sups∈[t,t+1] Bk

l (Xs) |Gt
)≤ cBk

l (Xt)

∀k ∈ [0, ∞), ∃c, ∀t > 0, E
(
sups∈[t,t+1] Bk

r (Xs) |Gt
)≤ cBk

r (Xt).

For x0 ∈ (l, r), let s(x)= exp(−2
∫ x

x0
(b(u)/a2(u)) du) denote the scale density and m(x)=

1/(a2(x)s(x)) the speed density.
(A3)

∫ x0
l s(x) dx = ∫ r

x0
s(x) dx =∞,

∫ r
l m(x) dx =M <∞.

Let

�0(dx)= 1
M

m(x)1l{x∈(l,r)} dx.

(A4) ∃Ml , Mr > 0 �0(BMl
l ) <∞, �0(BMr

r ) <∞.
(A5) supt≥0 E(BMl

l (Xt)) <∞, supt≥0 E(BMr
r (Xt)) <∞ (where Ml and Mr are defined in A4).

(A1) and (A3) imply (A0) but some results hold without (A3) under (A0)–(A2). Under (A1)
and (A3), �0 is the unique invariant probability of model (6) and X satisfies the classical
ergodic theorem
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∀f ∈L1(d�0),
1
T

∫ T

0
f (Xs) ds T→∞−→

a.s.
�0(f ).

Assumption (A4) means that some powers of Bl and Br are in L1(d�0) and hence all func-
tions on (l, r) bounded by these powers of Bl and Br will also be in L1(d�0). Assumption (A5)
follows immediately from (A4) if the initial distribution is �0 (the process X being strictly
stationary). In section 5, we prove that (A5) follows again from (A4) when the initial con-
dition is deterministic.

Assumption (A2) was already introduced in Kessler (1997) and in Gloter (2000), as a use-
ful tool to control the behaviour of X near the endpoints l, r. In Gloter (2000), it is shown
that (A2) holds for general diffusion processes on R, and for some classical diffusions on
(0, ∞). The reason why (A2) is not symmetric appears in the examples of section 5.

2.2. Expansions for the observed process

Now, let �n be a sequence of positive numbers with �n →0, as n→∞ and assume, for con-
venience, that �n ≤1, for all n. We set Gn

i =Gi�n.
We now recall the main properties of X

n
i =X i (see (2)) proved in Gloter (2000). In the

following statements the constants c appearing never depend on i or n.

Proposition 1
Assume (A0)–(A2) and let f ∈C1(l, r) satisfy:

∃�≥0, ∃c > 0, ∀x ∈ (l, r) |f ′(x)|≤ c(B�
l (x)+B�

r (x)).

1. For all integer k ≥ 1, such that k�< Kl (with Kl given in (A2)), there exists c > 0 such
that for all i, n≥0

E

(
sup

v∈[i�n , (i +1)�n ]
|f (Xv)− f (Xi�n )|k |Gn

i

)
≤ c�k/2

n (Bk�
l (Xi�n )+Bk(1+�)

r (Xi�n )).

2. For all k ≥1, there exists c > 0 such that for all i, n≥0,

E
(∣∣X i −Xi�n

∣∣k |Gn
i

)
≤ c�k/2

n (1+Bk
r (Xi�n ))

E
(∣∣X i+1 −X i

∣∣k |Gn
i

)
≤ c�k/2

n (1+Bk
r (Xi�n )).

Let us introduce

	i,n =�−3/2
n

∫ (i+1)�n

i�n

(s − i�n) dBs for i, n≥0 (9)

	′
i+1,n =�−3/2

n

∫ (i+2)�n

(i+1)�n

(i�n +2�n − s) dBs for i ≥−1, n≥0 (10)

Ui,n =	i,n +	′
i+1,n. (11)

For all n ≥ 0, (	i,n)i≥0, (	′
i+1,n)i≥0 and (Ui,n)i≥0 are Gaussian processes; 	i,n is Gn

i+1 measurable
and independent of Gn

i ; 	′
i+1,n is Gn

i+2 measurable and independent of Gn
i+1. We easily compute

the following expectations: E
(
	i,n |Gn

i

)=E
(
	′

i+1,n |Gn
i+1

)=0, E
(
	2

i,n |Gn
i

)
=E

(
	′2

i+1,n |Gn
i+1

)
=

1/3, E
(
	i,n	

′
i,n |Gn

i

)=1/6. We deduce that for i ≥ 0, var(Ui,n)=2/3 and cov(Ui,n, Ui+1,n)=1/6,
cov(Ui,n, Ui+j, n)=0 for j ≥2. Hence (Ui,n)i≥0 has the covariance structure of an MA(1) process.

The following results hold.

 Board of the Foundation of the Scandinavian Journal of Statistics 2006.
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Theorem 1
Assume (A0)–(A2).

1. We have

X i −Xi�n =�1/2
n a(Xi�n )	′

i,n + ei,n,

with, if 2�1 < Kl , ∀i, n≥0
∣∣E (ei,n |Gn

i

)∣∣≤�nc(1+Br(Xi�n )) (12)

E
(
e2

i,n |Gn
i

)≤�2
nc(B2�1

l (Xi�n )+B2(1+�1)
r (Xi�n )). (13)

2. We have

X i+1 −X i −b(X i)�n =�1/2
n a(Xi�n )Ui,n + 
i,n

where 
i,n is Gn
i+2 measurable, and if �1 ∨2�2 ∨4�1 < Kl, ∀i, n≥0∣∣E (
i,n |Gn

i

)∣∣≤�2
nc(B�1∨�2

l (Xi�n )+B(1+�1)∨(2+�2)
r (Xi�n )), (14)

if 4�1 ∨2�2 < Kl, ∀i, n≥0

E
(

2

i,n |Gn
i

)≤�2
nc(B2�1∨�2

l (Xi�n )+B3+2�1 +�2
r (Xi�n )) (15)

E
(

4

i,n |Gn
i

)≤�4
nc(B4�1∨2�2

l (Xi�n )+B6+4�1+2�2
r (Xi�n )) (16)

Furthermore, if 4�1 ∨�2 ∨4�1 < Kl, ∀i, n≥0∣∣E (
i,n	i,n |Gn
i

)∣∣≤�3/2
n c(B(�1+�1)∨�2

l (Xi�n )+B(1+�1+�1)∨(2+�2)
r (Xi�n )) (17)

∣∣E (
i,n	
′
i+1,n |Gn

i

)∣∣≤�3/2
n c(B(�1+�1)∨�2

l (Xi�n )+B(1+�1+�1)∨(2+�2)
r (Xi�n )). (18)

3. Limit theorems for functionals of the observed process

In this section and the following one, we study the behaviour of functionals (3)–(5) for f :
(l, r) �→ R satisfying some regularity assumptions. The conditions on f are expressed by the
following.

Condition C�: f ∈C2(l, r) and for �≥0,

∃c, ∀x ∈ (l, r), |f (x)| + |f ′(x)| + |f ′′(x)|≤ c(B�
l (x)+B�

r (x)).

For statistical purposes, we also need to consider the functionals (3)–(5) for f (x, �) : (l, r) ×
� �→R where � is a product of two compact intervals of R. To obtain uniform convergences
with respect to �, the conditions on f = f (x, �) are the following.

