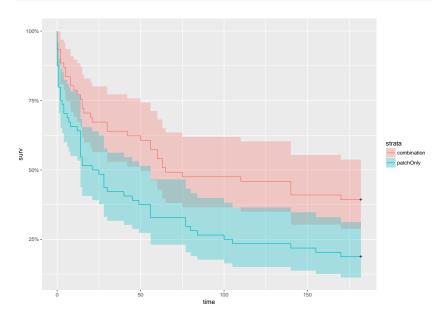
Survival and longitudinal data analysis Chapter 2: tests and the Cox model

Agathe Guilloux Professeure au LaMME - Université d'Évry - Paris Saclay Comparing survival distributions

The pharmacoSmoking dataset

autoplot(survfit(Surv(ttr,relapse)~grp, data = pharmacoSmoking))



Construction of the log-rank test (1)

We consider

- two durations
 - T_1 , with survival function \overline{F}_1 and
 - T_2 , with survival function \overline{F}_2 and
- ▶ possibly censored by C_1 and C_2 , independent of T_1 and T_2
- and that we have access to 2 groups of realizations
 - ▶ n_1 i.i.d. copies of $(T_1^C = \min(T_1, C_1), \delta_1 = \mathbb{1}_{T_1 \leq C_1})$ and
 - n_2 i.i.d. copies of $(T_2^C = \min(T_2, C_2), \delta_2 = \mathbb{1}_{T_2 \le C_2})$:

$$\{(t_{1,1}^{\mathcal{C}}, \delta_{1,1}), \dots, (t_{1,n_1}^{\mathcal{C}}, \delta_{1,n_1})\} \text{ and } \{(t_{2,1}^{\mathcal{C}}, \delta_{2,1}), \dots, (t_{2,n_2}^{\mathcal{C}}, \delta_{2,n_2})\}$$

##	ić	l ttr	relapse	grp	##		id	ttr	relapse	grp
## 3	3 39) 5	1	combination	##	1	21	182	0	patchOnly
## 4	1 80) 16	1	combination	##	2	113	14	1	patchOnly
## 5	5 87	0	1	combination	##	7	16	14	1	patchOnly

Construction of the log-rank test (2)

Let $au_1 < au_2 < \ldots < au_D$ be the distinct times of event and, for each $k = 1, \ldots, D$

	At risk at τ_k	Dead at $ au_k$	At risk at $ au_{k+1}$
Group 1	$Y_{1,k}$	$d_{1,k}$	$Y_{1,k} - d_{1,k}$
Group 2	Y _{2,k}	$d_{2,k}$	$Y_{2,k} - d_{2,k}$
Total	Y_k	d_k	$Y_k - d_k$

Suppose that $\mathcal{H}_0: \bar{F}_1 = \bar{F}_2$ holds, then the probability of observing $d_{1,k}$ deaths in group 1 at time τ_k is given by

$$\frac{\begin{pmatrix} d_k \\ d_{1,k} \end{pmatrix} \begin{pmatrix} Y_k - d_k \\ Y_{1,k} - d_{1,k} \end{pmatrix}}{\begin{pmatrix} Y_k \\ Y_{1,k} \end{pmatrix}}$$

Construction of the log-rank test (3)

This defines a hypergeometric distribution with mean

$$E_k = \frac{Y_{1,k}}{Y_k} d_k$$

and variance

$$V_k = rac{Y_{1,k}Y_{2,k}d_k(Y_k-d_k)}{Y_k^2(Y_k-d_1)}.$$

The log-rank test

Now, it suffices to compare the observed number of deaths in group 1 to the expected one for each disctinct times $d_{1,k} - E_k$ and divide by the total variance

$$\frac{\sum_{k=1}^{D} d_{1,k} - E_k}{\sqrt{\sum_{k=1}^{D} V_k}}$$

The log-rank test

Under assumption \mathcal{H}_0 : $\overline{F}_1 = \overline{F}_2$, when n_1 and n_2 tend to infinity

$$\left(\frac{\sum_{k=1}^{D} d_{1,k} - E_k}{\sqrt{\sum_{k=1}^{D} V_k}}\right)^2 \stackrel{\mathcal{L}}{\to} \chi^2(1).$$

Remark: this is equivalent to the Cochran-Mantel-Haenzel test for testing the independence of two factors.

