Survival and longitudinal data analysis Chapter 3: Counting processes and martingales

Agathe Guilloux Professeure au LaMME - Université d'Évry - Paris Saclay

One example

Marketing: Monetization for free-to-play games

- Times of monetization for players until their giving-ups
- Several hours of game-play history for ~1MM players

Large number of observations (individuals), time-dependent covariates

$$(n,p) \rightarrow (n,p,D)$$

Counting processes and intensity function

Time(s) to event(s) data

What are we observing ?

Time(s) to event(s) data

What are we observing ?

The higher the intensity, the more points we observe :

 $\lambda^{\star}(t) = \text{infinitesimal } \mathbb{P}(\text{event} \in [t, t + dt[))$

Counting process and intensity

Definition

A counting process is a stochastic process $N^{\star}: N^{\star}(t), t \geq 0$

- with $N^{\star}(0) = 0$ and $N^{\star}(t) < \infty$,
- whose sample paths a right-continuous and piecewise constant with jump of size +1,
- such that $N^*(t) =$ number of observed events in [0, t].

To the counting process N^{\star} is associated the history (natural filtration) $\mathcal{F}^{\star} = \Big\{ \mathcal{F}_t^{\star} = \sigma \big(N^{\star}(s), s \leq t \big), t \geq 0 \Big\}.$

Its **intensity** λ^{\star} is the function defined via

$$\lambda^{\star}(t)dt = \mathbb{P}(dN^{\star}(t) = 1|\mathcal{F}_{t-}^{\star})$$

where $dN^{*}(t) = N^{*}([t, t + dt]) = N^{*}(t + dt -) - N^{*}(t -).$

The Poisson process

The counting process N^* with intensity λ^* is a Poisson process if $N^*(]a, b]$ is independent of $N^*(]c, d]$ for all $a \leq b \leq c \leq d$.

Properties

In this case,

- $N^*(t) \sim \mathcal{P}\left(\int_0^t \lambda^*(s) ds\right)$
- Conditionally to $N^*(t) = n$, the arrival times $T_{(1)} < T_{(2)} < \ldots < T_{(n)} \le t$ are distributed as the ordered statistics of T_1, T_2, \ldots, T_n i.i.d. with density $\lambda^* / \int_0^t \lambda^*(s)$ on [0, t].

Censoring

Example: censoring

We observe N^* only until a censoring C occurs.

Marketing: Monetization for free-to-play games

Times of monetization for players until their giving-ups

Filtration/censoring

Definition

Consider an adapted and left continuous process Y (with values in $\{0,1\}$) and construct the filtered process

$$N(t) = \int_0^t Y(s) dN^*(s)$$

and the new history $\mathcal{F} = \left\{ \mathcal{F}_t = \sigma(N(s), Y(s), s \leq t), t \geq 0 \right\}$. With the assumptions:

- ► N is a counting process,
- ▶ as Y(t-) = Y(t), Y(t) is \mathcal{F}_{t-} -measurable (it is said to be predictable).

Intensity of a filtered counting process

Intensity of a filtered counting process

More generally the intensity of the process N defined as

$$N(t) = \int_0^t Y(s) dN^\star(s)$$

is

 $Y(s)\lambda^{\star}(s)$

where λ^* is the intensity of N^* .

Definition of the cumulative intensity

The cumulative intensity is defined as the function $\boldsymbol{\Lambda}$

$$\Lambda(t)=\int_0^t\lambda(s)ds.$$

One special case of filtering: at most one event

Let N^{\star} be a Poisson process with intensity λ^{\star} and construct

$$\tilde{N}_1(t) = \int_0^t \mathbb{1}_{N^\star(t-)<1} dN^\star(t).$$

for all $t \ge 0$ and define

$$ilde{\mathsf{N}}_2(t) = \mathbbm{1}_{T \leq t}$$

where T has the hazard rate λ^{\star} .