Condition CU�: f : (l, r)×�→R satisfies f (·, ·)∈C2[(l, r)×O] for some open set O⊃� and
with �≥0,

∃c > 0, ∀x ∈ (l, r) sup
�∈�

|g(x, �)|≤ c(B�
l (x)+B�

r (x)), for g = f , f ′
x, f ′′

x2 , ∇� f , ∇� f ′
x.

3.1. Empirical mean

As a first application of the expansions recalled in section 2, we give a mean theorem for the
process (X i)i∈N.

Proposition 2
Assume (A1)–(A5), let f satisfy CU� with �< Ml, 1+ �< Mr and 2�< Kl, then

�n(f (·, �)) n→∞−→ �0(f (·, �)) uniformly in �, in probability.
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Proof. By lemma A1 of the Appendix, we only have to prove the L1 convergence to zero
of

sup
�∈�

n−1
n−2∑
i=0

∣∣ f (X i , �)− f (Xi�n , �)
∣∣.

By Taylor’s expansion and condition CU� on f , we get the bound

sup
�∈�

∣∣ f (X i , �)− f (Xi�n , �)
∣∣≤ c sup

s∈[i�n , (i +1)�n ]
(B�

l (Xs)+B�
r (Xs))

∣∣X i −Xi�n

∣∣.
Now, the Cauchy–Schwarz inequality, (A2), proposition 1(2) and (7) yield

E
(

sup
�∈�

∣∣ f (X i , �)− f (Xi�n , �)
∣∣ |Gn

i

)
≤ c�1/2

n (B�
l (Xi�n )+B1+�

r (Xi�n )).

By assumption (A5), we deduce E(sup�∈�

∣∣f (X i , �)− f (Xi�n , �)
∣∣) ≤ c�1/2

n . So, the proposition
is proved.

3.2. Variation of the process

Our next result concerns the functional In which involves the increments of the process (X i)
(see (4)).

Theorem 2
Assume (A1)–(A5), and let f satisfy CU�, with (�+2�1 +�1 +�2) ∨ (2�+�2) < Ml, (4+2�+
2�1 +�2)∨ (2+ �+2�2 +�1 +�2) < Mr and 2�∨4�1 ∨2�2 ∨�1 ∨2�2 < Kl,

In(f (·, �)) n→∞−→ 1
6
�0
(
f ′
x(·, �)a2(·)) uniformly in �, in probability. (19)

Proof. The proof relies on the expansions of theorem 1. Set for the proof

Vi,n(�)= f (X i , �)(X i+1 −X i −�nb(X i)). (20)

Since Vi,n(�) is Gn
i+2 measurable, to deal with a triangular array of martingale increments,

we split In(f (·, �)) into the sum of terms with even index i and the sum of terms with odd
index i. Now, it is enough to show that

(n�2n)−1
n−1∑
i=0

V2i,2n(�) n→∞−→ 1
6
�0
(
f ′
x(·, �)a2(·)) uniformly in probability (21)

(and that (n�2n)−1
∑n−2

i=0 V2i+1,2n(�) n→∞−→ 1/6�0
(
f ′
x(·, �)a2(·)), but the proof is analogous).

By the Taylor formula, and theorem 1(2) (recall (9)–(11)), Vi,n(�)= ∑5
j=0 v(j)

i,n(�), with,

v(1)
i,n (�)=�1/2

n Ui,na(Xi�n )f (Xi�n , �) (22)

v(2)
i,n (�)=�1/2

n Ui,n(X i −Xi�n )a(Xi�n )f ′
x(Xi�n , �) (23)

v(3)
i,n (�)=�1/2

n Ui,n
1
2

(X i −Xi�n )2a(Xi�n )f ′′
x2 (X̂i , �) (24)

v(4)
i,n (�)= 
i,nf (Xi�n , �) (25)

v(5)
i,n (�)= 
i,n(X i −Xi�n )f ′

x(X̃i , �) (26)

where X̂i , X̃i ∈ [X i , Xi�n ].
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Now, define I (j)
n (�)= (n�2n)−1

∑n−1
i=0 v(j)

2i,2n(�) for j =1, . . ., 5.

Let us first study I (2)
n (�) and prove that, for each �,

I (2)
n (�) n→∞−→

P

1
6
�0
(
f ′
x(·, �)a2(·)). (27)

By lemma A2 of the appendix, it is enough to show that:

(n�2n)−1
n−1∑
i=0

E
(

v(2)
2i,2n(�) |G2n

2i

)
n→∞−→

P

1
6
�0
(
f ′
x(·, �)a2(·)), (28)

(n�2n)−2
n−1∑
i=0

E
(

(v(2)
2i,2n(�))2 |G2n

2i

)
n→∞−→

L1
0. (29)

Using theorem 1(1) and E(U2i,2n	
′
2i,2n |G2n

2i )=1/6, we get

E
(

v(2)
2i,2n(�) |G2n

2i

)
= �2n

6
a2(X2i�2n )f ′

x(X2i�2n , �)+ ri,n (30)

with ri,n =E
(
�1/2

2n U2i,2nf ′
x(X2i�2n , �)a(X2i�2n )ei,n |G2n

2i

)
.

Now, (13), assumption (A1) and condition CU� yield

|ri,n|≤�3/2
2n c(B�+�1

l (X2i�2n )+B2+�+�1
l (X2i�2n )). (31)

Therefore, by (A5), (n�2n)−1
∑n−1

i=0 ri,n
n→∞−→

L1
0.

Hence, an application of lemma A1 in the appendix to the first term of (30) yields (28).

Now, by proposition 1(2), E
(

(v(2)
2i,2n(�))2 |G2n

2i

)
≤�2

2nc(B2�
l (X2i�2n )+B4+2�

r (X2i�2n )). This gives

(29), and (27) follows.
To obtain uniformity with respect to � we shall use proposition A1 of the appendix. We

compute ∇�v
(2)
2i,2n(�)=�1/2

2n U2i,2n(X 2i − X2i�2n )a(X2i�n )∇�f ′
x(X2i�2n , �). By condition CU�, we

deduce E(sup
�∈�

|∇�v
(2)
2i,2n(�)| | G2n

2i ) ≤ c�n(B�
l (X2i�2n )+B2+�

r (X2i�2n )). With assumption (A5), it

implies E(sup�∈� |∇�v
(2)
2i,2n(�)|)≤ c�n. Hence, supn∈N E(sup�∈� |∇�I (2)

n (�)|) <∞ and uniformity
in (27) follows.

To end the proof of the theorem, it remains to show the uniform convergence to 0 for
I (1)

n (�), I (3)
n (�), I (4)

n (�) and I (5)
n (�). This leads to rather long computations which are detailed

in the appendix.

Remark 1. To enlighten the previous result, recall that

(n�n)−1
n−1∑
i=0

f (Xi�n ) (X(i+1)�n −Xi�n −b(Xi�n )�n) n→∞−→ 0.

The difference with our result comes from the fact that f (Xi�n ) and X(i+1)�n − Xi�n −
b(Xi�n )�n have a negligible correlation (of order �n) whereas f (X i) and X i+1 −X i −b(X i)�n

have a correlation of order �1/2
n .
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3.3. Quadratic variation of the observed process

The following result deals with the quadratic variation of X i (recall (5)).

