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Abstract

We observe (Yt) at times i=n, i = 0; : : : ; n, in the parametric stochastic volatility model

dYt = �(	;WH
t ) dWt;

where (Wt) is a Brownian motion, independent of the fractional Brownian motion (WH
t ) with

Hurst parameter H¿ 1
2 . The sample size n increases not because of a longer observation period,

but rather, because of more frequent observations.
We prove that the unusual rate n−1=(4H+2) is asymptotically optimal for estimating the one-

dimensional parameter 	, and we construct a contrast estimator based on an approximation of a
suitably normalized quadratic variation that achieves the optimal rate.
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1. Introduction

1.1. Statistical model

We are interested in statistical inference in a stochastic volatility model driven by a
fractional Brownian motion. For i=0; : : : ; n we observe at times i=n a one-dimensional
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stochastic process (Yt) of the form

Yt = y0 +
∫ t

0

s dWs; (1)

where (Wt) is a standard Brownian motion and (
t) is unknown and stochastic, in the
sense that


t = �(	;WH
t ); (2)

where (WH
t ) is a fractional Brownian motion (fBM for short), independent of (Wt),

with Hurst parameter H¿ 1
2 . The function � is known up to a parameter 	 lying in a

compact interval � = [	−; 	+] ⊂ R. The law of the data (Yi=n; i = 0; : : : ; n) is denoted
by Pn

	.

1.2. Goal

Recovering 	 from data (Yi=n) is the objective of the paper. A rate vn → 0 is said
to be achievable if there exists an estimator 	̂n such that the normalized error

{v−1
n (	̂n − 	)}n¿1 (3)

is bounded in Pn
	-probability, uniformly over open sets in �. The rate vn is a lower

rate of convergence if, for all open set U ⊂ �, there exists C ¿ 0 such that

lim inf
n→∞ inf

F
sup
	∈U

Pn
	 {v−1

n |F − 	|¿C}¿ 0; (4)

where the inFmum is taken over all estimators.
We prove in the paper that the unusual rate vn(H) := n−1=(4H+2) is optimal for

the sequence of experiments (Pn
	; 	∈�). This means that (3) and (4) agree, with

vn = vn(H). We exhibit an optimal estimator based on approximations of integrated
functions of fractional Brownian motion. These approximations may have some interest
for their own.

1.3. Motivation

1.3.1. Stochastic volatility and fractional Brownian motion
Model (1), (2) is primarily motivated by Fnancial mathematics and econometrics

(Hull and White, 1988; Melino and Turnbull, 1990; Heston, 1993). The Brownian
dynamics in the stochastic volatility has progressively been replaced by more elaborate
Gaussian processes, having in particular the property of long-range dependence (Comte
and Renault, 1996, 1998). This is the case for fBM when H¿ 1

2 . See also Breidt
et al. (1998). More generally, there is a growing interest for using fBM in Fnance:
Dai and Heyde (1996), Salopek (1998), Sottinen (2001) among many others.

We show in the paper that, in the high-frequency data framework—see below—the
introduction of a Hurst parameter H¿ 1

2 strongly inHuences the statistical nature of
the stochastic volatility model, even in the simplest form (1), (2).
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1.3.2. High-frequency data
There are several ways to discretize (Yt), whether we allow the experiment duration

to grow with n or not. As soon as we want to relax any assumption about ergodicity—
for modelling reason, say—and/or if we think of statistical experiments living over a
Fxed time period, we are led to the high-frequency data framework, where the time
between two data is of order 1=n. For related estimation problems in stochastic volatil-
ity models with a di&erent asymptotic framework, we refer to Genon-Catalot et al.
(2000a,b).

1.3.3. Maximum likelihood estimator
Conditional on (WH

t ) = (!t), the random variables Yi=n − Y(i−1)=n are independent,
centred Gaussian, with variance

vi;n(	; !) =
∫ i=n

(i−1)=n
�(	; !s)2 ds:

However, since (WH
t ) is not observed, there is no simple formula for the likelihood

function

	 E
{

n∏
i=0

p
(
Yi=n − Y(i−1)=n; vi;n(	;WH

t )
)}

(5)

with p(x; a) = (2�a)−1=2 exp(−(x − a)2=2). A consequence is that the maximum like-
lihood estimator is not tractable. Formula (5) can be misleading: a naive guess that
the conditional Fisher information (which is of order n) and the true (unconditional)
information are of the same order is wrong!

This is why we take a di&erent route for constructing an estimator and proving a
lower bound in this model.

1.4. Results

We say that a real-valued function belongs to Cl
P if it is Cl and dominated, along

with its mixed derivatives up to order l, by a polynomial.

Assumption A. (x; 	) �(	; x) belongs to C3
P.

Assumption B. For all 	∈�, x  �(	; x)2 is one-to-one from R to X; (x; 	)  
b(	; x) := @x�2(	; (�2)−1(	; x)) is C3 and for all x∈X and 	∈�: b(	; x)¿ 0.

Assumption C. For all x∈X and 	∈�: @	b(	; x)=b(	; x)¿ 0.

Theorem 1. Let H ∈ ( 1
2 ; 1). Grant Assumptions A–C. Then the rate vn(H) :=

n−1=(4H+2) is achievable. Moreover, the estimator 	̂n, explicitly constructed in Section
3.2 and given in (12)–(15) achieves the rate vn(H).

The accuracy vn(H) is slower by a polynomial order than the usual n−1=2 of reg-
ular parametric models. Our next result shows that, under a further restriction on the
nondegeneracy of the model, this result is indeed optimal.
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Assumption D. inf x∈K;	∈� �(	; x)¿ 0 for some compact K ⊂ R. Moreover,
inf x∈R; 	∈� @x�(	; x)¿ 0.

Theorem 2. Let H ∈ [ 1
2 ; 1). Grant Assumptions A–D. Then the rate vn(H) :=

n−1=(4H+2) is a lower rate of convergence.

Several remarks are in order:

(a) Assumption A stands for the regularity of the model. It is not minimal, but ensures
that standard computations are straightforward.

(b) Assumption B ensures the invertibility of the function �(	; ·), so that the paths of
(
t) roughly behave like that of (WH

t ). Indeed, the resulting function b(	; ·) may
be understood as a di&usion coeLcient, see Section 3.

(c) Assumption C is a standard identiFability condition, as soon as we understand
b(	; ·) as a kind of di&usion coeLcient.

(d) Theorems 1 and 2 extend former results of Gloter (2000) and Ho&mann (2002)
obtained for the case H = 1

2 . However, the cryptic rate n−1=4 obtained for the
Brownian case can now be linked to the smoothness H of fractional Brownian
motion via the formula n−1=(4H+2).

(e) Extension to other loss functions and/or to multidimensional parameter space �
is presumably possible, at a further technical cost.

1.5. Organization of the paper

In Section 2, we present an approximation result for integrated quadratic functionals
of Brownian motion (Theorem 3) that is the cornerstone for our construction of an es-
timator, explicitly given in Section 3. Sections 4, 5 and 6 successively prove Theorems
3 and 1, and should be read in that order. Section 6 proves Theorem 2. Appendix A
contains auxiliary useful technical results.

The notation c will be extensively used to denote a constant that may vary from line
to line. The constant c will always be continuous in its arguments (if any), so it will
be implicit that upper bounds involving c are uniform in parameters that are omitted
in the notation but that live on compact sets.

2. Some approximations

For a continuous process (Xt) with t ∈ [0; 1], we deFne, for N¿ 1

MX i = MX i;N := N
∫ (i+1)=N

i=N
Xs ds; i = 0; : : : ; N − 1: (6)

We base approximation schemes on generalized di9erences (see Istas and Lang, 1997).
Let a = (a0; : : : ; ap) ∈Rp+1 be such that for some positive integer m(a)

for k = 0; : : : ; m(a) − 1:
p∑

i=0

aiik = 0 and
p∑

i=0

aiim(a) 	= 0: (7)
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We deFne, for i = 0; : : : ; N − p − 1, the generalized di&erence

#a MX :=
p∑

j=0

aj MX i+j:

The integer m(a) is called the order of the di&erence. For instance, the usual di&erence
a = (−1; 1) is of order 1, and ã = (1;−2; 1) is of order 2. Following Istas and Lang
(1997), we choose a di&erence a with order greater or equal than 2.