We have:

$$\mathbb{P}(d ilde{N}_1(t) = 1|\mathcal{F}_{t-}^{\star}) = \mathbbm{1}_{N^{\star}(t-)<1}\lambda^{\star}(t)dt = \mathbbm{1}_{ au_{(1)}\geq t}\lambda^{\star}(t)dt$$
 and
 $\mathbb{P}(d ilde{N}_2(t) = 1|\mathcal{F}_{t-}^{\star}) = \mathbbm{1}_{T\geq t}rac{f^{\star}(t)}{ar{F}^{\star}(t)}dt = \mathbbm{1}_{T\geq t}\lambda^{\star}(t)dt$

so $\tilde{N}_1 \stackrel{\mathcal{D}}{=} \tilde{N}_2$.

In particular:

$$\mathbb{P}(T \geq t) = \mathbb{P}(\tilde{N}_2([0,t]) = 0) = \mathbb{P}(N^*([0,t]) = 0) = \exp\left(-\int_0^t \lambda^*(s)ds\right).$$

An other special case: at most one event and censoring

Let

- T be a time of interest
- C a censoring time independent of T

We observe

$$T^{C} = T \wedge C$$
 and $\delta = \mathbb{1}_{T \leq C}$.

In terms of counting processes, this is equivalent to observing

$$N(t) = \mathbb{1}_{T^{C} \leq t, \delta=1}$$
 and $Y(t) = \mathbb{1}_{T^{C} \geq t}$.

We can write

$$N(t) = \int_0^t Y(s) dN^\star(s)$$

so it is a filtered process and its intensity is given by

$$\mathbb{1}_{T\geq t}\mathbb{1}_{C\geq t}\frac{f^{\star}(t)}{\bar{F}^{\star}(t)}$$

Covariates

- fustat: dead or alive
- surgery: prior bypass surgery
- age: age (in years)
- futime: follow-up time
- wait.time: time before transplant
- transplant: transplant indicator
- accept.yr: acceptance into program

##		fustat	surgery	age	futime	wait.time	transplant	accept.yr
##	1	1	0	30.84463	49	NA	0	1967
##	2	1	0	51.83573	5	NA	0	1968
##	3	1	0	54.29706	15	0	1	1968
##	4	1	0	40.26283	38	35	1	1968
##	5	1	0	20.78576	17	NA	0	1968
##	6	1	0	54.59548	2	NA	0	1968

- fustat: dead or alive $ightarrow \delta$
- surgery: prior bypass surgery
- age: age (in years)
- futime: follow-up time $\rightarrow T^{C}$
- wait.time: time before transplant
- transplant: transplant indicator
- accept.yr: acceptance into program

##		fustat	surgery	age	futime	wait.time	transplant	accept.yr
##	1	1	0	30.84463	49	NA	0	1967
##	2	1	0	51.83573	5	NA	0	1968
##	3	1	0	54.29706	15	0	1	1968
##	4	1	0	40.26283	38	35	1	1968
##	5	1	0	20.78576	17	NA	0	1968
##	6	1	0	54.59548	2	NA	0	1968

- fustat: dead or alive $ightarrow \delta$
- \blacktriangleright surgery: prior bypass surgery \rightarrow time independent covariate
- ▶ age: age (in years) → time independent covariate
- futime: follow-up time $\rightarrow T^{C}$
- wait.time: time before transplant
- transplant: transplant indicator
- ▶ accept.yr: acceptance into program → time independent covariate

##		fustat	surgery	age	futime	wait.time	transplant	accept.yr
##	1	1	0	30.84463	49	NA	0	1967
##	2	1	0	51.83573	5	NA	0	1968
##	3	1	0	54.29706	15	0	1	1968
##	4	1	0	40.26283	38	35	1	1968
##	5	1	0	20.78576	17	NA	0	1968
##	6	1	0	54.59548	2	NA	0	1968

- fustat: dead or alive $ightarrow \delta$
- \blacktriangleright surgery: prior bypass surgery \rightarrow time independent covariate
- ▶ age: age (in years) → time independent covariate
- futime: follow-up time $\rightarrow T^{C}$
- \blacktriangleright wait.time: time before transplant \rightarrow time dependent covariate
- \blacktriangleright transplant: transplant indicator \rightarrow time dependent covariate
- \blacktriangleright accept.yr: acceptance into program \rightarrow time independent covariate