Example on the pharmocoSmoking dataset

```
survdiff(Surv(ttr,relapse)~grp, data = pharmacoSmoking)
```

```
## Call:
## survdiff(formula = Surv(ttr, relapse) ~ grp, data = pharmacoSmoking)
##
##
                   N Observed Expected (O-E)<sup>2</sup>/E (O-E)<sup>2</sup>/V
## grp=combination 61
                           37
                                  49.9
                                            3.36
                                                     8.03
                                  39.1 4.29 8.03
##
  grp=patchOnly 64 52
##
   Chisq= 8 on 1 degrees of freedom, p= 0.00461
##
```

Generalizations of the log-rank test

A generalization of the log-rank test has been proposed in Harrington and Fleming 1982, it introduces weights:

$$\frac{\sum_{k=1}^D \omega_k (d_{1,k} - E_k)}{\sqrt{\sum_{k=1}^D \omega_k^2 V_k}}$$

of the form

ω_k = Y_k for an equivalent of the Mann-Withney-Wilcoxon test.
 ω_k = F
^ρ(τ_k) for the G-rho family of Harrington and Fleming 1982 (coded in function survdiff)

The idea is to give more weight to times points where there is the most data.

Tests for more than two samples

Now, suppose that they are *L* subgroups for which we want to test whether $\overline{F}_1 = \ldots = \overline{F}_L$. For example, this is the case where there are more than 2 possible treatments. For each subgroup *I*, define

$$egin{aligned} & \mathcal{E}_{l,k} = rac{Y_{l,k}}{Y_k} d_k ext{ and} \ & \hat{\Sigma} = \Big(V_k^{1,l_2} = rac{Y_{l_1,k}}{Y_k} d_k ig(\mathbbm{1}_{l_1=l_2} - rac{Y_{l_2,k}}{Y_k}ig) rac{Y_k - d_k}{Y_k - 1} \Big). \end{aligned}$$

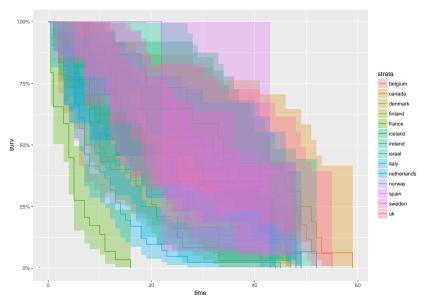
The k-sample log-rank test

Under assumption $\mathcal{H}_0: \bar{F}_1 = \ldots = \bar{F}_L$, when n_1, \ldots, n_L tend to infinity

$$\begin{pmatrix} \sum_{k=1}^{D} d_{1,k} - \mathcal{E}_{1,k} \\ \cdots \\ \sum_{k=1}^{D} d_{L,k} - \mathcal{E}_{L,k} \end{pmatrix}^{\top} \hat{\Sigma}^{-1} \begin{pmatrix} \sum_{k=1}^{D} d_{1,k} - \mathcal{E}_{1,k} \\ \cdots \\ \sum_{k=1}^{D} d_{L,k} - \mathcal{E}_{L,k} \end{pmatrix} \stackrel{\mathcal{L}}{\to} \chi^{2}(L-1).$$

Coalition data King et al. 1990

This dataset contains survival data on government coalitions in parliamentary democracies for the period 1945-1987.



Coalition data King et al. 1990

survdiff(Surv(duration,rep(1,n))~country, data=coalition)

##		N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
##	country=belgium	30	30	24.68	1.14911	1.34631
##	country=canada	16	16	31.94	7.95299	11.07080
##	country=denmark	24	24	24.37	0.00554	0.00643
##	country=finland	31	31	21.73	3.95077	4.54284
##	country=france	29	29	7.10	67.48666	75.15721
##	country=iceland	17	17	23.66	1.87235	2.18122
##	country=ireland	15	15	24.66	3.78615	4.45779
##	country=israel	24	24	17.77	2.18045	2.46753
##	country=italy	41	41	20.67	19.98748	23.32714
##	country=netherlands	17	17	22.26	1.24259	1.44947
##	country=norway	20	20	24.62	0.86860	1.00660
##	country=spain	3	3	4.21	0.34671	0.37127
##	country=sweden	20	20	25.51	1.18965	1.39553
##	country=uk	17	17	30.82	6.19431	7.82142
##						
	<i>m</i> · · · · · · · · · · · · · · · · · · ·				•	