Theorem 3
Assume (A1)–(A5), let f satisfy CU� with 2�∨ (�+2�1 +�2) < Ml, 4+2�+2�1 +�2 < Mr and
2�∨4�1 ∨2�2 < Kl, then,

Qn(f (·, �)) n→∞−→ 2
3
�0
(
f (·, �)a2(·)) uniformly in �, in probability. (32)

Proof. First, we show the pointwise in � convergence. Set Wi,n(�)=(X i+1 −X i
)2

f (X i , �).
As Wi,n(�) is Gn

i+2 measurable, to prove the convergence of (n�2n)−1
∑n

i=0 Wi,n(�), as in the pre-
vious theorem, we deal separately with the sum of even indexes and the one of odd indexes.
And it is enough to show that:

(n�2n)−1
n−1∑
i=0

W2i,2n(�) n→∞−→ 2
3
�0
(
f (·, �)a2(·)) in probability. (33)

Using theorem 1(2) and Taylor’s formula, we write: W2i,2n(�)=w(1)
2i,2n(�)+w(2)

2i,2n(�)+
w(3)

2i,2n(�)+w(4)
2i,2n(�)

with w(1)
2i,2n(�)=�2nU 2

2i,2na2(X2i�2n )f (X2i�2n , �) (34)

w(2)
2i,2n(�)=2�1/2

2n U2i,2na(X2i�2n )(
2i,2n +�2nb(X2i�2n ))f (X2i�2n , �) (35)

w(3)
2i,2n(�)= (
2i,2n +�2nb(X2i�2n ))2f (X2i�2n , �) (36)

w(4)
2i,2n(�)= (X 2i+1 −X 2i)2(X 2i −X2i�2n )f ′

x(X̂i , �), where X̂i ∈ [X 2i , X2i�2n ]. (37)

We set Q(j)
n (�)= (n�2n)−1

∑n−1
i=0 w(j)

2i,2n(�) for j =1, 2, 3, 4.

We start by studying Q(1)
n (�). Using E

(
U 2

2i,2n |G2n
2i

)=2/3 and E
(
U 4

2i,2n |G2n
2i

)=4/3 we obtain:

E
(
w(1)

2i,2n(�) |G2n
2i

)
= 2�2n

3
f (Xi�2n , �)a2(Xi�2n )

E
(

(w(1)
2i,2n(�))2 |G2n

2i

)
= 4�2

2n

3
f 2(Xi�2n , �)a4(Xi�2n ).

First, applying lemma A1 we get:

(n�2n)−1
n−1∑
i=0

E
(
w(1)

2i,2n(�) |G2n
2i

)
n→∞−→ 2

3
�0
(
f (·, �)a2(·)) in probability.

Second, using (A5) we get

E
∣∣∣E ((w(1)

2i,2n(�))2 |G2n
2i

)∣∣∣≤ c�2
2n,

and therefore, (n�2n)−2
∑n−1

i=0 E
(

(w(1)
2i,2n(�))2 |G2n

2i

)
n→∞−→

L1
0.

Hence, by lemma A2, we deduce Q(1)
n (�) n→∞−→ 2/3�0

(
f (·, �)a2(·)) in probability.

To establish the pointwise in � convergence for (32), it remains to show that Q(i)
n (�) n→∞−→ 0

in probability for i =2, 3, 4. This is detailed in the appendix. To obtain the uniformity, we
use proposition A1 of the appendix together with the easily obtained following bound:

sup
n≥1

(n�n)−1
n−1∑
i=0

E
[(

X i+1 −X i
)2

sup
�∈�

∣∣∇�f (X i , �)
∣∣] <∞.
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Remark 2. Comparing theorem 3 with the well known result

(n�n)−1
n−2∑
i=0

f (Xi�n )(X(i+1)�n −Xi�n )2 n→∞−→ �0
(
fa2
)
,

the main difference comes from the fact that the variance of Ui,n is 2/3, whereas �−1/2
n (B(i+1)�n−

Bi�n ) has variance 1.
The quadratic variation Qn(f ) based on (X i) is therefore a biased estimator of the qua-

dratic variation �0(fa2). An analogous result was obtained in Delattre & Jacod (1997) for the
quadratic variation based on discrete observations of the diffusion with round-off errors.

4. Associated central limit theorems

Now, we study some related central limit theorems. We need no more uniformity in �.

Theorem 4
Assume (A1)–(A5) and n�2

n
n→∞−→ 0. Let f satisfies C� with (2�+3�1 +�2 +�1 +�2) ∨ 4�< Ml,

(4+2�+3�1 +�2 +�1 +�2)∨ (4+4�) < Mr and 4�∨4�1 ∨2�2 ∨�1 ∨2�2 < Kl then,

Nn(f ) :=
√

n�n(In(f )− 1
4
Qn(f ′)) n→∞−→

D
N (

0, �0
(
f 2a2

))
. (38)

Proof. In this proof, we use the notations (20), (22)–(26) introduced in theorem 2. Further-
more, here, we set v′

i,n
(2) = −1/4(X i+1 −X i)2f ′(X i).

Define N
(j)
n = (n�n)−1/2

∑n−1
i=0 v(j)

i,n for j =1, 3, 4, 5 and N
(2)
n = (n�n)−1/2

∑n−1
i=0 (v(2)

i,n + v′
i,n

(2)). With

these notations Nn(f )= ∑5
l=1 N

(l)
n .

First, we study N
(1)
n =n−1/2

∑n−1
i=0 �(Xi�n )Ui,n with �(x)= f (x)a(x). In order to apply a mar-

tingale central limit theorem, we first have to reorder terms (recall (9)–(11)).

N
(1)
n =n−1/2

n−1∑
i=1

s(1)
i,n +n−1/2

(
�(X0)	0, n +�(X(n−1)�n )	′

n−1, n

)
, (39)

with

s(1)
i,n =�(Xi�n )	i,n +�(X(i−1)�n )	′

i,n. (40)

We now have the conditional centring, E
(

s(1)
i,n |Gn

i

)
=0, and compute the conditional

variance E
(

(s(1)
i,n )2 |Gn

i

)
=1/3{�2(Xi�n )+�2(X(i−1)�n )+�(Xi�n )�(X(i−1)�n )}. An application of

lemma A1, and proposition 1(1) yields: n−1
∑n−1

i=0 E
(

(s(1)
i,n )2 |Gn

i

)
n→∞−→

P
�0
(
f 2a2

)
. We easily bound

E
(

(s(1)
i,n)4 |Gn

i

)
and show n−2

∑n−1
i=0 E

(
(s(1)

i,n )4 |Gn
i

)
n→∞−→

L1
0. Using theorem 3.2 (p. 58) in Hall &

Heyde (1980), these two conditions are sufficient to imply

n−1/2
n−1∑
i=0

s(1)
i,n

n→∞−→
D

N (
0, �0

(
f 2a2

))
. (41)

Clearly, by (39), we deduce N
(1)
n

n→∞−→
D

N (
0, �0

(
f 2a2

))
.