##		fustat	surgery	age	futime	wait.time	transplant	accept.yr
##	1	1	0	30.84463	49	NA	0	1967
##	2	1	0	51.83573	5	NA	0	1968
##	3	1	0	54.29706	15	0	1	1968
##	4	1	0	40.26283	38	35	1	1968
##	5	1	0	20.78576	17	NA	0	1968
##	6	1	0	54.59548	2	NA	0	1968

Cox model for the intensity with time-varying covariates

When the covariates are not constant over time, we want the intensity to depend on the covariates at time t

$$\lambda^{\star}(t) \rightarrow \lambda^{\star}(t, X(t)).$$

The Cox model

The Cox 1972 model for the intensity of a counting process assumes that its intensity has the form

$$\lambda^*(t) = \lambda_0^*(t) \exp(X(t)\beta^*).$$

coxph(Surv(futime,fustat) ~ accept.yr + surgery + age, data = jasa)

Example with time dependent covariates: false model

• transplant: transplant indicator \rightarrow time dependent covariate

autoplot(survfit(Surv(futime,fustat) ~transplant , data = jasa))

"The key rule for time dependent covariates in a Cox model is simple and essentially the same as that for gambling: *you cannot look into the future*." Therneau, Crowson, and Atkinson 2017

Example with time dependent covariates: false model (2)

coxph(Surv(futime,fustat) ~ surgery + transplant + age , data = jasa)

```
## Call:
## coxph(formula = Surv(futime, fustat) ~ surgery + transplant +
## age, data = jasa)
##
## coef exp(coef) se(coef) z p
## surgery -0.4190 0.6577 0.3712 -1.13 0.26
## transplant -1.7171 0.1796 0.2785 -6.16 7.1e-10
## age 0.0589 1.0607 0.0150 3.91 9.1e-05
##
## Likelihood ratio test=45.9 on 3 df, p=6.11e-10
## n= 103, number of events= 75
```

A new format for time dependent covariates: start-stop

##	id	start	stop	event	transplant	age	9	year	surgery
##	1	0	49	1	0	-17.155373	0.1232	033	0
##	2	0	5	1	0	3.835729	0.2546	201	0
##	3	0	15	1	1	6.297057	0.2655	715	0
##	4	0	35	0	0	-7.737166	0.4900	753	0
##	4	35	38	1	1	-7.737166	0.4900	753	0
##	5	0	17	1	0	-27.214237	0.6078	029	0

Notice that for individual 4, we have

with the old format

##		fustat	age	futime	wait.time	transplant
##	4	1	40.26283	38	35	1

with the new format

##	id	start	stop	event	transplant
##	4	0	35	0	0
##	4	35	38	1	1

A new format for time dependent covariates: start-stop (2)

False model ## coxph(formula = Surv(futime, fustat) ~ surgery + transplant + ## age, data = jasa) ## ## coef exp(coef) se(coef) z р ## surgery -0.4190 0.6577 0.3712 -1.13 0.26 ## transplant -1.7171 0.1796 0.2785 -6.16 7.1e-10 ## age 0.0589 1.0607 0.0150 3.91 9.1e-05 Start-stop model ## coxph(formula = Surv(start, stop, event) ~ age + surgery + transplant, data = jasa1) ## ## ## coef exp(coef) se(coef) z р ## age 0.0306 1.0310 0.0139 2.20 0.028 ## surgery -0.7733 0.4615 0.3597 -2.15 0.032 ## transplant 0.0141 1.0142 0.3082 0.05 0.964

Estimation

The data

We observe for $i = 1, \ldots, n$ i.i.d.

$$\Big(X_i(s)Y_i(s),N_i(s),Y_i(s),s\leq au\Big)$$

and we want to learn the influence of X on $t \mapsto \lambda^*(t, X(t))$.

