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Organization

▶ Week 1: introduction and basic concepts
▶ Week 2: tests and the Cox model
▶ Week 3: Lab 1
▶ Week 4: Lab 2
▶ Week 5: longitudinal models and variable selection
▶ Week 6: Lab 3 (project)

+ 1 final exam



Introduction



What is survival analysis ?

Survival analysis
Survival analysis is the study of survival times, durations, or more generally of
time-to-event(s), and of the factors that influence them.

Types of fields where time-to-event(s) outcomes are commonly observed and
analyzed:

▶ biomedical sciences, in particular in clinical trials, epidemiology / event of
interest: onset of a health condition

▶ insurance / event(s) of interest: time(s) of damage
▶ economics / event(s) of interest: time(s) of employment or unemployment
▶ etc

When there is only one time of interest, it is denoted by T and called
time-to-event, duration or survival time, equivalently. We will come back
later on cases where several times are observed.



What do we want to analyze ?

The main tasks for the statistician are

▶ to estimate the time-to-event distributions: estimation
▶ to compare time-to-event distributions in different sub-populations: test
▶ to determine which factors/covariates influence these distributions:

regression.

Why do we need yet another course ? Because durations or survival times are

▶ positive random variables
▶ often “ill-observed.”



Parametric distributions for durations

Exponential distribution
T ∼ E(λ) with λ > 0 when T a the p.d.f

λ exp(−λt) on R+.

Weibull distribution
T ∼ W(λ, α) with λ > 0 and α > 0 when T a the p.d.f

αλαtα−1 exp(−(λt)α) on R+.

Log-normal distribution
T ∼ log N (µ, σ2) with µ ∈ R and σ2 > 0 when log(T) has the N(µ, σ2)
distribution.

Other distributions: gamma, log-logistique, chi-squared, etc



General case

Let the duration T has the c.d.f. F. It is a positive r.v., hence F(t) = 0 if t < 0.
We will concentrate on R+.

Survival function
The survival function F̄ is defined as

F̄(t) = 1 − F(t) = P(T > t) for all t ∈ R+.

It is a decreasing, càdlàg function, with F̄(t) = 1 when t < 0 and F̄(∞) = 0.



Continuous case
Suppose that T has a p.d.f f (with support on R+).

Hazard rate / intensity function
The hazard rate (aka intensity function) is defined as

λ(t) = lim
h→0

1
hP(t ≤ T ≤ t + h|T ≥ t) = lim

h→0

1
h
P(t ≤ T ≤ t + h)

P(T ≥ t)

= f(t)
F̄(t)

for t ∈ R+.

It can be interpreted as the infinitesimal probability of “dying” at time t
conditionally to “being alive” at time t.

Cumulative hazard/intensity function
The cumulative hazard/intensity function is defined as

Λ(t) =
∫ t

0
λ(x)dx for all t ∈ R+.



Exercise: the Weibull distribution
Suppose that T ∼ W(λ, α), as defined on slide 6. Compute its
▶ survival function
▶ hazard rate
▶ cumulative hazard rate.
▶ In the particular case of the exponential distribution (α = 1), what is the

shape of the hazard function ?



Discrete case
Suppose that T has a discrete distribution on {t1, t2, . . .}, given by
P(T = ti) = pi.

Hazard rate / intensity function
The hazard rate (aka intensity function) is defined as

λ(ti) = lim
h→0

P(ti ≤ T ≤ ti + h|T ≥ ti) = lim
h→0

P(ti ≤ T ≤ ti + h)
P(T ≥ ti)

= pi

F̄(ti−1)
= pi∑

j:tj≥ti
pj

for t ∈ R+.

It can be interpreted as the probability of “dying” at time ti conditionally to
“being alive” at time ti.

Cumulative hazard/intensity function
The cumulative hazard/intensity function is defined as

Λ(t) =
∑
i:ti≤t

λ(ti)



Exercise: a key relationship
Suppose that T a discrete distribution on {t1 ≤ t2 ≤ . . .}, given by
P(T = ti) = pi. Show that

F̄(ti) =
i∏

j=1

(
1 − λ(tj)

)
.