Chisq= 142 on 13 degrees of freedom, p= 0

Semi-parametric proportional hazard model

Covariates in the pharmocoSmoking dataset

head(pharmacoSmoking)

##		id	ttr	relapse	grp	age	gender	race	employment	yearsSm
##	1	21	182	0	patchOnly	36	Male	white	ft	
##	2	113	14	1	patchOnly	41	Male	white	other	
##	3	39	5	1	combination	25	Female	white	other	
##	4	80	16	1	combination	54	Male	white	ft	

##		levelSmoking	ageGroup2	ageGroup4	priorAttempts	longestNoSmoke
##	1	heavy	21-49	35-49	0	0
##	2	heavy	21-49	35-49	3	90
##	3	heavy	21-49	21-34	3	21
##	4	heavy	50+	50-64	0	0

We observe for each $i = 1, \ldots, n$

 $(T_i^{\mathcal{C}}, \delta_i) \text{ AND } X_i^{\top} \in \mathbb{R}^p \text{ (here } p = 11)$

The proportional hazards model or Cox 1972 model (2)

The proportional hazards model

Let $\lambda(t|X)$ be the hazard rate at time t for an individual with covariates $X = (X^1, \ldots, X^p)$ (vector of size $1 \times p$). In the proportional hazards model, this hazard rate takes the form

$$egin{aligned} \lambda(t|X) &= \lambda_0^\star(t) \expig(Xeta^\starig) \ &= \lambda_0^\star(t) \expig(\sum_{j=1}^p X^jeta_j^\starig) \end{aligned}$$

where

- ▶ λ₀^{*} is an unknown function, called "baseline hazard rate" (or "baseline intensity function")
- β^* is an unknown vector of regression parameters in \mathbb{R}^p .

The proportional hazards model or Cox 1972 model (2)

Key relation of the Cox model

Let i_1 and i_2 be two individuals with covariates X_{i_1} and X_{i_2} respectively, then

$$\frac{\lambda(t|X_{i_1})}{\lambda(t|X_{i_2})} = \frac{\lambda_0^{\star}(t)\exp\left(X_{i_1}\beta^{\star}\right)}{\lambda_0^{\star}(t)\exp\left(X_{i_2}\beta^{\star}\right)} = \exp\left((X_{i_1} - X_{i_2})\beta^{\star}\right)$$

Hazard ratio

Let us assume that X_{i_1} and X_{i_2} only differ on the *j*th covariate ($X_{i_1}^k = X_{i_2}^k$ for $k \neq j$ and $X_{i_1}^j \neq X_{i_2}^j$. In this case,

$$\frac{\lambda(t|X_{i_1})}{\lambda(t|X_{i_2})} = \exp\left((X_{i_1} - X_{i_2})\beta^*\right) = \exp\left((X_{i_1}^j - X_{i_2}^j)\beta_k^*\right).$$

Now suppose that the *j*th covariate encodes a treatment. For example, individual i_1 has recived a treatment $X_{i_1}^i = 1$ and i_2 did not $X_{i_2}^j = 0$, then

$$\frac{\lambda(t|X_{i_1})}{\lambda(t|X_{i_2})} = \exp\left(\beta_k^\star\right).$$

The value exp (β_k^{\star}) is also called the **relative risk**.

Cox model with treatment groups in the pharmocoSmoking dataset

```
summary(coxph(Surv(ttr,relapse)~grp, data = pharmacoSmoking))
```

```
## Call:
## coxph(formula = Surv(ttr, relapse) ~ grp, data = pharmacoSmoking)
##
   n= 125, number of events= 89
##
##
##
                 coef exp(coef) se(coef) z Pr(>|z|)
## grppatchOnly 0.6050 1.8313 0.2161 2.8 0.00511 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
               exp(coef) exp(-coef) lower .95 upper .95
## grppatchOnly 1.831 0.5461 1.199
                                                2.797
```