2.1. An asymptotic result

2.1.1. Model
Let us be given on a probability space (%;A;P) a fractional Brownian motion (WH

t )
with Hurst parameter H ∈ (0; 1), that is, a centred Gaussian process with covariance

E{WH
t WH

s } =
cH
2

(t2H + s2H − |t − s|2H ); (8)

where cH = &(2 − 2H)cos(�H)=�H (1 − 2H). (& is the Euler function.) The process
(WH

t ) has stationary increments, that easily give its covariance structure: for all h; t
and t′ in R, we have

E{(Wt+h − Wt)(Wt′+h − Wt′)}
=

cH
2

(|t′ + h − t|2H + |t + h − t′|2H − 2|t′ − t|2H ): (9)

We further restrict the parameter t to the time interval [0; 1]. We are interested in the
asymptotic behaviour of functionals of the type

MVN (h) := N−1
N−p−1∑

i=0

(#a MX i)2

N−2H h( MX i) (10)

for (Xt) of the form Xt = f(WH
t ), with smooth enough f and test function h. For

h = 1, MVN (h) appears as a kind of renormalized quadratic variation, based on discrete
local averages.

2.1.2. Convergence result

Theorem 3. Let H ∈ ( 1
2 ; 1) and

V (h) := *2
∫ 1

0
f′(WH

s )2h(Xs) ds;

where *=*a;H is an explicit constant given in (20). Assume that f∈C2
P and h∈C1

P.
The sequence of random variables

{N 1=2[ MVN (h) − V (h)]}N¿1

is bounded in L1(P).

Remark. For appropriate coeLcients, extension to fractional Brownian di&usions of
the form

dXt = b(Xt) dWH
t + ,(Xt) dt; X0 = x0 (11)
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is then possible, deFning f as an inverse of x  
∫ x
x0

b(u)−1 du and removing the drift
by a change of probability, but this lies beyond the scope of the paper. Recommended
references for stochastic calculus with fBM are Decreusefond and PUstPunel (1999),
Carmona et al. (2003) and the references therein.

3. Construction of an estimator

Using Section 2, we are able to construct a contrast estimator that achieves the
optimal rate in model (1), (2). Recall that we observe Yi=n for i = 0; : : : ; n with

Yt = y0 +
∫ t

0
�(	;WH

s ) dWs:

Consistently with the previous section, we deFne

Xt := 
2
t = �(	;WH

t )2:

By Assumptions A and B, the process (Xt) solves the stochastic di&erential equation
(11) with b = b(	; ·) as deFned in Assumption B and , = 0, but we will not exploit
this fact further on.

3.1. Preliminaries

Pick an integer N = Nn ¡n, to be speciFed later, and deFne ji := [in=Nn] for
i = 0; : : : ; Nn − 1. Set m=mn := [n=Nn]¿ 1, where [x] stands for the integer part of x.
Clearly, ji+1 − ji ∈ {mn; mn + 1}.

For i = 0; : : : ; Nn − 1, deFne

X̂ i = X̂ i;n := Nn

ji+1−ji−1∑
k=0

(
Y(ji+k+1)=n − Y(ji+k)=n

)2
:

The X̂ i’s may be seen as approximation variables for MX i based on data Yi=n, i=0; : : : ; n.
It is tempting to introduce an approximate quadratic variation like (10) when #a MX i

is replaced by #a MX i. However, such a quantity presents a bias toward its expected
limit, and we need to introduce an appropriate correction term. We deFne the unbiased
quadratic variation

V̂ n(h) := N−1
n

Nn−p−1∑
i=0

{
(#aX̂ i)2

N−2H
n

− 2‖a‖2
2

N−2H
n mn

X̂ 2
i

}
h(X̂ i); (12)

where ‖a‖2 is the Euclidean norm of the vector a that speciFes the generalized di&er-
ence.

3.2. The estimator

We introduce a contrast function based on the approximation of Xi=Nn by X̂ i. But
it may well happen that X̂ i 	∈ X although X takes values in X. We therefore need a
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smooth continuation of b(	; ·) outside X. Pick a compact interval X0 such that

�2(�; 0) ⊂ Ẋ0 ⊂ X0 ⊂ X

and let  be a C∞ function on R such that  (x)¿ 0 for x∈ Ẋ0 and  (x) = 0 for
x 	∈ X0. We deFne a family of contrast functions

(Cn(0); 0∈�) = (Cn;Nn(0); 0∈�)

by setting

Cn(0) := V̂ n

(
 (·)

b(0; ·)2

)
+ N−1

n

Nn−p−1∑
i=0

*2 log b(0; X̂ i)2 ·  (X̂ i); (13)

where * = *a;H is the constant given in (20). Eventually, our estimator of 	 is

	̂n := arginf
0∈�

Cn(0); (14)

speciFed by the tuning parameter

Nn := [n1=(2H+1)]: (15)

4. Proof of Theorem 3

4.1. The case of fBM

In this part, we are interested in integrated functionals of the trajectory of (WH
t ) by

means of local averages of the form

MWH
i = MWH

i;N := N
∫ (i+1)=N

i=N
WH

s ds; i = 0; : : : ; N − 1 (16)

for a given integer N¿ 1. The link with the statistical model will be made later by
taking N = Nn, where Nn is the tuning parameter of the estimator 	̂n of Section 3.
Given a generalized di&erence

#a MWH
i :=

p∑
j=0

aj MWH
i+j; i = 0; : : : ; N − p − 1;

we note that (7) implies∑
06k;l6p

akal |k − l|2q = 0 for q = 0; : : : ; m(a) − 1 (17)

and, for any odd q, by symmetry∑
06k;l6p

akal(k − l)q = 0:

Before stating the main result of the section, we compute an expression for the covari-
ance structure of the process

(#a MWH
i )i=0; :::;N−p−1:
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Let us Frst deFne vH (0) = 0 and for j¿ 1

vH (j) := c̃H
{
(j + 1)2H+2 − 2j2H+2 + (j − 1)2H+2 − 2

}
; (18)

where c̃H = cH =(2H + 1)(2H + 2). Then for j6−1, we let vH (j) = vH (−j). Set also,
for j¿ 0

2a;H (j) := −1
2

∑
06k; l6p

akalvH (k + j − l) (19)

and for j6 0, 2a;H (j) := 2a;H (−j). Finally, deFne

*a;H := 2a;H (0)1=2: (20)

Lemma 1. We have

E{#a MWH
i #a MWH

j } = N−2H2a;H (i − j) for 06 i; j6N − p − 1:

In particular, *2
a;H = N 2HE{(#a MWH

i )2}¿ 0. The proof is given in Section A.2.

4.2. Quadratic variation for integrated fBM

For a real function h, let us deFne

MQN (h) := N−1
N−p−1∑

i=0

(#a MWH
i )2

N−2H h( MWH
i ); (21)

Q(h) := *2
a;H

∫ 1

0
h(WH

s ) ds: (22)

Proposition 1. For h∈C1
P, we have

E{| MQN (h) − Q(h)|}6 cN−1=2: (23)

By looking at Lemma 5, we can anticipate and see that it is suLcient to establish
the bound

E{|SN (h)|}6 cN 1=2; (24)

SN (h) :=
N−p−1∑

i=0

{
(#a MWH

i )2

N−2H − *2
a;H

}
h(WH

i=N ): (25)

The main diLculty comes from the fact that stochastic calculus does not yield simple
expansions for a quantity like (#a MWH

i )2h(WH
i=N ) for H 	= 1

2 . We need to develop speciFc
tools in a Frst part.
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4.2.1. A deterministic intermediate result
First, we treat the simpler case of t  h(WH

t ) being replaced by a deterministic
function 5:

Lemma 2. Let 5 : [0; 1] → R be a bounded function. DeEne

6N (5) =
N−p−1∑

i=0

{
(#a MWH

i )2

N−2H − *2
a;H

}
5i=N : (26)