Second, we show the convergence to 0 of N
(2)
n . Computations based on theorem 1(1) and

proposition 1 show that E
(

v′
2i,2n

(2) |Gn
i

)
=−(�2n/6)a2(X2i�2n ) f ′(X2i�2n )+ r′

i,n with,

∣∣r′
i,n

∣∣≤ c�3/2
2n (B�+3�1∨�+2�1+�2

l (X2i�2n )+B4+�+3�1+�2
r (X2i�2n )). (42)
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Recalling (30), we get E
(

v(2)
2i,2n + v′

2i,2n
(2) |G2n

2i

)
= ri,n + r′

i,n. Now, by (31), (42) and (A5) we de-

duce,

E
∣∣∣E (v(2)

2i,2n + v′
2i,2n

(2) |G2n
2i

)∣∣∣≤ c�3/2
2n .

This implies E
∣∣∣(n�2n)−1/2

∑n−1
i=0 E

(
v(2)

2i,2n + v′
2i,2n

(2) |G2n
2i

)∣∣∣≤ c(n�2
2n)1/2, which tends to 0 using

now the condition n�2
n → 0. As for (29), we get (n�2n)−1

∑n−1
i=0 E

(
(v(2)

2i,2n + v′
2i,2n

(2))2 |G2n
2i

)
=

oP(1). This implies the convergence for the sum of terms with even indexes:

(n�2n)−1/2
n−1∑
i=0

{v(2)
2i,2n + v′

2i,2n
(2)}=oP(1).

Analogously we show (n�2n+1)−1/2
∑n−1

i=0 {v(2)
2i+1,2n + v′

2i+1,2n
(2)}=oP(1). Hence N

(2)
n →0.

To end the proof, we show the convergence to zero for N
(3)
n , N

(4)
n and N

(5)
n using that n�2

n →0

(the proof is a repetition of the proof of convergence for the corresponding terms, I (3)
n , I (4)

n

and I (5)
n , in theorem 2).

Remark 3.
1. Comparing with the classic convergence limit,

(n�n)−1/2
n−1∑
i=0

(X(i+1)�n −Xi�n −�nb(Xi�n )) f (Xi�n ) n→∞−→ N (
0, �0

(
f 2a2

))
,

it appears that, if we just replace Xi�n by X i above, then the expression may tend to ∞,
in probability, because of the non-negligible correlation between f (X i) and X i+1 −X i −
b(X i)�n. So we have to introduce the appropriate correction.

2. We cannot replace in the statement of the previous theorem 1/4Qn( f ′) by the term
1/6�0

(
f ′a2

)
since we can show that

(n�n)−1/2

{
n−2∑
i=0

1
4

f ′(X i)
(
X i+1 −X i

)2 − 1
6
�0
(
f ′a2

)}

does not tend to zero when n→∞, hence theorem 4 does not provide an exact central
limit theorem for theorem 2.

3. The condition n�2
n → 0 is classical (see Florens-Zmirou, 1989). This condition imposes

that the discretization step decreases to zero fast enough, to ensure that the contribution
in Nn(f ) of the error terms 
i,n tends to 0 as n→∞.

Let us now state a central limit theorem related with the functional Qn(g) (see (5)).

Theorem 5
Assume (A1)–(A5) and n�2

n
n→∞−→ 0. Let g satisfies C� with 4� ∨ (2�+4�1 +2�2 +�1) < Ml,

(8+4�)∨ (6+2�+4�1 +2�2 +�1) < Mr and 4�∨ (2�+4�1 +2�2)∨4�2 < Kl. Then,

Mn(g) :=n1/2

(
3
2
Qn(g)− �n(a2g)

)
n→∞−→

D
N
(

0,
9
4
�0(g2a4)

)
. (43)

Proof. In this proof we use notations (34)–(37) of theorem 3. Further, we set �(x)=
a2(x)g(x), w′

i,n
(1) = −2/3�(Xi�n ) and w′

i,n
(5) =2/3(�(Xi�n )−�(X i)).

Define M
(l)
n =3/2n−1/2�−1

n

∑n−2
i=0 w(l)

i,n, for l =2, 3, 4, 5 and M
(1)
n =3/2n−1/2�−1

n

∑n−2
i=0 (w(1)

i,n +
w′

i,n
(1)). With these notations, Mn(g)= ∑5

l=1 M
(l)
n .
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First, we study M
(1)
n =n−1/2

∑n−1
i=0 �(Xi�n ){3/2(Ui,n)2 − 1}. Reordering terms in M

(1)
n to

obtain a triangular array of martingale increments, we get (recall (11)),

M
(1)
n = 3

2n1/2

{
n−1∑
i=1

s(2)
i,n +

(
	2

0, n − 1
3

)
�(X0)

+
(

	′2
n, n − 1

3

)
�(X(n−1)�n )+2	n−1, n	

′
n,n�(X(n−1)�n )

}

where,

s(2)
i,n =

(
	2

i,n − 1
3

)
�(Xi�n )+

(
	′2

i,n − 1
3

)
�(X(i−1)�n )+2	i−1, n	

′
i,n�(X(i−1)�n ). (44)

But, now, s(2)
i,n is Gn

i+1 measurable and centred conditionally to Gn
i . Furthermore, using the

expression for the covariance structure of (	i,n, 	′
i,n) given in section 2, we deduce:

E
(

(s(2)
i,n )2 |Gn

i

)
= 2

9
�2(Xi�n )+ 2

9
�2(X(i−1)�n )

+ 1
9
�(X(i−1)�n )�(Xi�n )+ 4

3
	2

i−1, n�
2(X(i−1)�n ). (45)

By lemmas A1 and A2 (in the appendix) we show the convergence for the following array of
martingale increments, n−1

∑n−1
i=0 	2

i−1, n�
2(X(i−2)�n ) n→∞−→

P
1/3�0(�2) (recall �(x)=a2(x)g(x)).

Using proposition 1(1) we deduce n−1
∑n−1

i=0 	2
i−1, n�

2(X(i−1)�n ) n→∞−→
P

1/3�0(�2). Thus we have, by

(45), 9/4n−1
∑n−1

i=1 E
(

(s(2)
i,n )2 |Gn

i

)
n→∞−→

P
9/4�0(�2). Using the bound on �4, we see that we can

apply theorem 3.2 in Hall & Heyde (1980) and get, 3/2n−1/2
∑n−1

i=0 s(2)
i,n

n→∞−→
D

N
(

0, 9/4�0(�2)
)
.

Finally, using that n�2
n → 0, we can show M

(l)
n

n→∞−→ 0 in probability for l =2, . . ., 5 and, as
a consequence, obtain (43).

Remark 4. Comparing with the usual property

n−1/2
n−1∑
i=0

{
g(Xi�n )

(
X(i+1)�n −Xi�n

)2

�n
−g(Xi�n )a2(Xi�n )

}
n→∞−→

D
N (

0, 2�0(g2a4)
)

we see that when we replace Xi�n by X i in the equation above the variance of the limit in-
creases a little.

Finally, we have the following theorem.

Theorem 6
Let f and g be two functions satisfying, respectively, C� and C� ′ . Assume that the assumptions
of theorem 4 are valid for f , and those of theorem 5 are valid for g. Suppose, furthermore, that
2�+2�′ +�1 < Ml, 6+2�+2�′ +�1 < Mr. Then,

(Nn(f ), Mn(g)) n→∞−→
D

N
(

0, �0(f 2a2)
)

⊗N
(

0,
9
4
�0(g2a4)

)
. (46)

Proof. We have shown, in theorems 4 and 5, that Nn(f )−n−1/2
∑n−1

i=1 s(1)
i,n and Mn(g)−3/2n−1/2∑n−1

i=1 s(2)
i,n tend to zero in probability. As we deal with martingale arrays, it suffices to prove

 Board of the Foundation of the Scandinavian Journal of Statistics 2006.