Hazard ratio

For the *j*th covariate, the value $\exp(\beta_k^*)$ is called the hazard ratio. When

►
$$X_{i_1}^j = X_{i_2}^j + 1$$

• and other things being equal, $(X_{i_1}^k = X_{i_2}^k \text{ for } k \neq j)$ it equals

$$\frac{\lambda(t|X_{i_1})}{\lambda(t|X_{i_2})} = \exp\left((X_{i_1} - X_{i_2})\beta^*\right) = \exp\left((X_{i_1}^j - X_{i_2}^j)\beta_j^*\right) = \exp(\beta_k^*)$$

It is interpreted as the constant by which the hazard function is multiplied when X^{j} increases of 1 unit.

Cox model with treatment groups and age in the pharmocoSmoking dataset

summary(coxph(Surv(ttr,relapse) ~ grp + age , data = pharmacoSmoking))

```
## Call:
## coxph(formula = Surv(ttr, relapse) ~ grp + age,
##^^I^^I^^I^^I^^Idata = pharmacoSmoking)
##
## n= 125, number of events= 89
##
                  coef exp(coef) se(coef) z Pr(>|z|)
##
## grppatchOnly 0.558663 1.748334 0.216674 2.578 0.00993 **
## age -0.023018 0.977245 0.009605 -2.397 0.01655 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
              exp(coef) exp(-coef) lower .95 upper .95
## grppatchOnly 1.7483
                           0.572
                                    1.143
                                           2.6734
       0.9772 1.023 0.959 0.9958
## age
```

Derivation of the partial likelihood (1)

We just saw estimates of the true regression parameter β^* , we now describe how they are derived.

Let us come back to the likelihood for n independent individuals, independently right-censored data. We observe

$$(T_1^{\mathcal{C}}, \delta_1, X_1), (T_2^{\mathcal{C}}, \delta_2, X_2), \ldots, (T_n^{\mathcal{C}}, \delta_n, X_n).$$

The likelihood is proportional to:

$$\prod_{i=1}^{n} f(T_{i}^{C})^{\delta_{i}} \overline{F}(T_{i}^{C})^{1-\delta_{i}} = \prod_{i=1}^{n} \left(\frac{f(T_{i}^{C})}{\overline{F}(T_{i}^{C})}\right)^{\delta_{i}} \overline{F}(T_{i}^{C}) = \prod_{i=1}^{n} \lambda(T_{i}^{C}|X_{i})^{\delta_{i}} \overline{F}(T_{i}^{C})$$
$$= \prod_{i=1}^{n} \left(\lambda_{0}(T_{i}^{C}) \exp\left(X_{i}\beta\right)\right)^{\delta_{i}} \exp\left(-\Lambda_{0}(T_{i}^{C}) \exp\left(X_{i}\beta\right)\right).$$

Derivation of the partial likelihood (2)

To find the maximum likelihood estimator, we start by optimizing with respect to each $\hat{\lambda}_0(T_i^c)$ at a fixed value of β . To that end, notice that

$$\sum_{i=1}^{n} \hat{\Lambda}_{0}(\mathcal{T}_{i}^{\mathsf{C}}) \exp\left(X_{i}\beta\right) = \sum_{i=1}^{n} \hat{\lambda}_{0}(\mathcal{T}_{i}^{\mathsf{C}}) \sum_{j: \mathcal{T}_{i}^{\mathsf{C}} \geq \mathcal{T}_{i}^{\mathsf{C}}} \exp\left(X_{j}\beta\right)$$

(when $\hat{\Lambda}$ is a step function) which gives

$$\hat{\lambda}_{0}(\mathcal{T}_{i}^{\mathcal{C}},\beta) = rac{\delta_{i}}{\sum_{j: \mathcal{T}_{j}^{\mathcal{C}} \geq \mathcal{T}_{i}^{\mathcal{C}}} \exp\left(X_{j}\beta\right)}.$$

Derivation of the partial likelihood (3)