Then

E{6N (5)2}6 c‖5‖2
∞N:

Proof. The expectation E{6N (5)2} is equal to

∑
06i; j6N−p−1

5i=N 5j=NE
{[

(#a MWH
i )2

N−2H − *2
a;H

][
(#a MWH

j )2

N−2H − *2
a;H

]}
:

For two centred normal variables Z; Z ′ with same variance v and covariance k, we
have E{(Z2 − v)(Z

′2 − v)} = 2k2. By Lemma 1, we get

E{6N (5)2} =
∑

06i; j6N−p−1

5i=N 5j=N22a;H (j − i)26 2‖5‖2
∞N

N∑
j=0

2a;H (j)2:

Therefore, the remainder of the proof amounts to show that the series
∑∞

j=0 2a;H (j)2

converges. Let j¿p + 2. Using that
∑

06k; l6p akal = 0 together with (18) we can
rewrite (19) as

2a;H (j) =
∑

06k;l6p

akal

2∑
m=0

ãmw(k + j − l + m − 1)

with ã = (ã0; ã1; ã2) = (1;−2; 1) and w(x) = −cH [2(2H + 1)(2H + 2)]−1|x|2H+2. Since
j¿p + 2, we avoid the singularity of w at zero, and by a Taylor expansion of order
5 around k + j − l − 1, we have

w(k + j − l + m − 1) =
4∑

r=0

w(r)

r!
(k + j − l − 1)mr

+m5
∫ 1

0

(1 − 0)4

4!
w(5)((k + j − l − 1) + m0) d0:

Using that ã is a generalized di&erence of order 2—recall (7)—we deduce

2a;H (j) =
∑

06k;l6p

akal

2∑
m=0

ãm

4∑
r=2

w(r)

r!
(k + j − l − 1)mr + :j; (27)



152 A. Gloter, M. Ho9mann / Stochastic Processes and their Applications 113 (2004) 143–172

where

:j =
∑

06k;l6p

akal

2∑
m=0

ãmm5
∫ 1

0

(1 − 0)4

4!
w(5) ((k + j − l − 1) + m0) d0:

The expression of w(5) clearly implies that |:j|6 c(j − p − 1)2H−3. Hence,∑∞
j=p+2 |:j|2 ¡∞. Now, by (27), it is suLcient to establish the convergence of the

squared sum of

2(r)
a;H (j) :=

∑
06k;l6p

akalw(r)(k − l + j − 1) for r = 2; 3; 4:

We Fx r ∈ {2; 3; 4}. Writing again a Taylor expansion of order 3 around (j − 1) for
w(r)(k − l + j − 1), we get

w(r)(k − l + j − 1) =
2∑

u=0

w(r+u)

u!
(j − 1)(k − l)u

+(k − l)3
∫ 1

0

(1 − 0)2

2
w(r+3)(j − 1 + (k − l)0) d0:

By (17) and the choice m(a)¿ 2,

2(r)
a;H (j) =

∑
06k;l6p

akal(k − l)3
∫ 1

0

(1 − 0)2

2
w(r+3)(j − 1 + (k − l)0) d0:

But r + 3¿ 5, so |2(r)
a;H (j)|6 c(j − 1 − p)2H−3 and

∑∞
j=p+2 2(r)

a;H (j)2 ¡∞ for all
H ∈ ( 1

2 ; 1).

4.2.2. Expansion in the Schauder basis
The proof of (24) relies on the fact that Sn(h) is linear with respect to t  h(WH

t ).
In order to exploit this linearity, we expand (WH

t ) in a wavelet basis with random
coeLcients, following the approach of Ciesielski et al. (1993), see Section A.1.2.
We then prove (24) by applying a slight modiFcation of the previous lemma to the
low-frequency part of the expansion.

Lemma 3. Assume that 5 : [0; 1] → R is bounded and vanishes outside the interval
[k2−j0 ; k ′2−j0 ] ⊂ [0; 1], where k; k ′; j0¿ 1, k 	= k ′. Then, there exists c¿ 0 such that
for any N; j1 with 2j16N ¡ 2j1+1 and j1¿ j0, we have

E{6N (5)2}6 c‖5‖2
∞[(k ′ − k)2j1−j0 ]:

Proof. Let IN := {i : k2j1−j06 i6 (k ′2j1+1−j0 ) ∧ (N − p − 1)}. Since 5(t) = 0 for t
outside [k2−j0 ; k ′2−j0 ] and 2j16N ¡ 2j1+1, we have

6N (5) =
∑
i∈IN

[
(#a MWH

i )2

N−2H − *2
a;H

]
5i=N :
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But the stationarity of (#a MWH
i )i—see Lemma 1—implies that 6N (5) has the same law

as ∑
i∈JN

[
(#a MWH

i )2

N−2H − *2
a;H

]
5k2j1−j0 =N+i=N ;

where JN := {i : 06 i6 (k ′2j1+1−j0 − k2j1−j0 ) ∧ (N − p − 1 − k2j1−j0 )}. Therefore,
an application of Lemma 2 gives

E{6N (5)2}6 c‖5‖2
∞ (k ′2j1+1−j0 − k2j1−j0 + p − 1)

6 4(p − 1)c‖5‖2
∞(k ′ − k)2j1−j0 :

Whence the lemma, up to a modiFcation of c.

Lemma 4. Let h∈C1
P. Denote by c0, c1, and cj;k the (random) coeFcients of the

expansion in the Schauder basis of t  h(WH
t ), see Section A.1.2. There exists c¿ 0

such that

E{c2
0 + c2

1}6 c; E{c2
j; k}6 c2−j(1+2H): (28)

Proof. The Frst part of (28) is obvious. For the second part, we just write a Taylor
expansion for (61) and obtain, thanks to the assumption |h′(x)|6K(1+ |x|K) for some
K ¿ 0 that

|cj;k |6 2−j=2+1K(1 + sup
s∈[0;1]

|WH
s |K)

·(|WH
(2k−1)=2j+1 − WH

2k=2j+1 | + |WH
(2k−1)=2j+1 − WH

(2k−2)=2j+1 |):
Existence of moments of any order for the supremum of fBM over the time interval
[0; 1] (e.g. Ciesielski et al., 1993) and (9) yield the second part of (28).

4.2.3. Proof of Proposition 1
We are now ready to prove (24). The pointwise representation

h(WH
t ) = c0;0(t) + c1;1(t) +

∞∑
j=0

2j∑
k=1

cj;k;j;k(t) (29)

yields

SN (h) = c06N (;0) + c16N (;1) +
∞∑
j=0

SN;j; SN;j :=
2j∑

k=1

cj;k6N (;j;k):

By Lemma 2, for i = 0; 1:

E{|6N (;i)|2}6 c‖;i‖2
∞N6 cN:

By Cauchy–Schwarz inequality and (28)

E{|ci6N (;i)|}6 cN 1=2:
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It remains to show that

E




∞∑
j=0

|SN;j|

=

∞∑
j=0

E{|SN;j|}6 cN 1=2: (30)

Fix N¿ 1 and let j1 be the unique integer such that 2j16N ¡ 2j1+1. Consider Frst
the case j6 j1. Using Lemma 4, we get

E{|SN;j|}6 c(K)
2j∑

k=1

2−( j=2)(1+2H)E{6N (;j;k)2}1=2:

Using Lemma 3 with an appropriate bound on ‖;j;k‖∞ and on the support of ;j;k , we
obtain

E{|Sn;j|}6 c
2j∑

k=1

2−( j=2)(1+2H)2j=22(j1−j)=2 = c2j1=22(1=2−H) j:

Hence, using H ¿ 1
2 , the sum

∑j1
j=0 E{|SN;j|} is less than

c(K)2j1=2
j1∑

j=0

2(1=2−H) j6 c(K)2j1=26 c(K)N 1=2: (31)

Consider next the case j¿ j1. The function ;j;k is supported on [(k − 1)=2j; k=2j],
hence 6N (;j;k) = 0 unless there exists some i∈ {0; : : : ; N − p − 1} satisfying i=N ∈
[(k−1)=2j; k=2j]. Since the length of [(k−1)=2j; k=2j] is 2−j, which is less than 2−j1−1

¡N−1, there is at most N values of k ∈ {1; : : : ; 2j} such that 6N (;j;k) 	= 0. Moreover,
for such a k (with 6N (;j;k) 	= 0), the sum deFning 6N (;j;k)—see (26)—reduces to
a single term, therefore

E{6N (;j;k)2}6 c‖;j;k‖2
∞6 c2j:

We derive

E{|SN;j|}6
∑

16k62j

6N (;j; k )�=0

E{c2
j; k}1=2E{6N (;j;k)2}1=2

6 c
∑

16k62j

6N (;j; k )�=0

2−j(1=2+H)2j=26N2−jH :

Summing these inequalities for j¿ j1 + 1 implies, using again H¿ 1
2 , that the sum∑

j¿j1+1 E{|SN;j|} is less than

cN2−j1H 6 cN2−j1=26 cN 1=2: (32)
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Putting together (31) and (32), we obtain (30) whence (24). The proof of Proposition
1 is complete.