94 A. Gloter Scand J Statist 33

n−1
n−1∑
i=1

E
(

s(1)
i,n s(2)

i,n |Gn
i

)
n→∞−→

P
0. (47)

But using (40) and (44), we get (recall �(x)=a(x)g(x), �(x)=a2(x)g(x)):

E
(

s(1)
i,n s(2)

i,n |Gn
i

)
=	i−1, n�(X(i−1)�n )

(
1
3
�(Xi�n )+ 2

3
�(X(i−1)�n )

)
.

Then (47) can be obtained by using proposition 1 and lemma A2.

5. Checking assumptions

In this section we give examples of models for which our assumptions hold. Actually, only
(A2) and (A5) have to be studied. The examples below show that they are not restrictive
conditions.

The condition (A2) was studied in Gloter (2000) and was shown to hold for all models
below.

5.1. Diffusion on R

Here (l, r)= (−∞, ∞); B−∞(x)=1 and B∞(x)=1+ |x|; (Xt) is the solution of

dXt =a(Xt) dBt +b(Xt) dt, X0 =�. (48)

Let us assume that assumptions (A1) and (A3) are satisfied, and the stationary distribu-
tion �0 has finite moments of every order. This means that (A4) is satisfied for any positive
constants M−∞ and M∞. By Gloter (2000), assumption (A2) is satisfied with K−∞ =∞.

It remains to check (A5). If � has distribution d�0, then (A5) follows from (A4) by station-
arity. The next proposition shows that (A5) follows again from (A4) if � is deterministic.

Proposition 3
Let X be solution of (48) starting from X0 =y ∈ R. Assume that (A1), (A3) and (A4) hold
with any positive constants M−∞ and M∞, then

∀p≥0, sup
t≥0

E(|Xt|p) <∞ (and hence (A5) holds).

Proof. Define the probability measure d�(x)=d�0(x)�0
(
[y, ∞)

)−1
1l{x≥y}. Using that the sto-

chastic differential equation admits strong solutions we can define on (�, F , P) the processes
(X x

t ), x ∈R and (X �
t ), solutions of:

dX x
t =a(X x

t ) dBt +b(X x
t ) dt, X x

0 =x

dX �
t =a(X �

t ) dBt +b(X �
t ) dt, X �

0 =�

with � a random variable with distribution d�(x), independent of B.
Now,sinceX0 =X y

0 ≤ X �
0 a.s.,usingthatX =X y andX � coincideafter thetimeT = inf{s ≥ 0;

X y
s =X �

s } we get P(∀t ≥0, Xs ≤X �
s )=1. So, for p∈N (with the notation x+ =x ∨0):

E
(
(Xt

+)p
)≤E

(
(X �

t
+)p

) =
∫

R

E
(
(X x

t
+)p

)
d�(x)

≤ �0
(
[y, ∞)

)−1
∫

R

E
(
(X x

t
+)p

)
d�0(x)= �0

(
[y, ∞)

)−1
∫

R

(
x+)p

d�0(x).
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Since by assumption, �0 has finite moments of every orders, we have supt≥0 E(
(
X +

t

)p
) <∞.

We analogously show: supt≥0 E(
(
X −

t

)p
) <∞ with x− = (−x)∨0 and get the proposition.

As a result, the work of sections 3 and 4 encompasses a large class of diffusion models on
R, among them we can quote the Ornstein–Uhlenbeck process (for b(x)=�x and a(x)=�)
or the hyperbolic process (for b(x)=�x(1+x2)−1/2 and a(x)=�).

5.2. The Cox–Ingersoll–Ross process

Here (l, r)= (0, ∞); B0(x)=1+1/x, B∞(x)=1+x and

dXt = (�Xt +�′) dt +�
√

Xt dBt, X0 =�, (49)

with �< 0, �, �′ > 0. We set c0 =2�′/�2, �=2 |�| /�2 and suppose that c0 > 1.
Assumption (A1) is clear and c0 > 1 implies assumption (A3), with the stationary proba-

bility measure, d�0(x)=�c0�(c0)−1xc0−1e−�x1l{x>0} dx.
Using this expression for the stationary probability, we easily check (A4) with any M0 < c0.

It is shown in Gloter (2000) that (A2) holds with K0 = c0 −1 (actually this model justifies the
introduction of the constant Kl in (A2)).

If � has distribution �0, (A5) holds. If � is deterministic, we show (A5) as in proposition 3.

6. Statistical applications. Minimum contrast estimation

Let (Xt) be the unique solution of the equation:

dXt =a(Xt, �0) dBt +b(Xt, �0) dt, X0 =�, (50)

where (Bt)t≥0 is a standard one-dimensional Brownian motion, � is a random variable inde-
pendent of (Bt)t≥0; b and a are two real-valued functions, respectively, defined on R × �1

and R ×�2, where �1 and �2 are two compact intervals of R. We denote by �= (�, �) the

elements of �=�1 ×�2, furthermore we suppose that �0 = (�0, �0)∈
◦
�.

In the case of the observation of Xi�n a contrast may be constructed by approximating
X(i+1)�n − Xi�n by an N (b(Xi�n , �0)�n, a2(Xi�n , �0)�n). This leads to the Euler contrast (see
Kessler, 1997).

To obtain a contrast based on the observation of X i , we correct the Euler contrast by tak-
ing into account the factor 2/3 in theorem 3, and compensate the effect of the correlation
between X i and X i+1 −X i −�nb(X i , �0) (theorem 2).

This leads to the following contrast

Ln(�)=
n−2∑
i=0


 3

2�n

((
X i+1 −X i −b(X i , �)�n

)2

a2(X i , �)
+ �n

2
h(X i , �)

(
X i+1 −X i

)2

)

+ log a2(X i , �)


 (51)

with h(x, �)= (∂/∂x)(b(x, �)/a2(x, �)). Let �̂n =arginf�∈�Ln(�) be a minimum contrast esti-
mator.

Observe that Ln is not obtained as a pseudo-likelihood function suggested by the expan-
sions of theorem 1. Indeed, it seems difficult to deduce a pseudo-likelihood function from
these expansions, in particular because Ui,n in theorem 1(2) is not Markovian.

We suppose that the diffusion X satisfies assumptions (A1)–(A5) (where a(x) stands for
a(x, �0) and b(x) for b(x, �0)). Furthermore, to keep proofs on the behaviour of �̂n trac-
table, we make the additional assumption that Kl in assumption (A2) is equal to ∞ and
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that assumptions (A4)–(A5) hold for any Ml and Mr (and hence these constants can be
chosen as large as we need for the application of results of sections 3 and 4). We have seen
in section 5.1 that this is true for a large class of diffusion processes. For models that do
not satisfy this additional assumption, we will give a specific proof of the consistency and
normality of �̂n (see section 7.2).

We suppose that the following identifiability assumption holds:

(S1) a(x, �)=a(x, �0) d�0(x) almost everywhere implies �=�0,
b(x, �)=b(x, �0) d�0(x) almost everywhere implies �=�0.

We need an assumption on the smoothness of a(x, �) and b(x, �) with respect to the para-
meter.