Notice that

$$\sum_{i=1}^{n} \hat{\lambda}_{0}(T_{i}^{\mathsf{C}}) \sum_{j: T_{j}^{\mathsf{C}} \geq T_{i}^{\mathsf{C}}} \exp\left(X_{j}\beta\right) = \sum_{i=1}^{n} \delta_{i}$$

replace then λ_0 by $\hat{\lambda}_0$ in the equation above:

$$\prod_{i=1}^{n} \left(\lambda_{0}(T_{i}^{C}|X_{i}) \exp\left(X_{i}\beta\right) \right)^{\delta_{i}} \exp\left(-\sum_{i=1}^{n} \lambda_{0}(T_{i}^{C}) \sum_{j: T_{j}^{C} \ge T_{i}^{C}} \exp\left(X_{j}\beta\right) \right)$$
$$= \prod_{i=1}^{n} \left(\frac{\delta_{i}}{\sum_{j: T_{j}^{C} \ge T_{i}^{C}} \exp\left(X_{j}\beta\right)} \exp\left(X_{i}\beta\right) \right)^{\delta_{i}} \exp\left(\sum_{i=1}^{n} \delta_{i}\right)$$

with the convention $0^0 = 1$.

Derivation of the partial likelihood (4)

The Cox partial likelihood

The Cox partial likelihood is defined as

$$\mathcal{L}^{\text{partial}}(\beta) = \prod_{i=1}^{n} \left(\frac{\exp\left(X_{i\beta}\right)}{\sum_{j: \tau_{j}^{C} \geq \tau_{i}^{C}} \exp\left(X_{j\beta}\right)} \right)^{\delta_{j}}.$$
(1)

The maximum estimator of β^{\star} is defined as

$$\hat{\beta} = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \mathcal{L}^{\operatorname{partial}}(\beta).$$

Prediction via the Breslow estimator

Recall that
$$\overline{F}^*(t|X_i) = \exp\left(-\int_0^t \lambda_0^*(s) \exp(X_i\beta^*)ds\right)$$
.

The Breslow estimator

Once $\hat{\beta}$ computed, the Breslow estimator of $\Lambda_0^{\star}(t)$ is defined as

$$\hat{\Lambda}_{0}(t) = \sum_{i: \mathcal{T}_{i}^{C} \leq t} \frac{\delta_{i}}{\sum_{j: \mathcal{T}_{j}^{C} \geq \mathcal{T}_{i}^{C}} \exp\left(X_{j}\hat{\beta}\right)}$$

All this can be defined (with few differences) in the case where T has a discrete distribution. Methods to handle such ties include Breslow's and Efron's methods (see Klein and Moeschberger 2005 page 259 for more details).

Asymptotic distributions

Let $I_n(\beta)$ be the information matrix associated with the Cox partial likelihood defined in Equation (1) (you can compute it, it is ugly...).

Asymptotic distributions of $\hat{\beta}$

As *n* tends to infty

$$I_n(\hat{eta})^{-1/2} (\hat{eta} - eta^\star) \stackrel{\mathcal{L}}{
ightarrow} \mathcal{N}(0, 1).$$

Asymptotic distributions of the likelihood ratio

As n tends to infty

$$-2\Big(\log \mathcal{L}^{\text{partial}}(\hat{\beta}) - \log \mathcal{L}^{\text{partial}}(\beta^{\star})\Big) \stackrel{\mathcal{L}}{\to} \chi^{2}(p).$$

Let $\hat{\sigma}_j^2$ be the *j*th diagonal element of $I_n(\hat{\beta})$. The univariate Wald test for $\beta_j^* = 0$ To test $\mathcal{H}_0 : \beta_j^* = 0$ at level α , use the Wald test statistic

$$\frac{\hat{\beta}_j^2}{\hat{\sigma}_i^2}$$

and reject \mathcal{H}_0 when it is greater than $q_{\chi^2(1)}(1-lpha).$

Univariate Wald tests in the pharmocoSmoking dataset

summary(coxph(Surv(ttr,relapse) ~ grp + age , data = pharmacoSmoking))

```
## Call:
## coxph(formula = Surv(ttr, relapse) ~ grp + age,
##^^I^^I^^I^^I^^Idata = pharmacoSmoking)
##
## n= 125, number of events= 89
##
                  coef exp(coef) se(coef) z Pr(>|z|)
##
## grppatchOnly 0.558663 1.748334 0.216674 2.578 0.00993 **
## age -0.023018 0.977245 0.009605 -2.397 0.01655 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
              exp(coef) exp(-coef) lower .95 upper .95
## grppatchOnly 1.7483
                           0.572 1.143 2.6734
       0.9772 1.023 0.959 0.9958
## age
```