We end this section by gathering previously used estimates that will prove useful in
the following.

Lemma 5. Let h∈C1
P(K). The following quantities are bounded by cN−1=2 in L1(P):

(i) N−1+2H ∑N−p−1
i=0

(
#a MWH

i

)2 [
h( MWH

i ) − h(WH
i=N )

]
,

(ii) N−1∑N−p−1
i=0

[
h( MWH

i ) − h(WH
i=N )

]
,

(iii) N−1∑N−p−1
i=0 h(WH

i=N ) − ∫ 1
0 h(Ws) ds.

Proof. Using the regularity of h, the two Frst properties follow from H¿ 1
2 and the

boundedness of the kth moment of MWH
i − WH

i=N . The third property easily follows
from (9).

4.3. Proof of Theorem 3

We Frst establish the following two expansions:

#a MX i = f′( MWH
i )#a MWH

i + ei;N ; (33)

where, for k¿ 1

E{|ei;N |k}6 cN−2HK (34)

and

h( MX i) = h(f( MWH
i )) + e′

i;N

with, for k¿ 1

E{|e′
i;N |k}6 cN−HK : (35)

For (34), using that m(a)¿ 1, we write

#a MX i =
p∑

j=0

ajN
∫ (i+j+1)=N

(i+j)=N

{
f(WH

s ) − f( MWH
i )
}

ds:

A second-order expansion for f yields

#a MX i =
p∑

j=0

ajN
∫ (i+j+1)=N

(i+j)=N
(WH

s − MWH
i ) dsf′( MWH

i ) + ei;N ; (36)

where the remainder term ei;N fullFlls (34). Using again that m(a)¿ 1, Eq. (36) re-
duces to (33). The second expansion (35) follows easily from the regularity of f and
h. Plugging (34) and (35) in (10)—recall (21)—gives

MVN (h) = QN ((f′)2 × h ◦ f) + e(1)
N + e(2)

N ;
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where

e(1)
N = N−1N 2H

N−p−1∑
i=0

(e2
i;N + 2#a MWH

i f′( MWH
i )ei;n)h( MX i);

e(2)
N = N−1N 2H

N−p−1∑
i=0

(#a MWH
i )2e′

i;N :

Simple computations based on Eqs. (34) and (35) show that the expectation of |e(1)
N |

and |e(2)
N | are less than cN−H 6 cN−1=2: We conclude by applying Proposition 1.

5. Proof of Theorem 1

5.1. Preliminaries

Keeping up with the notation of Section 2, we set

Xt := 
2
t = �(	;WH

t )2;

V	(h) := *2
∫ 1

0
[@x�2(	;WH

s )]2h(Xs) ds = *2
∫ 1

0
b(	; Xs)2h(Xs) ds:

Although we basically work with the law Pn
	 of the data Yi=n, it may well happen that

we need to consider functionals of the whole trajectory of (Xt) in the limit. Therefore,
we denote by P	 the joint law of (Yi=n; Xt ; i = 0; : : : ; n; t ∈ [0; 1]) on an appropriate
probability space.

5.1.1. A Erst approximation result

Proposition 2. Consider a parametrization (h(0; ·); 0∈�) such that h is in C1
P as a

function of two variables. Then

lim
n→∞ sup

	∈�
E	

{
sup
0∈�

|V̂ n(h(0; ·)) − V	(h(0; ·))|
}

= 0:

Proof. We Frst compute the di&erence between X̂ i and MX i for large enough mn. Since
the expression of conditional law of Y given X is fairly simple, we introduce the

-Feld GX = 
(WH

s ; 06 s6 1). We rely on the following technical lemma

Lemma 6. We have X̂ i = MX i + Ei;n, where the error terms Ei;n satisfy:

(i) Conditional on GX , the random variables (Ei;n)i=0; :::;N−p−1 are independent
under P	.

(ii) |E	[Ei;n|GX ]|6 cm−1
n ‖X ‖∞; |E	{Ei;n}|6 cm−1

n ; (37)

E	[E2
i; n|GX ]6 cm−1

n ‖X ‖2
∞; E	{E2

i; n}6 cm−1
n ; (38)

E	[E4
i; n|GX ]6 cm−2

n ‖X ‖4
∞; E	{E4

i; n}6 cm−2
n : (39)
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(iii) E	[E2
i; n|GX ] = 2m−1

n X 2
i=Nn

+ >i;n;

where for all l¿ 1

E	{|>i;n|l}6 c{m−l
n N−Hl

n + m−2l
n }:

(iv) For all l¿ 1: E	{|X̂ i|l}6 c.

Proof. By Itô’s formula

X̂ i = Ẽi;n + Nn

∫ ji+1=n

ji=n
Xs ds

with Ẽi;n = Nn
∑ji+1−ji

k=0

∫ ( ji+k+1)=n
( ji+k)=n (Ys − Y(ji+k)=n)
s dWs, thus

Ei;n = Ẽi;n + Nn

∫ i=Nn

ji=n
Xs ds + Nn

∫ ji+1=n

(i+1)=Nn

Xs ds:

We readily derive (i). The sum of the two integrals above is the conditional expectation
of Ei;n and is clearly bounded by 2m−1

n ‖X ‖∞ whence the Frst part of (37). The second
part follows from the regularity of � and the integrability of supt∈[0;1]|WH

t |. Eqs. (38),
(39) and (iii) are obtained by direct computation on Ẽi;n, the remainder terms proving
negligible; the last point (iv) is straightforward.

Following Lemma 6, we write #aX̂ i =#a MX i +#aEi;n. We plan to use the decompo-
sition

V̂ n(h) = MVNn(h) +
4∑

r=1

B(r)
n (h)

with

B(1)
n (h) = N−1+2H

n

Nn−p−1∑
i=0

{
(#aEi;n)2 − 2‖a‖2

2m
−1
n X 2

i=Nn

}
h( MX i);

B(2)
n (h) = N−1+2H

n

Nn−p−1∑
i=0

{
(#aX̂ i)2 − 2‖a‖2

2m
−1
n X̂ 2

i

}{
h(X̂ i) − h( MX i)

}
;

B(3)
n (h) = N−1+2H

n m−1
n

Nn−p−1∑
i=0

2‖a‖2
2

{
X 2
i=Nn

− X̂ 2
i

}
;

B(4)
n (h) = N−1+2H

n

Nn−p−1∑
i=0

2(#aEi;n)(#a MX i)h( MX i):
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By Theorem 3, if we can prove show that for r = 1; : : : ; 4

E{|B(r)
n (h)|}6 cv(Nn; mn) := (N−1=2

n + m−1=2
n )(1 + m−1

n N 2H
n );

which is of order N−1=2
n , we will obtain

∀0∈�; sup
	∈�

E	{|V̂ n(h(0; ·)) − V	(h(0; ·))|}6 cN−1=2: (40)

For B(1)
n (h), we set

bi = N 2H
n

{
(#aEi;n)2 − 2‖a‖2

2m
−1
n X 2

i=Nn

}
h( MX i):