(S2) a and b are the restrictions of functions defined on an open subset of R2, on which
they are differentiable up to order 6, furthermore they satisfy: ∃c≥0, ∃k ≥0 such that
∀i, j ∈{0, . . ., 3}2, ∀x ∈ (l, r):

sup
�∈�1

∣∣∣∣ ∂ i+j

∂�ixj
b(x, �)

∣∣∣∣ + sup
�∈�2

∣∣∣∣ ∂ i+j

∂�ixj
a(x, �)

∣∣∣∣ + sup
�∈�2

∣∣∣∣ ∂ i+j

∂�ixj
a−1(x, �)

∣∣∣∣≤ c(Bk
l (x)+Bk

r (x)).

By the previous assumption, all functions appearing below satisfy CU� for some �≥ 0 and
hence limit theorems of sections 3 and 4 apply for these functions.

We can now prove consistency and normality for �̂n. To maintain formulae short we denote
∂�f = (∂/∂�)f , ∂�f = (∂/∂�)f , ∂2

�2 f = (∂2/∂�2)f , ∂2
��f = (∂2/∂��)f , . . ..

Theorem 7
The estimator �̂n is consistent,

�̂n
n→∞−→ �0 in probability.

Proof. Following the proof of Kessler’s (1999) theorem 1, by assumption (S1), it is enough
to show that, uniformly in �,

n−1Ln(�) n→∞−→ �0

(
a2(·, �0)
a2(·, �)

+ log a2(·, �)
)

in probability. (52)

This will ensure the convergence of �̂n to �0. Then, we prove that, uniformly in �= (�, �),

(n�n)−1(Ln(�, �)−Ln(�0, �)) n→∞−→ 3
2
�0

((
b(·, �)−b(·, �0)

)2

a2(·, �)

)
in probability. (53)

This enables to obtain the convergence of �̂n to �0 (for more details on why (52)–(53) imply
consistency, see Kessler, 1997).

We start the proof by (52). With the notations (3)–(5), the contrast (divided by n) writes,
after easy computations,

n−1Ln(�)= 3
2
Qn

(
a−2(·, �)

)
+ �n

(
log a2(·, �)

)
−3�nIn

(
a−2(·, �)b(·, �)

)
+ 3�n

4
Qn

(
h(·, �)

)
+ 3�n

2
�n

(
a−2(·, �){b2(·, �)−2b(·, �)b(·, �0)}

)
. (54)

Using proposition 2, theorems 2, 3 and �n →0, we easily obtain (52).
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For the proof of (53), by the expression of the contrast (divided by n) above, we get

(n�n)−1(Ln(�, �)−Ln(�0, �))=3In

(
b
a2

(·, �0, �)− b
a2

(·, �, �)
)

− 3
4
Qn
(
h(·, �0, �)−h(·, �, �)

)
+ 3

2
�n

((
b(·, �)−b(·, �0)

)2

a2(·, �)

)
.

Now, we apply theorems 2, 3 (recall h(x, �)=∂x(b/a2)(x, �) too) and proposition 2 to get (53),
and the theorem follows.

Remark that for the consistency of the estimator we only need �n → 0. We now prove
that, under the additional condition n�2

n →0, the estimator �̂n is asymptotically normal. The
scheme of the proof is classical.

Theorem 8
If n�2

n
n→∞−→ 0, then

(
(n�n)1/2(�̂n −�0), n1/2(�̂n −�0)

)
converges in law to an

N
(

0,
{

�0

(
(∂�b)2(·, �0)

a2(·, �0)

)}−1
)

⊗N
(

0,
9

16

{
�0

(
(∂�a)2(·, �0)

a2(·, �0)

)}−1
)

.

Proof. A Taylor’s formula around �̂n shows:
∫ 1

0 Cn(�0 +u(�̂n −�0)) du En =Dn where,

Cn(�)=


 (n�n)−1 ∂2

∂�2
Ln(�) n−1�−1/2

n
∂2

∂��
Ln(�)

n−1�−1/2
n

∂2

∂��
Ln(�) n−1 ∂2

∂�2
Ln(�)


,

En =
[

(n�n)1/2(�̂n −�0)
n1/2(�̂n −�0)

]
, Dn =


−(n�n)−1/2 ∂

∂�
Ln(�0)

−n−1/2 ∂

∂�
Ln(�0)


.

Now the proof of En
n→∞−→ N

(
0,
{
�0

(
(∂�b)2(·, �0)

a2(·, �0)

)}−1
)

⊗N
(

0,
9
16

{
�0

(
(∂�a)2(·, �0)

a2(·, �0)

)}−1
)

consists in showing the two following points.

1. We have the convergence in law:

Dn
n→∞−→

D
N


0,


9�0

(
(∂�b)2(·, �0)

a2(·, �0)

)
0

0 9�0

(
(∂�a)2(·, �0)

a2(·, �0)

)



.

2. We have the uniform (with respect to �) convergence in probability:

Cn(�) n→∞−→
[C1, 1(�) 0

0 C2, 2(�)

]

with

C1, 1(�)=3�0

(
(∂�b)2(·, �)

a2(·, �)
+

∂2
�2 b

a2
(·, �)(b(·, �)−b(·, �0))

)

C2, 2(�)= �0

(
(∂�a)2(·, �)

(
6a2(·, �0)
a4(·, �)

− 2
a2(·, �)

))

+ �0

(
2∂2

�2 a(·, �)
(

1
a(·, �)

− a2(·, �0)
a3(·, �)

))
.
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Indeed, this second point immediately implies, using the consistency of �̂n,

∫ 1

0
Cn(�0 +u(�̂n −�0)) du n→∞−→

P


3�0

(
(∂�b)2(·, �0)

a2(·, �0)

)
0

0 4�0

(
(∂�a)2(·, �0)

a2(·, �0)

)

.

For (1) we remark that �n, In and Qn are linear functionals, therefore we can differentiate
the expression of n−1Ln given in the proof of theorem 7 with respect to the parameter � and
get (recall h(x, �)=∂x(b/a2)(x, �)),

(n�n)−1/2∂�Ln(�0)= −3Nn

(
∂�b
a2

(·, �0)
)

. (55)

Analogously, we get

n−1/2∂�Ln(�0)= −2Mn

(
∂�a
a3

(·, �0)
)

+√
n�n

{
3In

(
∂�

(
b
a2

)
(·, �0)

)
+ 3

4
Qn
(
∂�h(·, �0)

)

−3
2
�n
(
∂�(a−2)(·, �0)b2(·, �0)

)}
.

By proposition 2, theorems 2, 3 and n�2
n →0, this yields

n−1/2∂�Ln(�0)= −2Mn

(
∂�a
a3

(·, �0)
)

+oP(1). (56)

Now, (1) follows from (55)–(56) and theorem 6.
To obtain (2), we differentiate twice Ln and use results of section 3.

Remark 5.