Tests for $\beta^{\star} = 0$

Wald test We known that, as *n* tends to infty

$$I_n(\hat{\beta})^{-1/2}(\hat{\beta}-\beta^{\star}) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1),$$

it implies that

$$(\hat{\beta} - \beta^{\star})^{\top} I_n(\hat{\beta})^{-1} (\hat{\beta} - \beta^{\star}) \stackrel{\mathcal{L}}{\to} \chi^2(p).$$

To test $\mathcal{H}_0: \beta_1^\star = \ldots = \beta_p^\star = 0$ at level α , use the Wald test statistic

$$\hat{\beta}^{\top} I_n(\hat{\beta})^{-1} \hat{\beta}$$

and reject \mathcal{H}_0 when it is greater than $q_{\chi^2(\rho)}(1-lpha).$

Likelihood ratio test

To test $\mathcal{H}_0: \beta_1^\star = \ldots = \beta_p^\star = 0$ at level α , use the likelihood ratio test statistic

$$-2\Big(\log \mathcal{L}^{\mathsf{partial}}(\hat{eta}) - \log \mathcal{L}^{\mathsf{partial}}(0)\Big)$$

and reject \mathcal{H}_0 when it is greater than $q_{\chi^2(p)}(1-lpha).$

Tests in the pharmocoSmoking dataset

```
summary(coxph(Surv(ttr,relapse) ~ grp + age , data = pharmacoSmoking))
```

```
## Call:
## coxph(formula = Surv(ttr, relapse) ~ grp + age, data = pharmacoSmoki
##
## n= 125, number of events= 89
##
##
                coef exp(coef) se(coef) z Pr(>|z|)
## grppatchOnly 0.558663 1.748334 0.216674 2.578 0.00993 **
## age -0.023018 0.977245 0.009605 -2.397 0.01655 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
              exp(coef) exp(-coef) lower .95 upper .95
##
## grppatchOnly 1.7483 0.572 1.143 2.6734
## age 0.9772 1.023 0.959 0.9958
##
## Concordance = 0.625 (se = 0.034)
## Rsquare= 0.105 (max possible= 0.998 )
## Likelihood ratio test= 13.82 on 2 df, p=0.0009956
## Wald test = 13.48 on 2 df, p=0.001183
## Score (logrank) test = 13.74 on 2 df, p=0.00104
```

Concordance index

A common concordance measure that does not depend on time is the C-index (see Harrell, Lee, and Mark 1996) defined by

$$C_{\text{Harrell}} = \mathbb{P}[M_i > M_j | T_i < T_j],$$

with $i \neq j$ two independent patients, and $M_i = X_i \hat{\beta}$ and $M_j = X_j \hat{\beta}$ are the marker value in a given Cox model. In Heagerty and Zheng 2005, is proposed an estimation of the C_{Harrell} in the Cox model and under censoring.

Comparing survival distributions

The 2-sample log-rank test Generalization to *k*-sample tests *k*-sample tests

Semi-parametric proportional hazard model

The proportional hazards model or Cox 1972 model Hazard ratio Partial likelihood

Asymptotic distributions and tests

References I

David R. Cox. "Regression models and life tables (with discussion)". In: *Journal of the Royal Statistical Society* 34 (1972), pp. 187–220.

David P Harrington and Thomas R Fleming. "A class of rank test procedures for censored survival data". In: *Biometrika* (1982), pp. 553–566.

Frank E Harrell, Kerry L Lee, and Daniel B Mark. "Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors". In: *Statistics in medicine* 15 (1996), pp. 361–387.

Patrick J Heagerty and Yingye Zheng. "Survival model predictive accuracy and ROC curves". In: *Biometrics* 61.1 (2005), pp. 92–105.

Gary King et al. "A unified model of cabinet dissolution in parliamentary democracies". In: *American Journal of Political Science* (1990), pp. 846–871.

John P Klein and Melvin L Moeschberger. *Survival analysis: techniques for censored and truncated data*. Springer Science & Business Media, 2005.