Remark that by Lemma 6(i), conditional on GX , bi and bj are independent if
|i − j|¿p + 1. Thus the conditional expectation of B(1)

n (h)2 given GX is equal to

N−2
n

∑
06i; j6Nn−p−1

|i−j|6p

E	[bibj|GX ] + N−2
n

∑
06i; j6Nn−p−1

|i−j|¿p+1

E	[bi|GX ]E	[bj|GX ]: (41)

Using Cauchy–Schwarz and (39), we have that E{|bibj|}6 cN 4H
n m−2

n . So we may
bound the expectation of the Frst sum in (41) by cpNnN 4H

n m−2
n 6 cN 2

n v(Nn; mn)2.
By Lemma 6(i)–(iii), the conditional expectation of bi given GX is equal to{

2
p∑

l=0

a2
lm

−1
n X 2

(i+l)=Nn
− 2‖a‖2

2m
−1
n X 2

i=Nn
+

p∑
l=0

a2
l >i+l;n + @i;n

}
N 2H

n h( MX i);

where |@i;n|6 cm−2
n ‖X ‖2

∞. It follows that

E	{E	[bi|GX ]2}6 c{m−2
n N 2H

n + m−4
n N 4H

n }:

Therefore, the expectation of the second sum appearing in (41) is bounded by cN 2
n ·

{m−2
n N 2H

n + m−4
n N 4H

n }6 cN 2
n v(Nn; mn)2. We conclude that

E	{B(1)
n (h)2}6 cv(Nn; mn)2:

For the remaining terms, by similar computation based on Lemma 6(ii), (iii) and (vi),
we obtain, for r = 2; 3; 4

E	{|B(r)
n (h)|}6 cv(Nn; mn):

Therefore, we have (40) and only the uniformity in � within the expectation requires
a proof. One can easily check that the two following conditions are valid and that they
imply the result since � is convex and compact:

lim sup
n

sup
	∈�

(
E	

{
sup
0∈�

|@0V̂ n(h(0; ·))|
}

∨ E	
{

sup
0∈�

|@0V	(h(0; ·))|
})

¡∞:
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5.1.2. Consistency
We heavily rely on Proposition 2, Lemmas 5 and 6 to derive the following estimates:

First, if h is in C1
P,

lim sup
n

sup
	∈�

E	{N 1=2
n |V̂ n(h) − V	(h)|}¡∞: (42)

Next, set In(h) := N−1
n
∑Nn−p−1

i=0 h(X̂ i) and I(h) :=
∫ 1

0 h(Xs) ds. We have

sup
n

sup
	∈�

E	{N 1=2
n |In(log b(0; ·)2 ·  (·)) − I(log b(0; ·)2 ·  (·))|}¡∞ (43)

and

lim
n→∞ sup

	∈�
E	{sup

0∈�
|In(log b(0; ·)2 ·  (·)) − I(log b(0; ·)2 ·  (·))|} = 0: (44)

These three properties imply the convergence in P	-probability, uniformly in 	∈� of
the function Cn(0)—recall (13)—to the limit

C	(0) := *2
∫ 1

0

(
b(	; Xs)2

b(0; Xs)2 + log b(0; Xs)2
)

 (Xs) ds: (45)

The proof of the consistency of 	̂n, that is

∀j¿ 0; lim
n→∞ sup

	∈�
Pn

	{|	̂n − 	|¿ j} = 0 (46)

follows from (45) in a classical way. We shall not pursue it here.

5.2. Proof of Theorem 1, completion

Note Frst that N 1=2
n is of order n1=(4H+2), i.e. the rate of convergence. Let U be an

open set in �. Since the distance dU between U and �c is positive, by (46), we have

lim
n→∞ sup

	∈U
Pn

	{|	̂n − 	|¿ 1
2 dU} = 0:

Next, we use that for C¿ 0, the set {N 1=2
n |	̂n − 	|¿ C} is included in(

{N 1=2
n |	̂n − 	|¿ C} ∩ {	̂n ∈ (	−; 	+)}

)
∪ {|	̂n − 	|¿ 1

2 dU}:

This implies that lim supn→∞ sup	∈U Pn
	{N 1=2

n |	̂n − 	|¿ C} is less than

lim sup
n→∞

sup
	∈U

Pn
	({N 1=2

n |	̂n − 	|¿ C} ∩ {	̂n ∈ (	−; 	+)}):

Now, on the set {	̂n ∈ (	−; 	+)}, by a Frst-order expansion around 	̂n, we have for
	∈�

Gn(	)
[
N 1=2

n (	̂n − 	)
]

= Ln(	)
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with

Ln(	) := −N 1=2
n Ċn(	); Gn(	) :=

∫ 1

0

PCn(	 + (	̂n − 	)u) du:

Therefore, we have, for all c¿ 0,

Pn
	({N 1=2

n |	̂n − 	|¿ C} ∩ {	̂n ∈ (	−; 	+)})

6Pn
	

{
|Ln(	)|¿ C

c

}
+ Pn

	{Gn(	)6 c}:

The remainder of the proof amounts to show that for all c¿ 0:

lim
C→∞

lim sup
n→∞

sup
	∈U

Pn
	

{
|Ln(	)|¿ C

c

}
= 0 (47)

and that for all j¿ 0, there exists c such that

lim sup
n→∞

sup
	∈U

P	{Gn(	)6 c}6 j: (48)

Straightforward computation show that

Ln(	) = −N 1=2
n V̂ n

[
−2

ḃ(	; ·)
b3(	; ·) (·)

]
− N 1=2

n *2In

[
2
ḃ(	; ·)
b(	; ·)  (·)

]
:

Using (42) and (43),

lim
C→∞

lim sup
n→∞

sup
	∈U

Pn
	

{
N 1=2

n |N−1=2
n Ln(	) − L(	)|¿ C

c

}
= 0;

where

L(	) := V	

[
2

ḃ(	; ·)
b3(	; ·)  (·)

]
− *2I

[
2
ḃ(	; ·)
b(	; ·)  (·)

]
= 0:

(For notational convenience, we further abbreviate @0b(0; ·) by ḃ(0; ·).) Therefore only
(47) needs to be proved. For (48), we compute the second derivative of 0 C	(0):

PC	(0) = V	

[(
6
ḃ2(0; ·)
b4(0; ·) − 2

Pb(0; ·)
b3(0; ·)

)
 (·)

]

+*2I

[(
−2

ḃ2(0; ·)
b2(0; ·) + 2

Pb(0; ·)
b(0; ·)

)
 (·)

]
:

In particular, for 0 = 	, this quantity reduces to

PC	(	) = 4*2
∫ 1

0

ḃ2

b2 (	; Xs) (Xs) ds:

By Assumption C, ḃ2=b2 is bounded below on �×X0. From this, using ;2(�; 0) ⊂ Ẋ0

on which  is strictly positive, it can be seen that there exists c¿ 0 such that

sup
	∈U

P	{ PC	(	)6 3c}6 j:
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Noting that PC	(·) is Lipschitz continuous with a nonrandom Lipschitz constant inde-
pendent of 	, there exists >¿ 0 such that

sup
	∈U

P	

{
inf

|0−	|6>
PC	(0)6 2c

}
6 j: (49)

Now, due to the expression of Gn(	), we have that Pn
	{Gn(	)6 c} is less than

P	

{
inf

|0−	|6>
PC	(0)6 2c

}
+ Pn

	{|	̂n − 	|¿ >} + P	

{
sup
0∈�

| PCn(0) − PC	(0)|¿ c

}
:

Using (46), (42), (44) and (49) we conclude that

lim sup
n→∞

sup
	∈�

P	{Gn(	)6 c}6 j:

6. Proof of Theorem 2

6.1. Preliminaries

For H ∈ [ 1
2 ; 1), consider the kernel

KH (t; s) =
(t − s)H−1=2

&(H + 1
2)

2F1
(

1
2 − H;H − 1

2 ; H + 1
2 ; 1 − t=s

)
1[0; t)(s);

where

2F1(a; b; c; z) :=
∞∑
k=0

(a)k(b)k
(c)k

zk

k!

denotes the Gauss hypergeometric function and (a)k := &(a + k)=&(a) is the
Pochhammer symbol (see Decreusefond and PUstPunel, 1999). Given a standard Brown-
ian motion (Bt), we deFne a Gaussian process (WH

t ) for t ∈ [0; 1] by setting

WH
t =

∫ t

0
KH (t; s) dBs: (50)

Putting RH (s; t) :=
∫ 1

0 KH (s; r)KH (t; r) dr, we have RH (s; t)=E{WH
t WH

s } and it can be
checked that (WH

t ) has covariance (8).
We denote by WH the law of (WH

t )t∈[0;1] under which the canonical process on
the Wiener space C0 is a fractional Brownian motion with Hurst parameter H . The
Cameron–Martin space of WH is deFned as

HH := {f∈C0 : f = KHg; g∈L2([0; 1])};
where KHf(t) :=

∫
[0;1] KH (t; s)f(s) ds. The space HH is equipped with the norm

‖f‖HH := ‖g‖2 if f = KHg:
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6.1.1. fBM and function spaces
We shall need Besov spaces on the interval BH

2;p([0; 1]), for p∈ {2;∞}, via their
characterization in terms of wavelet sequences on the interval, see Section A.3.1.