1. As for estimation based on (Xi�n )0≤i≤n−1, the rate of convergence is different for �̂n and
�̂n. The drift term is estimated with rate (n�n)1/2 and the diffusion term is estimated
with rate n1/2. Comparing with the asymptotic variance of the estimator based on the
Euler contrast (Kessler, 1997; when Xi�n itself is observed), we notice a slight increase
in the variance of the estimator of the diffusion term (the constant 9/16 instead of 1/2

for Kessler, 1997). The estimation of � is asymptotically efficient since �0

(
(∂�b)2

a2 (·, �0)
)

is the Fisher information of the continuous time model.
2. In the case of multidimensional parameters �∈Rd, �∈Rd ′

, under the additional assump-
tion that the matrices I�, J� defined by,

I� =
[
�0

( (∂�i b)(·, �)(∂�j b)(·, �)

a2(·, �)

)]
1≤i, j≤d

, J� =
[
�0

(
(∂�i a)(·, �)(∂�j a)(·, �)

a2(·, �)

)]
1≤i, j≤d ′

are non-singular at the true value of the parameter, we can prove that theorem 8 holds
with the limiting law N (

0, I−1
�

)⊗N (
0, 9/16J−1

�

)
.
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7. Examples of parametric models

We apply our statistical results to some classical models.

7.1. Example 1: Ornstein–Uhlenbeck process

The diffusion solves dXt =�Xt dt +�dBt, with �< 0, �> 0 and X0 is deterministic or has for
distribution the stationary probability of X .

Here, we can compute explicitly the estimator �̂n by minimizing the contrast (51). We find,

�̂2
n = 3

2
(n�n)−1

n−2∑
i=0

(
X i+1 −X i

)2

�̂n = �−1
n

∑n−2
i=0

(
X i+1 −X i

)
X i∑n−2

i=0

(
X i
)2 − 1

4
�−1

n

∑n−2
i=0

(
X i+1 −X i

)2

∑n−2
i=0

(
X i
)2

(we have suppressed negligible terms in �̂2
n).

Using results of section 5.1, (A1)–(A5) are valid with K−∞ =∞, and any positive constants
M−∞, M∞. Thus, results of section 6 apply:

(�̂n, �̂2
n) n→∞−→

P
(�, �2)

and if n�2
n →0,

[
(n�n)1/2(�̂n −�)

n1/2(�̂2
n −�2)

]
n→∞−→

D
N
(

0,
[

2 |�| 0
0 9

4 �4

])
.

Using numerical simulations, we see that our estimator gives good results on finite samples
(see Table 1, where we give mean and variance of �̂n for different values of n and T =n�n

when −�=�2 =1; we have used 500 replications). It is worth noticing that if � is not small
enough then we underestimate both �2 and |�|. This is similar to the behaviour of the esti-
mator based on the Euler scheme when Xi�n is observed (see Bibby & Sørensen, 1995).

Table 1. Simulation results for an Ornstein–Uhlenbeck process.

�̂2
n �̂n

�=1/100, n=10, 000, T =100
Mean 0.99 −1.01
n.Var 2.26
T.Var 2.19

�=1/10, n=10, 000, T =1000
Mean 0.93 −0.96
n.Var 1.84
T.Var 1.76

�=1/2, n=1000, T =500
Mean 0.70 −0.82
n.Var 1.21
T.Var 1.54

�=1/100, n=1000, T =10
Mean 0.99 −1.20
n.Var 2.24
T.Var 3.22

�=1/10, n=1000, T =100
Mean 0.92 −0.98
n.Var 2.19
T.Var 2.16

�=1/2, n=200, T =100
Mean 0.69 −0.83
n.Var 1.06
T.Var 1.75
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7.2. Example 2: The Cox–Ingersoll–Ross process

The diffusion solves (49) and starts either from the stationary distribution or from a deter-
ministic variable. We find the following explicit expressions for the estimator �̂n = (�̂n, �̂′

n, �̂2
n)

by minimizing the contrast (51):[
�n
∑n−2

i=0 X i n�n

n�n �n
∑n−2

i=0 X
−1
i

][
�̂n

�̂′
n

]

=
[ ∑n−2

i=0 {X i+1 −X i}∑n−2
i=0

{
X

−1
i (X i+1 −X i)+ 1

4 X
−2
i (X i+1 −X i)2

}]

�̂2
n = 3

2
(n�n)−1

n−2∑
i=0

X
−1
i

(
X i+1 −X i

)2

(we have suppressed negligible terms in �̂2
n).

Results of section 6 do not apply since here, K0 = c0 −1=2�′/�2 −1 <∞ and we can only
choose M0 < c0 (see section 5.2). We directly show the convergence of �̂n using its expression
and applying results of sections 3 and 4. For this we have to take care that K0 and M0 are
large enough. After some easy computation we get the following theorem.

Theorem 9
• If c0 > 9, then �̂n

n→∞−→
P

�0.

• If c0 > 13 and n�2
n →0, then


 (n�n)1/2(�̂n −�)

(n�n)1/2(�̂′
n −�′)

n1/2(�̂2
n −�2)


 n→∞−→

D
N


0,




2 |�| �2 −2�′ 0

�2 −2�′ (2�′ −�2)
�′

|�| 0

0 0 9
4 �4




.

8. Discussion

Investigations in this paper show that even for non-Markovian observations it is possible
to introduce an explicit contrast function and obtain an estimator with good asymptotical
properties. However, the question of efficiency for the estimation of the diffusion para-
meter remains opened. In the specific case where X is an Ornstein–Uhlenbeck process, we
can improve the estimation of �2 and find an estimator �̃2

n such that n1/2(�̃2
n −�2) n→∞−→ N (0, 2�4).

Comparing with section 7.1, we see that �̂
2
n is not optimal in this case. As suggested by an

anonymous referee, an improvement in the estimation of � seems feasible more generally, by
constructing directly a contrast function as a consequence of theorem 1(2). This idea yields
to technical difficulties above those of this paper and we were not able to obtain satisfactory
results.

The final words are about applicability of the method. Two issues appear. First, our crucial
assumption �n →0 is not as realistic as a constant sampling interval, however it is suitable for
the ‘high-frequency’ data commonly encountered in finance. Second, in stochastic volatility
models the integrated volatility itself may be estimated with some errors which could yield
to serious biases.
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Appendix

Technical lemmas

The following lemma precises lemma 8 in Kessler (1997).

Lemma A1
Let f ∈C1((l, r)×�), satisfy

sup
�∈�

{|f (x, �)| + |f ′
x(x, �)| + |∇�f (x, �)|}≤ c(B�

l (x)+B�′
r (x)),

with �≤Ml, 1+ �′ ≤Mr and �< Kl then:

n−1
n−1∑
i=0

f (Xi�n , �) n→∞−→ �0
(

f (·, �)
)

uniformly in �, in probability. (57)

Proof. We use assumption (A4) and the ergodic theorem for X to obtain the convergence
(n�n)−1

∫ n�n
0 f (Xs, �) ds n→∞−→

P
�0
(
f (·, �)

)
.

Denote for the proof, Dn(�)= (n�n)−1
∑n−1

i=0

∫ (i+1)�n
i�n

{f (Xs, �)− f (Xi�n , �)}ds. Using proposi-
tion 1(1) and (A5) yields sups∈[i�n , (i +1)�n ] E(|f (Xs, �)− f (Xi�n , �)|) ≤ c

√
�n. We deduce that

Dn(�) n→∞−→ 0 in L1, which gives the convergence in (57) for all �. To get the uniformity in
�, by proposition A1, it suffices to show: supn≥0 E(sup� |n−1

∑n−1
i=0 ∇�f (Xi�n , �)|) <∞. Using

sup� |∇�f | (x, �)≤ c(BMl
l (x)+BMr

r (x)) and (A5) yields the result.