Exercise: the discrete uniform distribution
Assume that T has a discrete distribution on {t1 ≤ t2 ≤ . . . ≤ tk} , given by
P(T = ti) = 1/k. Compute its
▶ survival function
▶ hazard rate
▶ cumulative hazard rate.



Time-to-event data and censoring



Time-to-event data and censoring

Time-to-event or survival time
This is the time between a starting and a ending event.

Examples:

▶ time between birth and death
▶ time between the start of a treatment and the start of the effect
▶ time between the start and end of a unemployment period
▶ etc

Censoring
Censoring arises when the starting and/or the ending event are not precisely
observed.



Right-censoring I

Figure 1: Figure from Moore 2016 Figure 2: Figure from Moore 2016



Right-censoring II

Independent right-censoring
Let T be the duration and C a positive r.v., independent of T. C right-censors
T when we observe

TC = min(T, C) and δ = 1T≤C

instead of T.

▶ TC is the censored time or observed time
▶ δ is the censoring indicator or status.



Exercise: the form of right-censored data
Fill the tabular on the right.

Figure 3: Figure from moore16applied

Patient Obs. time Status
1 7 0



The pharmocoSmoking dataset (1)

▶ Medical therapies to help smokers Randomized trial of triple therapy vs.
patch for smoking cessation.

▶ Data frame with 125 observations and 14 variables:
▶ id: patient ID number
▶ ttr: Time in days until relapse
▶ relapse: Indicator of relapse (return to smoking)
▶ grp: Randomly assigned treatment group with levels combination or

patchOnly
▶ etc

## id ttr relapse grp
## 1 21 182 0 patchOnly
## 2 113 14 1 patchOnly
## 3 39 5 1 combination
## 4 80 16 1 combination

Exercise
▶ After how many days patient 4 relapsed ?
▶ After how many days patient 1 relapsed ?



Censoring and quantities of interest (continuous case)

Let

▶ T be the duration, with survival function F̄ and p.d.f. f
▶ and C a positive r.v., independent of T, with survival function Ḡ and p.d.f.

g

We observe
TC = min(T, C) and δ = 1T≤C

Key relationships for the likelihood
We have, in the continuous case,

dP(TC ≤ t, δ = 1)
dt = f(t)Ḡ(t) dP(TC ≤ t, δ = 0)

dt = g(t)F̄(t)

Exercise
Show the two relationships.



Likelihood

Suppose that we observe, for n independent individuals, independently
right-censored data:

(TC
1 , δ1), (TC

2 , δ2), . . . , (TC
n , δn).

Likelihood (continuous case)
The likelihood is defined as:

L((TC
1 , δ1), (TC

2 , δ2), . . . , (TC
n , δn)) =

n∏
i=1

(
f(TC

i )Ḡ(TC
i )

)δi(
g(TC

i )F̄(TC
i )

)1−δi

=
n∏

i=1

f(TC
i )δi F̄(TC

i )1−δi

︸ ︷︷ ︸
part for f

n∏
i=1

Ḡ(TC
i )δi g(TC

i )1−δi

︸ ︷︷ ︸
part for g

.

The second line implies that we can estimate f or F̄ without any knowledge of
the distribution of C !



Exercise: the exponential distribution
Suppose that
▶ the duration (T) has the distribution E(λ) and
▶ the right censoring is independent.

Based on the data (TC
1 , δ1), (TC

2 , δ2), . . . , (TC
n , δn), find the maximum likelihood

estimator of λ.



Other forms of censoring

Left-censoring
Let T be the duration and C a positive r.v., independent of T. C right-censors
T when we observe

TC = max(T, C) and δ = 1T≤C

instead of T.

Baboon descent - example I.3.7 of Andersen et al. 2012
Baboons sleep in a tree and descend at some time of the day. Observers often
arrive later in the day that this descent. In this case, they only know that the
descent took place before a certain time.