Lemma 7. For all H ∈ [ 1
2 ; 1)

‖f‖HH 6 c‖f‖BH+1=2
2; 2

and E
{

‖WH‖2
BH

2;∞

}
6 c:

Proof. The second estimate is part of Theorem IV.3 in Ciesielski et al. (1993). The Frst
estimate follows from classical fractional calculus (recommended reference is Samko
et al. (1993, p. 186). It is based on the representation

K−1
H = (xH−1=2DH−1=2x1=2−HIH−1=2)DH+1=2; (51)

where D>, >¿ 0 is the inverse of the integral operator I>f(t) :=
∫ t

0 f(s) (t− s)>−1 dt
and x>, >∈R is the multiplication [x>f](t) := t>f(t). By Lemma 3.2 of Samko et al.
(1993), since for H ∈ [ 1

2 ; 1), we have 1
2 − H ¿−1, the operator x1=2−H and IH−1=2

intertwine

x1=2−HIH−1=2f(t) =IH−1=2x1=2−H [f + Af](t); t ∈ [0; 1] (52)

for a certain operator A bounded in L2([0; 1]). It follows that if f is such that DH+1=2

f∈L2([0; 1]), we have, by (51) and (52):

K−1
H f(t) =DH+1=2f(t) + ADH+1=2f(t)

We derive ‖K−1
H f‖26 c‖DH+1=2f‖26 c‖f‖BH+1=2

2; 2
.

6.1.2. Approximation results for statistical distances
We denote by D(P;Q) the Kullback–Leibler divergence

∫
log dP=dQ dP6+∞ of

two probability measures P and Q.

Lemma 8. Let T (!) := ! + 2(!) be such that the process t  2[!](t) is adapted
w.r.t. the canonical Eltration and di9erentiable. Assume moreover that WH ∼ TWH

(∼ denotes equivalence between measures.) Then

D(WH ; TWH ) = 1
2 EWH

{‖2(!)‖2
HH

}
:

Proof. By Girsanov theorem (see for instance Decreusefond and PUstPunel, 1999,
Theorems 4.8 and 4.9), the density dTWH =dWH can be represented as

dTWH

dWH = exp

{
−
∫ 1

0
K−1

H 2[!](s) dBs − 1
2

∫ 1

0
(K−1

H 2[!](s))2d s

}
; (53)

where B is a (WH ;F) standard Brownian motion. Since

EWH

{
−
∫ 1

0
K−1

H 2[!](s) dBs

}
= 0;
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the fact that D(WH ; TWH ) = −EWH

(
log dTWH = dWH

)
, we obtain by (53) that

D(WH ; TWH ) =
1
2
EWH

{∫ 1

0
(K−1

H 2[!](s))2 ds

}
=

1
2
EWH {‖2(!)‖2

HH
};

which is the desired result.

Lemma 9. For all H ∈ [ 1
2 ; 1), there exists a linear approximation operator PN : C0 →

C0 that satisEes the following properties:

(i) (Causality) The random process t  PN [!](t) is adapted.
(ii) (Jackson inequality)

‖PN (!) − !‖26 c‖!‖BH
2;∞

N−H :

(iii) (Stability in BH+1=2
2;2 ) For all N¿ 1, PN (!) ∈HH and

‖PN (!)‖BH+1=2
2; 2
6 c

√
N‖!‖BH

2;∞
:

For f∈C0 and y0 ∈R, let Qn
f;y0

denote the law of the n-dimensional random vector
X n = (Xi=n; i = 1; : : : ; n), with

Xt = y0 +
∫ t

0
f(s) dWs (54)

and where W is the Brownian motion deFned in the previous section. The following
estimate can be found in Ho&mann (2002).

Lemma 10. Let f0, f1 ∈C0 s.t. inf t f0(t)¿ ,¿ 0, ‖f2
1 −f2

0 ‖∞6 1
5 ,2 and for some

L¿ 0

‖f2
1 − f2

0 ‖26
,2L√

n
:

Let C¿ 0. For n¿ 1, we have Qn
f1 ;y0

{dQn
f0 ;y0

=dQn
f1 ;y0
¿ e−C}¿ 1−(L=C)(L=3+

√
3=2).

Let T : E → E be measurable map on a probability space (E;E; ,) such that
T−1(E) = E. Let F1 and F2 be two positive functions on E.

Lemma 11. Assume that F1+F2◦T¿ K¿ 0 onA∈E, that T, ∼ , and D(,; T,)6 @.
Then ∫

E
(F1 + F2) d,¿ K

(√
,(A) −

(
1
2
@
)1=4

)2

:

Proof. First, since T−1(E) = E, the integral
∫
E (F1 + F2) d, is equal to∫

E

[
F1 + F2 ◦ T · d,

dT,
(T (·))

]
d,¿ C

∫
A

[F1 + F2 ◦ T ] 1(d,=dT,)(T (·))¿C d,
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for all C∈ [0; 1). Next, using that the sum of F1 and F2 ◦ T is bounded below by K on
A and denoting by ,A the probability measure ,(A)−1

∫
A

· d,, the RHS of the last
inequality is bounded below by

KC,(A)
[
1 − ,A

{
d,
dT,

(T (·))¡C
}]

:

By Chebyshev’s inequality, we further bound this last term from below by

KC
[
,(A) − (1 − C)−1

∫
E

∣∣∣∣ d,
dT,

− 1
∣∣∣∣ dT,

]
= KC

[
,(A) − ‖, − T,‖TV

1 − C

]
;

where ‖ · ‖TV denotes the variational distance. The conclusion follows by applying the
transport inequality ‖, − T,‖2

TV 6
1
2 D(,; T,)6 1

2@ and by taking the supremum in
C∈ [0; 1).

6.2. Proof of Theorem 2

Let ’n := n−1=(4H+2). Pick an open set U in � and let

	0 ∈U; 	n := 	0 + >’n ∈U

for n¿ 1 and a suLciently small constant >¿ 0. Using max′¿
∑

=2, for any estimator
F and any C ¿ 0, we bound the maximal risk

sup
	∈U

Pn
	{’−1

n |F − 	|¿C}

from below by
1
2

(
Pn

	0

{
’−1

n |F − 	0|¿C
}

+ Pn
	n

{
’−1

n |F − 	n|¿C
})

=
∫
C0

WH (d!)(Pn
	0 ;!{’−1

n |F − 	0|¿C} + Pn
	n;!{’−1

n |F − 	n|¿C}); (55)

where Pn
	;!(·) denotes the law of (Yi=n; i = 1; : : : ; n), conditional on WH =!. We plan

to use Lemma 11 to bound (55) from below.

6.2.1. Control of the conditional perturbation
In order to apply Lemma 11, we Frst need a lower bound for the term under the inte-

gral in (55) when we formally replace Pn
	n;! by Pn

	n;Tn(!) for an appropriate perturbation
Tn.

