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One example

Marketing: Monetization for
free-to-play games

I Times of monetization for
players until their giving-ups

I Several hours of game-play
history for ∼1MM players

Large number of observations (individuals), time-dependent covariates

(n, p) → (n, p,D)



Counting processes and intensity function



Time(s) to event(s) data

What are we observing ?

The higher the intensity, the more points we observe :

λ?(t) = infinitesimal P(event ∈ [t, t + dt[)
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Counting process and intensity

Definition
A counting process is a stochastic process N? : N?(t), t ≥ 0

I with N?(0) = 0 and N?(t) < ∞,
I whose sample paths a right-continuous and piecewise constant with jump of

size +1,
I such that N?(t) = number of observed events in [0, t].

To the counting process N? is associated the history (natural filtration)
F? =

{
F?

t = σ
(
N?(s), s ≤ t

)
, t ≥ 0

}
.

Its intensity λ? is the function defined via

λ?(t)dt = P(dN?(t) = 1|F?
t−)

where dN?(t) = N?([t, t + dt[) = N?(t + dt−) − N?(t−).



The Poisson process

The counting process N? with intensity λ? is a Poisson process if N?(]a, b]) is
independent of N?(]c, d]) for all a ≤ b ≤ c ≤ d.

Properties

In this case,

I N∗(t) ∼ P
( ∫ t

0 λ?(s)ds
)

I Conditionally to N∗(t) = n, the arrival times T(1) < T(2) < . . . < T(n) ≤ t
are distributed as the ordered statistics of T1, T2, . . . , Tn i.i.d. with density
λ∗/

∫ t
0 λ?(s) on [0, t].



Censoring



Example: censoring

We observe N? only until a censoring C occurs.
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Marketing: Monetization for free-to-play games

Times of monetization for players until their giving-ups



Filtration/censoring

Definition
Consider an adapted and left continuous process Y (with values in {0, 1}) and
construct the filtered process

N(t) =
∫ t

0
Y (s)dN?(s)

and the new history F =
{

Ft = σ
(
N(s), Y (s), s ≤ t

)
, t ≥ 0

}
. With the

assumptions:

I N is a counting process,
I as Y (t−) = Y (t)), Y (t) is Ft−-measurable (it is said to be predictable).



Intensity of a filtered counting process

Intensity of a filtered counting process

More generally the intensity of the process N defined as

N(t) =
∫ t

0
Y (s)dN?(s)

is
Y (s)λ?(s)

where λ? is the intensity of N?.

Definition of the cumulative intensity

The cumulative intensity is defined as the function Λ

Λ(t) =
∫ t

0
λ(s)ds.



One special case of filtering: at most one event

Let N? be a Poisson process with intensity λ? and construct

Ñ1(t) =
∫ t

0
1N?(t−)<1dN?(t).

for all t ≥ 0 and define
Ñ2(t) = 1T≤t

where T has the hazard rate λ?.

We have:

P(dÑ1(t) = 1|F?
t−) = 1N?(t−)<1λ?(t)dt = 1T(1)≥tλ

?(t)dt and

P(dÑ2(t) = 1|F?
t−) = 1T≥t

f ?(t)
F̄ ?(t)

dt = 1T≥tλ
?(t)dt

so Ñ1
D= Ñ2.

In particular:

P(T ≥ t) = P(Ñ2([0, t]) = 0) = P(N?([0, t]) = 0) = exp
(

−
∫ t

0
λ∗(s)ds

)
.



An other special case: at most one event and censoring

Let

I T be a time of interest
I C a censoring time independent of T

We observe
T C = T ∧ C and δ = 1T≤C .

In terms of counting processes, this is equivalent to observing

N(t) = 1TC ≤t,δ=1 and Y (t) = 1TC ≥t .

We can write
N(t) =

∫ t

0
Y (s)dN?(s)

so it is a filtered process and its intensity is given by

1T≥t1C≥t
f ?(t)
F̄ ?(t)



Covariates



Stanford Heart Transplant data (kalbfleisch2011statistical)

Survival of patients on the waiting list for the Stanford heart transplant program.

I fustat: dead or alive

→ δ

I surgery: prior bypass surgery

→ time independent covariate

I age: age (in years)

→ time independent covariate

I futime: follow-up time

→ T C

I wait.time: time before transplant

→ time dependent covariate

I transplant: transplant indicator

→ time dependent covariate

I accept.yr: acceptance into program

→ time independent covariate

## fustat surgery age futime wait.time transplant accept.yr
## 1 1 0 30.84463 49 NA 0 1967
## 2 1 0 51.83573 5 NA 0 1968
## 3 1 0 54.29706 15 0 1 1968
## 4 1 0 40.26283 38 35 1 1968
## 5 1 0 20.78576 17 NA 0 1968
## 6 1 0 54.59548 2 NA 0 1968
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Cox model for the intensity with time-varying covariates

When the covariates are not constant over time, we want the intensity to depend
on the covariates at time t

λ?(t) → λ?(t, X(t)).