Exercise: left and right-censoring
In a study of time to first marijuana use (example 1.17 of Klein and
Moeschberger 2005) 191 high school boys were asked “when did you first use
marijuana?”.
▶ Some answers were “I have used it but cannot recall when the first time

was”.
▶ Some never used marijuana at the time of the study.
▶ Some remembered when they first used it

Which observations are left-censored, which are right-censored ?



Other types of problems of observation

Interval censoring, left- and right-truncation
▶ Interval censoring, when the event of interest is only known to take place

in an interval.
▶ Left truncation, when the event of interest is only observed if it is greater

than a (left) truncation variable.
▶ Right truncation, when the event of interest is only observed if it is less

than a (right) truncation variable.



Death times of elderly residents of a retirement community - example 1.16
of Klein and Moeschberger 2005

Exercise
We observe for 462 residents of a retirement home
▶ death: Death status (1=dead, 0=alive)
▶ ageentry: Age of entry into retirement home, months
▶ age: Age of death or left retirement home, months
▶ etc

From which problem(s) of observation do these data suffer ?

## death ageentry age
## 1 1 1042 1172
## 2 1 921 1040
## 3 1 885 1003
## 4 1 901 1018
## 5 1 808 932
## 6 1 915 1004



Nonparametric estimation



Case without censoring

We consider a duration T and that we have observed the realizations
t1 < t2 < . . . < tn of i.i.d. copies of T.

Exercise: empirical survival function
▶ Via the moment method, determine an estimator of the survival function.
▶ Now consider a r.v. U with values in {t1 < t2 < . . . < tn} such that

P
(
U = ti

)
= 1

n for all i ∈ {1, . . . , n}.

what is its survival functions of U ?
▶ Conclude that the empirical survival function of T constructed from

T1, . . . , Tn is the survival function of U.



Case with censoring (1)

We consider

▶ a discrete duration Z
▶ a censoring time C, independent of Z

Key relation
For all t ∈ R+

lim
h→0

P(t ≤ ZC ≤ t + h, δ = 1|ZC ≥ t)

= lim
h→0

P(t ≤ ZC ≤ t + h, δ = 1)
P(ZC ≥ t)

= λ(t).

We need to find empirical counterparts to

ZC ≤ t + h, δ = 1) and P(DC ≥ t).



Case with censoring (2)

Now consider that we have access to realizations of n i.i.d. copies of
(TC = min(T, C), δ = 1T≤C).

(tC
1 , δ1), (tC

2 , δ2), . . . , (tC
n , δn), where tC

1 < tC
2 < . . . < tC

n .

Consider a vector (UC, D) of r.v. with values in

{(tC
1 , δ1), (tC

2 , δ2), . . . , (tC
n , δn)}

such that
P
(
(UC, D) = (tC

i , δi)
)

= 1
n for all i ∈ {1, . . . , n}.

Let us compute

▶ limh→0 P(t ≤ UC ≤ t + h, D = 1) and
▶ P(UC ≥ t).



Case with censoring (3)

lim
h→0

P(ti ≤ UC ≤ ti + h, D = 1) = P(UC = ti, D = 1)

=
{

0 if t = ti but δi = 0
1
n if t = ti and δi = 1

= δi
n

and
P(UC ≥ ti) = n − (i − 1)

n



Case with censoring (4)

we get the hazard function

lim
h→0

P(ti ≤ UC ≤ ti + h, D = 1)
P(UC ≥ t)

= P(UC = ti, D = 1)
P(UC ≥ t)

= δi
n − (i − 1)

Now, with the relations on slides 11 and 10, we can define the Kaplan-Meier
estimator of F̄ and Nelson-Aalen estimator of Λ.



The Kaplan-Meier estimator

The Kaplan-Meier estimator (continuous case)
We consider
▶ a duration T, with survival function F̄
▶ a censoring time C, independent of T
▶ and that we have access to realizations of n i.i.d. copies of

(TC = min(T, C), δ = 1T≤C) :

{(tC
1 , δ1), (tC

2 , δ2), . . . , (tC
n , δn)} where tC

1 < tC
2 < . . . < tC

n .