The log-likelihood

In the counting processes setting, the log-likelihood (times 1/n) is defined as

$$\frac{1}{n}\sum_{i=1}^n \{\sum_{\mathcal{T}_{i,k}} \delta_{i,k} \log(\lambda(t,X_i(\mathcal{T}_{i,k}))) - \int_{[0,\tau]} Y_i(t)\lambda(t,X_i(t))dt\}$$

To ease the notation, I'll consider that each individual has a most one event

$$\frac{1}{n}\sum_{i=1}^{n} \{\delta_i \log(\lambda(t, X_i(\mathcal{T}_i^{\mathcal{C}}))) - \int_{[0, \tau]} Y_i(t)\lambda(t, X_i(t))dt\}$$

Partial log-likelihood

In the Cox model,

$$\lambda^*(t) = \lambda^*_0(t) \exp(X(t)\beta^*),$$

we can estimate β^* only with the partial likelihood (that's what coxph does). In the case where the individuals experience (at most) one event, it writes:

$$\ell_n^P(\beta) = \frac{1}{n} \sum_{i=1}^n \delta_i \log \frac{\exp(X_i(T_i^C)\beta)}{\frac{1}{n} \sum_{j:T_j^C \ge T_i^C} \exp(X_j(T_i^C)\beta)}$$
$$= \frac{1}{n} \sum_{i=1}^n \delta_i \Big\{ X_i(T_i^C)\beta - \log\Big(\sum_{j:T_j^C \ge T_i^C} \exp(X_j(T_i^C)\beta)\Big) \Big\}.$$

Model selection

Moderate p

AIC/BIC criteria

For the Cox model, the AIC and BIC criteria are defined as

$$AIC(\beta) = -2\ell_n^P(\beta) + 2\frac{|\beta|_0}{n}$$
$$BIC(\beta) = -2\ell_n^P(\beta) + \log(n)\frac{|\beta|_0}{n}$$

and choose the model which meets the minimum of the AIC (or BIC) criterion.

Large p

When *p* grows, one can consider to add a lasso penalty:

$$\ell_n^P(\beta) + \gamma \sum_{j=1}^p |\beta_j|$$

or an elastic-net penalty

$$\ell_n^p(\beta) + \gamma\Big(\alpha \sum_{j=1}^p |\beta_j| + \frac{1-\alpha}{2} \sum_{j=1}^p |\beta_j|^2\Big).$$

X = model_matrix[,-1]

```
elasticnet_solution = cv.glmnet(X,Surv(nki70$time, nki70$event),
    family = "cox" , alpha = 0.5,
    penalty.factor = c(rep(0,6),rep(1,70)))
```

coef(elasticnet_solution)

Diagnosis in the Cox model

Beyond linearity

The key assumptions in the Cox model

$$\lambda^{*}(t) = \lambda_{0}^{\star}(t) \exp\left(X(t)\beta^{\star}\right) = \lambda_{0}^{\star}(t) \exp\left(\sum_{j=1}^{p} X^{j}(t)\beta_{j}^{\star}\right),$$

are

- β^* is time-independent
- each covariate has a linear effect (in the exponential).

they might be too strong. We need to test them (a least graphically).

The possible extensions are

- to introduce time-dependent coefficients $\beta^{\star}(t)$
- or to consider a non-parametric effect of the *j*th covariate, i.e. to replace the term $X^{j}\beta_{i}^{*}$ by $f_{j}(X^{j})$ (where f_{j} is a smooth function).

Check for linearity with martingales residuals

Martingale residuals

We know that

$$\mathbb{E}\big(N_i(\infty)\big) = \mathbb{E}\Big(\int_0^\infty Y_i(t)\lambda^*(t)\exp(X_i(t)\beta^*)dt\Big)$$

so we define the martingale residuals as

$$N_i(\infty) - \int_0^\infty Y_i(t) \exp(X_i(t)\hat{eta}) \hat{\lambda}_0(t,\hat{eta}) dt$$

To check if the hypothesis that a covariate has a linear effect, plot the martingale residuals against the values of the covariates.

Be careful: this has a sense only for continuous covariates !