The Cox model
The Cox 1972 model for the intensity of a counting process assumes that its
intensity has the form

λ∗(t) = λ?
0 (t) exp(X(t)β?).



Example with time independent covariates

coxph(Surv(futime,fustat) ~ accept.yr + surgery + age, data = jasa)

## Call:
## coxph(formula = Surv(futime, fustat) ~ accept.yr + surgery +
## age, data = jasa)
##
## coef exp(coef) se(coef) z p
## accept.yr -0.1320 0.8764 0.0681 -1.94 0.053
## surgery -0.6427 0.5259 0.3673 -1.75 0.080
## age 0.0276 1.0280 0.0134 2.06 0.039
##
## Likelihood ratio test=14.5 on 3 df, p=0.00226
## n= 103, number of events= 75



Example with time dependent covariates: false model

I transplant: transplant indicator → time dependent covariate

autoplot(survfit(Surv(futime,fustat) ~transplant , data = jasa))
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“The key rule for time dependent covariates in a Cox model is simple and
essentially the same as that for gambling: you cannot look into the future.”
Therneau, Crowson, and Atkinson 2017



Example with time dependent covariates: false model (2)

coxph(Surv(futime,fustat) ~ surgery + transplant + age , data = jasa)

## Call:
## coxph(formula = Surv(futime, fustat) ~ surgery + transplant +
## age, data = jasa)
##
## coef exp(coef) se(coef) z p
## surgery -0.4190 0.6577 0.3712 -1.13 0.26
## transplant -1.7171 0.1796 0.2785 -6.16 7.1e-10
## age 0.0589 1.0607 0.0150 3.91 9.1e-05
##
## Likelihood ratio test=45.9 on 3 df, p=6.11e-10
## n= 103, number of events= 75



A new format for time dependent covariates: start-stop

## id start stop event transplant age year surgery
## 1 0 49 1 0 -17.155373 0.1232033 0
## 2 0 5 1 0 3.835729 0.2546201 0
## 3 0 15 1 1 6.297057 0.2655715 0
## 4 0 35 0 0 -7.737166 0.4900753 0
## 4 35 38 1 1 -7.737166 0.4900753 0
## 5 0 17 1 0 -27.214237 0.6078029 0

Notice that for individual 4, we have

I with the old format
## fustat age futime wait.time transplant
## 4 1 40.26283 38 35 1

I with the new format
## id start stop event transplant
## 4 0 35 0 0
## 4 35 38 1 1



A new format for time dependent covariates: start-stop (2)

I False model

## coxph(formula = Surv(futime, fustat) ~ surgery + transplant +
## age, data = jasa)
##
## coef exp(coef) se(coef) z p
## surgery -0.4190 0.6577 0.3712 -1.13 0.26
## transplant -1.7171 0.1796 0.2785 -6.16 7.1e-10
## age 0.0589 1.0607 0.0150 3.91 9.1e-05

I Start-stop model

## coxph(formula = Surv(start, stop, event) ~ age + surgery +
## transplant, data = jasa1)
##
## coef exp(coef) se(coef) z p
## age 0.0306 1.0310 0.0139 2.20 0.028
## surgery -0.7733 0.4615 0.3597 -2.15 0.032
## transplant 0.0141 1.0142 0.3082 0.05 0.964



Estimation



The data

We observe for i = 1, . . . , n i.i.d.(
Xi(s)Yi(s), Ni(s), Yi(s), s ≤ τ

)
and we want to learn the influence of X on t 7→ λ∗(t, X(t)).

The log-likelihood

In the counting processes setting, the log-likelihood (times 1/n) is defined as

1
n

n∑
i=1

{
∑
Ti,k

δi,k log(λ(t, Xi(Ti,k))) −
∫

[0,τ ]
Yi(t)λ(t, Xi(t))dt}

To ease the notation, I’ll consider that each individual has a most one event

1
n

n∑
i=1

{δi log(λ(t, Xi(T C
i ))) −

∫
[0,τ ]

Yi(t)λ(t, Xi(t))dt}



Partial log-likelihood

In the Cox model,
λ∗(t) = λ?

0 (t) exp(X(t)β?),

we can estimate β? only with the partial likelihood (that’s what coxph does). In
the case where the individuals experience (at most) one event, it writes:

`P
n (β) = 1

n

n∑
i=1

δi log exp(Xi(T C
i )β)

1
n

∑
j:TC

j ≥TC
i

exp(Xj(T C
i )β)

= 1
n

n∑
i=1

δi

{
Xi(T C

i )β − log
( ∑

j:TC
j ≥TC

i

exp(Xj(T C
i )β)

)}
.



Model selection



Moderate p

AIC/BIC criteria

For the Cox model, the AIC and BIC criteria are defined as

AIC(β) = −2`P
n (β) + 2 |β|0

n

BIC(β) = −2`P
n (β) + log(n) |β|0

n

and choose the model which meets the minimum of the AIC (or BIC) criterion.