By a change of probability argument and the triangle inequality, it is classical to
show that, for large enough n and for all C¿ 0

Pn
	0; !

{
’−1

n |F − 	0|¿C
}

+ Pn
	n;Tn(!)

{
’−1

n |F − 	n|¿C
}

¿ e−CPn
	0; !

{
dPn

	n;T (!)

dPn
	0; !

¿ e−C

}
:

We Frst plan to apply Lemma 10 with

Pn
	;! =Qn

�(	;!);y0
:
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Since � is compact, the term |�(	0; !t)2 − �(	n; Tn(!)t)2| is less than

|�(	0; !t) − �(	n; Tn(!)t)|c(‖!‖∞; ‖Tn(!)‖∞): (56)

We therefore need to bound (56) in L2 norm. By Taylor’s approximation, the funda-
mental term

�(	n; Tn(!)t) − �(	0; !t)

can be written as

(	n − 	0)@	�(	0; !t) + (Tn(!)t − !t)@x�(	0; !t)

+ (	n − 	0)(Tn(!)t − !t)@2
	;x�(	0; !t) +

1
2
(	n − 	0)2@2

	�(	0; !t)

+
1
2
(Tn(!)t − !t)2@2

x�(	0; !t) + rn[!](t); (57)

where the remainder term rn[!](t) satisFes

max{(	n − 	0); ‖Tn(!) − !‖∞}−3‖rn[!]‖∞6 c(‖!‖∞): (58)

However, in order to apply Lemma 10, we need that Frst- and second-order terms
cancel in the above expansion. Indeed, 	n − 	0 = >’n is O(n−1=(4H+2)) with H ∈ [ 1

2 ; 1),
so the rate n−1=2 required in the assumptions of Lemma 10 is obtained for third-order
terms only. DeFne

G(x) :=
@	�(	0; x)
@x�(	0; x)

and

M(x) := @x�(	0; x)−1[G(x)(2@2
	;x�(	0; x) − G(x)@2

x�(	0; x)) − @2
	�(	0; x))]:

Straightforward computations show that

T (0)
n (!)t := !t − >’nG(!t) +

>2’2
n

2
M(!t)

satisFes

�(	0; !t) − �(	n; Tn(!)t) = r̃n[!](t); (59)

up to a remainder term r̃n[!](t) which also has property (58). However, the transform
T (0)
n is such that WH and T (0)

n WH are mutually orthogonal, therefore D(WH ; T (0)
n WH )=

∞ and we will not be able to apply Lemma 1 in a second part. Therefore, we con-
sider instead a low frequency approximation of the di&erence T (0)

n (!) − ! which still
encompasses the approximation requirements of Lemma 10. Set Nn := n1=(2H+1) and
let

! (t  PNn [!](t))

be a nonanticipative approximation operator satisfying the properties of Lemma 9.
Eventually, we set

Tn(!) := ! − >’nPNn [G(!)] +
>2’2

n

2
PNn [M(!)]: (60)
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By Assumptions A and B, the mapping G(·) and M(·) are regular enough so that the
following approximation properties hold:

‖G(!)‖∞ ∨ ‖M(!)‖∞6P1(‖!‖∞);

‖G(!)‖BH
2;∞

∨ ‖M(!)‖BH
2;∞
6P2(‖!‖∞; ‖!‖BH

2;∞
);

where Pi, i = 1; 2, are polynomials.
We see that ‖T (0)

n (!) − Tn(!)‖2, is less than a constant times

[‖G(!) − PNn [G(!)]‖2’n + ‖M(!) − PNn [M(!)]‖2’2
n];

which, in turn is less than

c[‖G(!)‖BH
2;∞

+ ‖M(!)‖BH
2;∞

]’nN−H
n = c[‖G(!)‖BH

2;∞
+ ‖M(!)‖BH

2;∞
] · n−1=2;

by Lemma 9 together with the fact that both M(!) and G(!) belong to the space BH
2;∞.

It follows that

‖�(	0; !) − �(	n; Tn[!])‖26 c[‖G(!)‖BH
2;∞

+ ‖M(!)‖BH
2;∞

]n−1=2 + ‖rn[!]‖∞;

since T (0)
n solves (59) up to a remainder term of the right order. Back to (56), we

obtain

‖�(	0; !)2 − �(	n; Tn[!])2‖26 [cn−1=2 + ‖rn[!]‖∞]c(‖!‖∞; ‖!‖BH
2;∞

)

6 c?(‖!‖∞; ‖!‖BH
2;∞

) · n−1=2;

where we used (58) in the last inequality. The constant c? can be assumed to be in-
creasing in its arguments. By Assumption D, there exists m1 ¿ 0 such that �(	n; Tn[!]t)
is greater than

c??(‖!‖∞)¿ 0 on ‖!‖∞6m1;

and, with no loss of generality, we may assume that c?? is decreasing. (if �(	; x) is
positive; otherwise, we have an analogous inequality with ¡ 0 in place of ¿ 0 and we
apply the same subsequent arguments with obvious changes.)

Let m2 ¿ 0. DeFne

A(m1; m2) := {!∈C0 : ‖!‖∞6m1 and ‖!‖BH
2;∞
6m2}:

We are now ready to apply Lemma 10, for !∈A(m1; m2). We take

f0 := �(	n; Tn[!]); f1 := �(	0; !);

, := c??(m1); L := ,−2c?(m1; m2) = c??(m1)−2c?(m1; m2)

and we check that, for large enough n, we have that ‖f2
0 − f2

1 ‖∞6 1
5 ,2. We derive

Pn
	0 ;!{’−1

n |F − 	0|¿C} + Pn
	n;Tn(!){’−1

n |F − 	n|¿C}

¿ sup
C¿0

e−C
(
1 − C−1L)(L=3 +

√
3=2)

)
=: *(m1; m2) say:
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6.2.2. Control of the separation rate between WH and TnWH

A direct application of Lemma 8 states

D(WH ; TnWH ) = 1
2EWH

{‖! − Tn(!)‖2
HH

}
:

Using Lemma 7, we have that D(WH ; TnWH ) is less than a constant times

’2
n(EWH {‖PNn(G(!))‖2

BH+1=2
2; 2

} + EWH {‖PNn(M(!))‖2
BH+1=2

2; 2
}):

Applying Lemma 9(iii) this last quantity is less than

’2
nNn(EWH {‖G(!)‖2

BH
2;∞

} + EWH {‖M(!)‖2
BH

2;∞
}):

Recalling that ’2
nNn remains bounded, we eventually obtain the existence of a constant

cKullback such that

D(WH ; TnWH )6 cKullback :

Remark. Note that we can change ’n into
√
O’n for any dilation factor O¿ 0 without

a&ecting the order of the previous bounds, so cKullback can be changed into OcKullback

for any O¿ 0.

6.2.3. Completion of proof
We are now ready to apply Lemma 11. We take

(E; ,) := (C0;WH ); T := Tn;

F1(!) := Pn
	0 ;!{’−1

n |F − 	0|¿C}; F2(!) := Pn
	n;!{’−1

n |F − 	n|¿C};

A := A(m1; m2); K := *(m1; m2); @ := cKullback :

For all m1 ¿ 0 we have WH{‖!‖∞6m1}¿ 0. So, by Lemma 7, for large enough
m2, we have WH{A(m1; m2)}¿ 0. Eventually∫

C0

WH (d!)(Pn
	0; !

{’−2
n (F − 	0)2¿C} + Pn

	n;!{’−2
n (F − 	n)2¿C})

is bigger than

*(m1; m2)[WH (A(m1; m2)1=2 − ( 1
2@)1=4]2

and the conclusion follows by taking @ suLciently small, a choice that is always
possible by the last remark of Section 6.2.2.
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Appendix A.

A.3. Wavelets and function spaces

For f∈C0, we set, as usual.