The Kaplan-Meier estimator of F̄ is given by

̂̄F(t) =

{∏
i:ti≤t(1 − δi

n−(i−1) ). for t ≥ tC
1

1 for t < tC
1 .

The Kaplan-Meier estimator is the nonparametric maximum likelihood
estimator (so we can trust it !!!).



Example on the re-arrest dataset Singer and Willett 2003 (1)

The dataset contains data for 194 inmates released from a medium-security
prison to a maximum of 3 years from the day of their release; during the period
of the study, 106 of the released prisoners were rearrested.

▶ months: The time of re-arrest in months (but measured to the nearest
day).

▶ censor: A dummy variable coded 1 for censored observations and 0 for
uncensored

▶ etc

kmsurvival <- survfit(Surv(months,censor) ~ 1,data=rearrest)

summary(kmsurvival)

## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0.624 187 1 0.995 0.00533 0.984 1.000
## 0.821 183 1 0.989 0.00758 0.974 1.000
## 1.248 178 1 0.984 0.00936 0.965 1.000
## 1.708 173 1 0.978 0.01090 0.957 1.000



Example on the re-arrest dataset Singer and Willett 2003 (2)
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Example on the pharmocoSmoking dataset of slide 17

KM_fit = survfit(Surv(pharmacoSmoking$ttr,pharmacoSmoking$relapse)~1)
summary(KM_fit)

## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 0 125 12 0.904 0.0263 0.854 0.957
## 1 113 5 0.864 0.0307 0.806 0.926
## 2 108 6 0.816 0.0347 0.751 0.887
## 3 102 1 0.808 0.0352 0.742 0.880
## 4 101 3 0.784 0.0368 0.715 0.860
## 5 98 2 0.768 0.0378 0.697 0.846
## 6 96 1 0.760 0.0382 0.689 0.839



The Kaplan-Meier estimator (general case)
The Kaplan-Meier estimator
We consider
▶ a duration T, with survival function F̄
▶ a censoring time C, independent of T
▶ and that we have access to realizations of n i.i.d. copies of

(TC = min(T, C), δ = 1T≤C) :

{(tC
1 , δ1), (tC

2 , δ2), . . . , (tC
n , δn)} where tC

1 ≤ tC
2 ≤ . . . ≤ tC

n .

Let
▶ τ1 < τ2 < . . . < τD be the distinct times of event and, for each

k = 1, . . . , D
▶ nk be the number of observed events at time τk

▶ Yk be the number of individuals at risk at time τk

The Kaplan-Meier estimator of F̄ is given by

̂̄F(t) =

{∏
k:τk≤t(1 − nk

Yk
) for t ≥ τ1

1 for t < τ1



Example on the pharmocoSmoking dataset of slide 17
autoplot(KM_fit)
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Variance of the Kaplan-Meier estimator

Greenwood estimator
In the same settings, the Greenwood estimator provides an estimate of the
variance of the Kaplan-Meier estimator

V̂
(̂̄F(t)

)
= ̂̄F2

(t)
∑

k:τk≤t

nk
Yk(Yk − nk)



The Nelson-Aalen estimator
We consider
▶ a duration T, with survival function F̄ and cumulative intensity function Λ
▶ a censoring time C, independent of T
▶ and that we have access to realizations of n i.i.d. copies of

(TC = min(T, C), δ = 1T≤C)

{(tC
1 , δ1), (tC

2 , δ2), . . . , (tC
n , δn)} where tC

1 ≤ tC
2 ≤ . . . ≤ tC

n .

Let
▶ τ1 < τ2 < τD be the distinct times of event and, for each k = 1, . . . , D
▶ nk be the number of observed events at time τk

▶ Yk be the number of individuals at risk at time τk

The Nelson-Aalen estimator of Λ is given by

Λ̂(t) =

{∑
k:τk≤t

nk
Yk

for t ≥ τ1

0 for t < τ1
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