Large p
When p grows, one can consider to add a lasso penalty:

`P
n (β) + γ

p∑
j=1

|βj |

or an elastic-net penalty

`P
n (β) + γ

(
α

p∑
j=1

|βj | + 1 − α

2

p∑
j=1

|βj |2
)
.

data("nki70")
model_matrix = model.matrix( ~ as.factor(Grade) + . - Grade - 1

, data = nki70[3:77])

X = model_matrix[,-1]

elasticnet_solution = cv.glmnet(X,Surv(nki70$time, nki70$event),
family = "cox" , alpha = 0.5,
penalty.factor = c(rep(0,6),rep(1,70)))

coef(elasticnet_solution)



Diagnosis in the Cox model



Beyond linearity

The key assumptions in the Cox model

λ∗(t) = λ?
0 (t) exp

(
X(t)β?

)
= λ?

0 (t) exp
( p∑

j=1

X j(t)β?
j
)
,

are

I β? is time-independent
I each covariate has a linear effect (in the exponential).

they might be too strong. We need to test them (a least graphically).

The possible extensions are

I to introduce time-dependent coefficients β?(t)
I or to consider a non-parametric effect of the jth covariate, i.e. to replace

the term X jβ?
j by fj(X j) (where fj is a smooth function).



Check for linearity with martingales residuals

Martingale residuals

We know that

E
(
Ni(∞)

)
= E

( ∫ ∞

0
Yi(t)λ?(t) exp(Xi(t)β?)dt

)
so we define the martingale residuals as

Ni(∞) −
∫ ∞

0
Yi(t) exp(Xi(t)β̂)λ̂0(t, β̂)dt

To check if the hypothesis that a covariate has a linear effect, plot the
martingale residuals against the values of the covariates.

Be careful: this has a sense only for continuous covariates !



Graphical test for fj(x) = X jβ?
j

library(survminer)
ggcoxfunctional(aic_model ,data =jasa1)
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A solution is to consider simple functions fj (for example splines)

coxph(Surv(start, stop, event) ~ pspline(age) + surgery ,data =jasa1)

## Call:
## coxph(formula = Surv(start, stop, event) ~ pspline(age) + surgery +
## pspline(year), data = jasa1)
##
## coef se(coef) se2 Chisq DF p
## pspline(age), linear 0.0270 0.0125 0.0123 4.6562 1.00 0.0309
## pspline(age), nonlin 5.9196 3.00 0.1158
## surgery -0.8293 0.4041 0.3970 4.2125 1.00 0.0401
## pspline(year), linear -0.1621 0.0700 0.0697 5.3677 1.00 0.0205
## pspline(year), nonlin 12.2151 2.99 0.0066
##
## Iterations: 5 outer, 15 Newton-Raphson
## Theta= 0.621
## Theta= 0.661
## Degrees of freedom for terms= 4 1 4
## Likelihood ratio test=34.6 on 8.96 df, p=6.67e-05 n= 170



Check for time invariance via Schoenfeld residuals

From the gradient of the log-likelihood, we can define covariates specific residuals

Schoenfeld residuals (score residuals)

We define the Schoenfled residuals as

X j
i (T C

i ) − X̄ j(T C
i ) = X j

i (T C
i ) −

∑n
k=1 Yk(T C

i )Xk(T C
i ) exp

(
Xk β̂

)∑n
k=1 Yk(T C

i ) exp
(
Xk β̂

) .

To check if the hypothesis that a covariate has a constant coefficient, plot the
(weighted) Schoenfeld residuals against time.



Test for β?
j (t) = β?

j
library(survminer)
ggcoxzph(cox.zph(aic_model))
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One solution with the timereg package

library(timereg)
model_timevarying = timecox(Surv(start, stop, event) ~ age + surgery ,

data =jasa1)
summary(model_timevarying)

## Multiplicative Hazard Model
##
## Test for time invariant effects
## Kolmogorov-Smirnov test p-value H_0:constant effect
## (Intercept) 665 0.082
## age 125 0.029
## surgery 1230 0.105
## Cramer von Mises test p-value H_0:constant effect
## (Intercept) 1.28e+08 0.155
## age 3.45e+06 0.106
## surgery 1.29e+08 0.486
##



One solution with the timereg package I

plot(model_timevarying)
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One solution with the timereg package II
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Predictions



Predictions from an adjusted Cox model

Once the regression parameters β? of the Cox model have been estimated by β̂,
one can compute the Breslow estimator Λ̂0.

We get an estimator of the cumulated hazard/intensity function for a value X+
of the covariates

Λ̂(t|X+) = Λ̂0(t) exp(X+β̂), for all t ≥ 0.

In the case, where only (at most) one event is observed by individual, we derive
for that an estimator of the survival function̂̄F (T |X+) = exp

(
− Λ̂(t|X+)

)
= exp

(
− Λ̂0(t) exp(X+β̂)

)
, for all t ≥ 0.
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