Graphical test for $f_j(x) = X^j \beta_i^{\star}$

library(survminer)
ggcoxfunctional(aic_model ,data =jasa1)

A solution is to consider simple functions f_i (for example splines)

coxph(Surv(start, stop, event) ~ pspline(age) + surgery ,data = jasa1)

```
## Call:
## coxph(formula = Surv(start, stop, event) ~ pspline(age) + surgery +
      pspline(year), data = jasa1)
##
##
                           coef se(coef) se2 Chisq DF
##
                                                                  р
## pspline(age), linear 0.0270
                                  0.0125 0.0123 4.6562 1.00 0.0309
## pspline(age), nonlin
                                                 5.9196 3.00 0.1158
                        -0.8293 0.4041 0.3970 4.2125 1.00 0.0401
## surgery
## pspline(year), linear -0.1621
                                 0.0700 0.0697 5.3677 1.00 0.0205
## pspline(year), nonlin
                                                12.2151 2.99 0.0066
##
## Iterations: 5 outer, 15 Newton-Raphson
       Theta= 0.621
##
##
       Theta = 0.661
## Degrees of freedom for terms= 4 1 4
## Likelihood ratio test=34.6 on 8.96 df, p=6.67e-05 n= 170
```

From the gradient of the log-likelihood, we can define covariates specific residuals

Schoenfeld residuals (score residuals)

We define the Schoenfled residuals as

$$X_i^j(T_i^C) - \bar{X}^j(T_i^C) = X_i^j(T_i^C) - \frac{\sum_{k=1}^n Y_k(T_i^C) X_k(T_i^C) \exp\left(X_k\hat{\beta}\right)}{\sum_{k=1}^n Y_k(T_i^C) \exp\left(X_k\hat{\beta}\right)}.$$

To check if the hypothesis that a covariate has a constant coefficient, plot the (weighted) Schoenfeld residuals against time.

Test for $\beta_j^{\star}(t) = \beta_j^{\star}$

library(survminer)
ggcoxzph(cox.zph(aic_model))

One solution with the timereg package

```
## Multiplicative Hazard Model
##
## Test for time invariant effects
##
                      Kolmogorov-Smirnov test p-value H_0:constant effec
## (Intercept)
                                           665
                                                                      0.08
## age
                                           125
                                                                      0.02
## surgery
                                          1230
                                                                      0.10
##
                        Cramer von Mises test p-value H_0:constant effec
## (Intercept)
                                      1.28e+08
                                                                      0.15
## age
                                      3.45e+06
                                                                      0.10
## surgery
                                      1.29e+08
                                                                      0.48
##
```

One solution with the timereg package I

age

One solution with the timereg package II

surgery

Predictions

Once the regression parameters β^* of the Cox model have been estimated by $\hat{\beta}$, one can compute the Breslow estimator $\hat{\Lambda}_0$.

We get an estimator of the cumulated hazard/intensity function for a value $X_{\rm +}$ of the covariates

$$\hat{\Lambda}(t|X_+) = \hat{\Lambda}_0(t) \exp(X_+ \hat{eta}), ext{ for all } t \geq 0.$$

In the case, where only (at most) one event is observed by individual, we derive for that an estimator of the survival function

$$\widehat{\bar{F}}(T|X_+) = \exp\Big(-\hat{\Lambda}(t|X_+)\Big) = \exp\Big(-\hat{\Lambda}_0(t)\exp(X_+\hat{\beta})\Big), \text{ for all } t \geq 0.$$

Counting processes and intensity function

Introduction

Definitions

The Poisson process

Censoring

Covariates

Two types of covariates

Example with time independent covariates

Example with time dependent covariates

Estimation

Likelihood

Model selection

Diagnosis in the Cox model

Remarks, other algorithms

Predictions

References I

David R. Cox. "Regression models and life tables (with discussion)". In: *Journal of the Royal Statistical Society* 34 (1972), pp. 187–220.

Terry Therneau, Cindy Crowson, and Elizabeth Atkinson. "Using time dependent covariates and time dependent coefficients in the cox model". In: *Survival Vignettes* (2017).