Proposition A1
Let Sn(
, �) be a sequence of measurable real valued functions defined on �×�, where (�, F , P)
is a probability space, and � is product of compact intervals of R. We assume that Sn(·, �)
converges to zero in probability for all �∈�; and that there exists an open neighbourhood of
� on which Sn(
, ·) is continuously differentiable for all 
∈�. Furthermore, we suppose that
supn∈N E

(
sup�∈� |∇�Sn(�)|)<∞, then

Sn(�) n→∞−→ 0 uniformly in �, in probability.

Proof. Let ε> 0 and �> 0, let us show that for n large enough: P(sup�∈� |Sn(�)| >�) < ε.
Denote Zn = sup�∈� |∇�Sn(�)|, and let M such that supn∈N E

(
Zn
)

M−1 < ε/3.
Using that � is compact we can find an integer d and (�1, . . ., �d ) ∈�d , such that for all

� in �: inf i∈{1, ..., d} |�i −�|<�/(2M). Define n0 such that, n ≥ n0 implies P
(|Sn(�i)|>�/2

)
<

ε/(3d). Using that � is convex: sup�∈� |Sn(�)| ≤ Zn�/(2M)+ supi=1, ..., d |Sn(�i)|. We deduce,
P(sup�∈� |Sn(�)| ≥ �) ≤ P(Zn�/(2M) ≥ �/2)+ ∑d

i=1 P(|Sn(�i)| ≥ �/2), and conclude using the
Bienayme–Tchebychev inequality.

We recall, the useful lemma which is given in Genon-Catalot & Jacod (1993).

Lemma A2
Let χn

i , U be random variables, with χn
i being Gn

i -measurable. The following two conditions imply∑n
i=1 χn

i
P→U:

n∑
i=1

E(χn
i |Gn

i−1) P→ U ,

n∑
i=1

E((χn
i )2 |Gn

i−1) P→ 0.
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Details on the proof of theorem 2

First, we study I (1)
n (�). By (9) and (10), we have

E
(

v(1)
2i,2n(�) |G2n

2i

)
=0 and E

(
(v(1)

2i,2n(�))2 |G2n
2i

)
= 2�2n

3
a2(X2i�2n )f 2(X2i�2n , �).

We deduce, using n�n →∞, 2�≤Ml , 2+2�≤Mr and (A5) that

(n�2n)−2
n−1∑
i=0

E
(

(v(1)
2i,2n(�))2 |G2n

2i

)
= (n�2n)−1

(
2
3

n−1
n−1∑
i=0

a2(X2i�2n )f 2(X2i�2n , �)

)
L1→0.

Now lemma A2, again, yields the convergence I (1)
n (�) P→0 for each � in �. To prove that this

convergence is uniform we cannot use proposition A1 because E
(∣∣∣v(1)

2i,2n(�)
∣∣∣ |G2n

2i

)
is of order√

�2n. We will instead use theorem 20 in appendix 1 of Ibragimov & Khas’minskii (1981). It
is enough to show that there exist two constants M ≥0, and ε> 0 such that:

∀�, n, E
(∣∣∣I (1)

n (�)
∣∣∣2+ε

)
≤M and ∀�, �′, n, Dn(�, �′)≤M

∣∣�−�′∣∣2+ε
(58)

with Dn(�, �′)=E
(∣∣∣I (1)

n (�)−I (1)
n (�′)

∣∣∣2+ε
)

.

We only prove the first inequality (the second one is similar). Using Rosenthal’s inequality
for martingales (see Hall & Heyde, 1980, p. 23), we get for any ε> 0,

E
(∣∣∣I (1)

n

∣∣∣2+ε
)

≤ (n�2n)−2−εE



∣∣∣∣∣

n−1∑
i=0

E
(

(v(1)
2i,2n)2 |G2n

2i

)∣∣∣∣∣
1+ε/2




+ (n�2n)−2−ε

n−1∑
i=0

E
(∣∣∣v(1)

2i,2n

∣∣∣2+ε
)
.

By the classical inequality, for p=1+ ε/2, (
∑n−1

i=0 |ai |)p ≤np−1
∑n−1

i=0 |ai |p, we have

E



∣∣∣∣∣

n−1∑
i=0

E
(

(v(1)
2i,2n)2 |G2n

2i

)∣∣∣∣∣
1+ε/2


≤nε/2

n−1∑
i=0

E
(∣∣∣E ((v(1)

2i,2n)2 |G2n
2i

)∣∣∣1+ε/2
)

But, if ε is small enough, 2�(1+ ε)≤Ml and (2�+1)(1+ ε)≤Mr and by (A5) we deduce

sup
i,n

E
(∣∣∣E ((v(1)

2i,2n)2 |G2n
2i

)∣∣∣1+ε/2
)

≤ c�1+ε/2
2n , sup

i,n
E
(∣∣∣v(1)

2i,2n

∣∣∣2+ε
)

≤ c�1+ε/2
2n .

Hence, E
(∣∣∣I (1)

n

∣∣∣2+ε
)

≤ c{(n�2n)−1−ε/2 + (n�2n)−1−ε/2n−ε/2}. As (n�2n)−1 is bounded, we obtain

(58). So, I (1)
n (�) n→∞−→

P
0 uniformly in �.

The convergence to zero of I (3)
n (�) and I (5)

n (�) is easily obtained since we have by (A1),
(A2), CU�, proposition 1(2) and (16):

E
(

sup
�∈�

∣∣∣v(3)
2i,2n(�)

∣∣∣ + sup
�∈�

∣∣∣v(5)
2i,2n(�)

∣∣∣ |G2n
2i

)

≤ c�3/2
2n

(
B(�+�1)∨(�+�2 /2)

l (X2i�2n )+B3+�+�1+�2 /2
r (X2i�2n )

)
.

 Board of the Foundation of the Scandinavian Journal of Statistics 2006.



104 A. Gloter Scand J Statist 33

Now, we treat I (4)
n (�). Using (14) and (15) we show that, if (2�+2�1) ∨ (2�+�2) ∨

(�+�1 +�2)≤Ml and (2+ �+�1 +�2)∨ (3+2�+2�1 +�2)≤Mr, then

(n�n)−1
n−1∑
i=0

E
(

v(4)
2i,2n(�) |G2n

2i

)
n→∞−→

L1
0, (n�n)−1

n−1∑
i=0

E
(

(v(4)
2i,2n(�))2 |G2n

2i

)
n→∞−→

L1
0.

We deduce that for all �, I (4)
n (�) n→∞−→

P
0. Furthermore, this convergence is uniform in � by appli-

cation of proposition A1 and since we can show E(sup� ∇�|v(4)
2i,2n(�)|)≤ c�2n.

Details on the proof of theorem 3

A few computations based on theorem 1 gives, for l =2, 3, 4,

E
(∣∣∣w(l)

2i,2n(�)
∣∣∣ |G2n

2i

)
≤�3/2

2n

(
B(�+2�1)∨(�+�2)

l (X2i�2n )+B4+�+2�1+�2
r (X2i�2n )

)
.

Now, (A5) implies the L1 convergence to 0 for Q(l)
n (�), with l =2, 3, 4.
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