A.3.1. Biorthogonal wavelets and Besov spaces
A (compactly supported) wavelet basis consists of a (compactly supported) scal-

ing function  −1;0 and (compactly supported) wavelet functions  C;  ̃ C that satisfy a
biorthogonality relation

〈 C;  ̃ C′〉 = MC;C′ :

The duality bracket 〈·; ·〉 reduces to the usual inner product as soon as  C and  ̃ C′ are
regular enough. The index C concatenates the scale and space parameters j and k, thus
 C =  jk = 2j=2 (2j · −k) is obtained from a single function  . Likewise for  ̃ C. The
wavelet decomposition of a function f takes then the form

f =
∞∑

j=−1

∑
|C|=j

fC C;

where fC = 〈f;  ̃ C〉 and f−1 = 〈f;  −1;0〉. For a sequence (an)n¿0 of real numbers, we
set as usual

‖(an)n¿0‖‘∞ := sup
n¿0

|an| and

‖(an)n¿0‖‘p :=

(∑
n¿0

|an|p
)1=p

for 16p¡∞:

De)nition A.1. For a properly chosen wavelet basis (see Cohen, 2000) and s¿ 0 and
q∈ {2;∞}, the function f∈C0 belongs to the Besov space Bs

2; q([0; 1]) if

‖f‖Bs
2; q

:= ‖(2s|C|‖(fC)|C|=j‖‘2 )j¿0‖‘q ¡∞:

The Besov space Bs
2;2([0; 1]) is the usual Sobolev space for non integer s.

A.1.2. The Schauder basis
Let  0 = 1[0;1] and for j¿ 0; 16 k6 2j:

 j;k = 2j=2(1[(2k−2)=2j+1 ; (2k−1)=2j+1] − 1[(2k−1)=2j+1 ;2k=2j+1]);

i.e. the Haar basis. The Schauder basis is the collection of functions

;0(t) = 1; ;1(t) = t; ;j;k(t) = 2j
∫ t

0
 j;k(s) ds for j¿ 0; 16 k6 2j:
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Remark that ;j;k has support in [(k −1)=2j; k=2j] and that ‖;j;k‖∞6 2j=2−1. We recall
that any continuous function f on [0; 1], may be decomposed, with convergence in
‖ · ‖∞ norm:

f = f0;0 + f1;1 +
∞∑
j=0

2j∑
k=1

fj;k;j;k

with explicit coeLcients, f0 = f(0), f1 = f(1) and

fj;k = 2−j=2+1
{
f
(

2k − 1
2j+1

)
− 1

2

(
f
(

2k
2j+1

)
+ f

(
2k − 2
2j+1

))}
: (A.1)

The Schauder basis is compatible with the formalism of Section A.3.1 is we set

 C := ;jk and  ̃ C := 2−j=2+1 {M(2k−1)=2j+1 − 1
2

(
M2k=2j+1 + M(2k−2)=2j+1

)}
;

where Mx denotes the Dirac mass at point x.

A.2. Proof of Lemma 1

We have

E{#a MWH
i #a MWH

j }

= E
{ p∑

k=0

ak

(
MWH
i+k

p∑
l=0

al MWH
j+l

)}

= Ė
{ p∑

k=0

ak

[
MWH
i+k

p∑
l=0

al( MWH
j+l − MWH

i+k)

]} (
using that

p∑
l=0

al = 0

)

= E
{ p∑

l=0

al

[
MWH
j+l

p∑
k=0

ak( MWH
i+k − MWH

j+l)

]}
(by symmetry)

= − 1
2
E




∑
06k;l6p

akal( MWH
i+k − MWH

j+l)
2


 :

By (19), it suLces to show that for i; i + k ∈ {1; : : : ; N − p − 1}
E{( MWH

i+k − MWH
i )2} = N−2HvH (k):

It is suLcient to consider the case k¿ 1:

E{( MWH
i+k − MWH

i )2}

=N 2E



(∫ (i+1)=N

i=N
(WH

s+k=N − WH
s ) ds

)2



= 2N 2
∫ (i+1)=N

i=N

∫ s

i=N
E{(WH

s+k=N − WH
s )(WH

s′+k=N − WH
s′ )} ds′ ds:
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We now replace the expectation in the integral above using (9), and then easily derive
—recall (18)—that

E{( MWH
i+k − MWH

i )2} = N−2HvH (k):

It remains to prove that *2
a;H ¿ 0. Assume on the contrary, that #a MWH

i =0 for all i. Thus,
(#a MWH

i )i solves a linear equation of order p, thus MWH
i is a function of ( MWH

j )06j6p.
Choosing i= iN such that iN =N converges to an arbitrary t0 ∈ ( 1

2 ; 1], and since p=N6 1
2

for N big enough, we derive that WH
t0 is measurable with respect to (WH

t )t∈[0;1=2], a
contradiction.

A.3. Proof of Lemma 9

Let � be C∞ with compact support in [0; 1] and such that
∫
;(u) du=1. For N¿ 1,

let jN be an integer such that N6 2−jN 6 2N . We set

�N (t) := 2jN �(2−jN t)

and

PN [!](t) :=
∫ 1

0
!s�N (t − s) ds:

We have property (i) by construction. Likewise, property (ii) follows from classical
direct estimates by convolution kernels, see e.g. Cohen (2000). It remains to prove
the stability property (iii). Expand ! in a wavelet basis ! =

∑
j !j, where !j =∑

k〈!;  jk〉 jk is the decomposition of ! at scale j. We plan to use the following
low–high frequency decomposition

PN [!](t) = GjN + gjN =
∑
j6jN

�N ∗ !j +
∑
j¿jN

�N ∗ !j:

Let F denote the Fourier transform. Since 5 (F�N )(5)=(F�)(2−jN 5) is uniformly
bounded in N , the Besov (or Sobolev) norm BH+1=2

2;2 of �N ∗∑j6jN !j is less than a
constant times the Besov norm of

∑
j6jN !j. If the wavelet basis is suLciently regular,

we further have∣∣∣∣∣
∣∣∣∣∣
∑
j6jN

!j

∣∣∣∣∣
∣∣∣∣∣
BH+1=2

2; 2

6 c
∑
j6jN

2j(H+1=2)
∑
k

〈!;  jk〉2;

by the characterization of Besov norms in terms of wavelet sequences. Applying Bern-
stein inequality∑

k

〈!;  jk〉26 c2−2jH‖!‖BH
2;∞

;

we obtain that ‖GjN ‖2
BH+1=2

2; 2

is less than

c ||!||2BH
2;∞

∑
j6jN

22j(H+1=2)
∑
k

2−2jH 6 c ||!||2BH
2;∞

2jN 6 c ||!||2BH
2;∞

N:
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We now turn to the high-frequency part. Using again that (F�N ) is uniformly bounded
and Bernstein inequality, we have

||gjN ||226 c(�)

∣∣∣∣∣
∣∣∣∣∣
∑
j¿j0

!j

∣∣∣∣∣
∣∣∣∣∣
2

2

6 c2−2jH ||!||2BH
2;∞

:

We also have

||gjN ||2BH+1=2
2; 2
6 c

(
||gjN ||2 +

∫
|5|2H+1|FgjN (5)|2 d5

)
;

it remains to bound the last term in the RHS above, which is equal to∫
|5|2H+1 |F�N (5)|2 |F

(∑
j¿jN

!j

)
(5)|2 d5: (A.2)

But

|5|2H+1|F�N (5)|2 = |5|2H+1|F�(2−jN 5)|2

= 2jN (2H+1)|2−jN 5|2H+1|F�(2−jN 5)|26 c(�)2jN (2H+1);

where c(�) = sup5|5|2H+1|F�(5)|2. So the integral in (A.2) is bounded by a constant
times

2jN (2H+1)
∫ ∣∣∣∣∣F

(∑
j¿jN

!j

)
(5)

∣∣∣∣∣
2

d5 = 2jN (2H+1)

∣∣∣∣∣
∣∣∣∣∣
∑
j¿jN

!j

∣∣∣∣∣
∣∣∣∣∣
2

2

:

Using the wavelet expansion and Bernstein inequality, this last term is less than

2jN (2H+1)
∑
j¿jN

∑
k

〈!;  jk〉26 c2jN (2H+1)
∑
j¿jN

2−2jH‖!‖2
BH

2;∞

and is thus of order 2jN ‖!‖2
BH

2;∞
. The conclusion follows.
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