Regression avancée Chapitre 1 : introduction

Agathe Guilloux Professeure au LaMME - Université d'Évry - Paris Saclay

Avant de commencer

- Les documents du cours sont disponibles ici : http://www.math-evry.cnrs.fr/members/aguilloux/enseignements/m2upmc
- Bibliographie (pour ce chapitre) :

Julian J Faraway. Practical regression and ANOVA using R. 2002

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. *The elements of statistical learning*. Vol. 1. Springer series in statistics New York, 2001.

- Contrôle des connaissances : 2 TP rendus, 1 projet (type concours de DataScience), 1 examen court.
- Pré-requis : cours de Statistique de base http://www.proba.jussieu. fr/pageperso/rebafka/StatBase_poly_partie2.pdf.

Outline

Modèle linéaire

Modèle linéaire gaussien

Diagnostics sur X

Rang de la matrice X

Analyse des résidus

Dans le modèle linéaire gaussien

Dans le modèle linéaire

Influence des observations

Différentes observations atypiques

Autres mesures d'influence

Autres problèmes

Relation non-linéaire

Problèmes d'interprétation

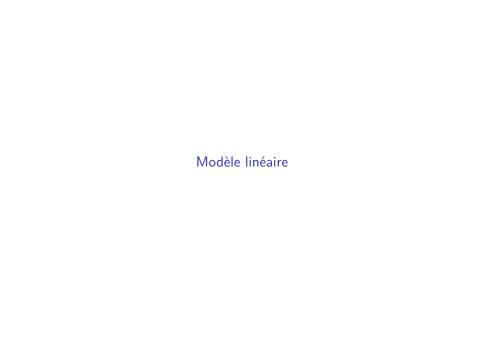
Données "Vulnerability", Patt et al., PNAS (2009)

Les pays les moins développés sont-ils plus vulnérables aux changements climatiques ?

Les auteurs ont voulu expliquer ln_death_risk, log du risque mortel dû aux évènement climatiques en fonction

- du log du nombre d'évènements climatiques ln_death_risk
- du log de la fertilité ln_fertility
- de l'indice de développement humain hdi (United Nations)
- du log de la population ln_pop

Ils concluent que le développement socio-économique a un lien sur la fragilité aux événements climatiques, et ce lien pourrait se révéler dans le deuxième quart du 21ième siècle.



Ecriture matricielle

Pour un individu i, on a

$$Y_i = \beta_0 + \beta_1 X_i^1 + \beta_2 X_i^2 + \ldots + \beta_p X_i^p + \varepsilon_i.$$

On peut récrire

$$Y_i = (1, X_i^1, \dots, X_i^p) \begin{pmatrix} eta_0 \\ eta_1 \\ \dots \\ eta_p \end{pmatrix} + arepsilon$$

ou bien, pour tous les individus

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \dots \\ Y_n \end{pmatrix} = \begin{pmatrix} 1 & X_1^1 & X_1^2 & \dots & X_1^p \\ 1 & X_2^1 & X_2^2 & \dots & X_2^p \\ \dots & & & & & \\ 1 & X_n^1 & X_n^2 & \dots & X_n^p \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{pmatrix}$$

$$Y = X \qquad \beta + \varepsilon.$$

$$n \times 1 \qquad n \times (p+1) \qquad (p+1) \times 1 + n \times 1$$

Définition complète

Modèle linéaire : définition et hypothèses

$$Y = X\beta + \epsilon$$

οù

- Y est un vecteur $n \times 1$ **observé**
- ▶ X est une matrice $n \times (p+1)$ observée de rang p+1
- \triangleright β est un vecteur $(p+1) \times 1$ de paramètres **inconnus**
- $m \epsilon$ est un vecteur n imes 1 de v.a. **non-observées** supposées **décorrélées** avec

$$\mathbb{E}(\epsilon_i) = 0 \text{ et } \mathbb{V}(\epsilon_i) = \sigma^2$$

où σ^2 est un paramètre **inconnu**.

L'estimateur des moindres carrés

Dans le modèle linéaire

$$Y = X\beta + \varepsilon$$
,

on définit $\hat{Y} = X\hat{\beta}$ comme le **projeté orthogonal de** Y sur vect(X), c'est le point de vect(X) le plus proche de Y.

$$\|Y - X\hat{\beta}\|^2 = \min_{\gamma \in \mathbb{R}^{p+1}} \|Y - X\gamma\|^2.$$

Meilleure approximation (1)

On a dit que $\hat{Y} = X\hat{\beta}$ est le point de vect(X) le plus proche de Y, on a donc $\|Y - X\hat{\beta}\|^2 = \min_{\gamma \in \mathbb{R}^{p+1}} \|Y - X\gamma\|^2.$

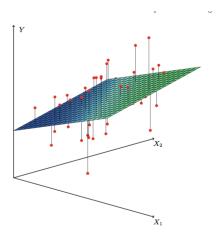


Figure 1: Dans $\mathbb{R}^{p+2} = \mathbb{R}^3$

Meilleure approximation (2)

Conséquence

▶ Puisque $\hat{Y} = X\hat{\beta}$ est la projection de Y sur vect(X), on a

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$$

▶ si *H* est la matrice de projection dans vect(*X*)

$$X\hat{\beta} = X(X^{\top}X)^{-1}X^{\top}Y = HY$$

on a

$$\mathbb{V}(\hat{\beta}) = \sigma^2 (X^\top X)^{-1}$$

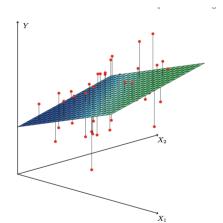
Meilleure approximation (3)

Définition : erreurs résiduelles

On note le vecteur des erreurs résiduelles $e=Y-X\hat{\beta}$ (projection de Y sur $\text{vect}(X)^{\perp}$ on a

$$Y - X\hat{\beta} \perp X\hat{\beta}$$
.

L'estimateur des moindres carrés de σ^2 est donné par $\hat{\sigma}^2 = \frac{\|\mathbf{e}\|^2}{n - (p+1)}$.



Suite des Conséquences des Propriétés géométriques

On obtient des mesures de l'adéquation du modèle

• $Y - X\hat{\beta} \perp X\hat{\beta} - \bar{Y}\mathbf{1}$ si $(1, \dots, 1) \in \text{vect}(X)$ et donc

▶ On définit le R² par

$$0 \le R^2 = \frac{\|X\hat{\beta} - \overline{Y}\mathbf{1}\|^2}{\|Y - \overline{Y}\mathbf{1}\|^2} = 1 - \frac{\|Y - X\hat{\beta}\|^2}{\|Y - \overline{Y}\mathbf{1}\|^2} \le 1$$

et le R^2 ajusté du nombre de paramètres par

$$R_{Adj}^2 = 1 - \frac{(n-1)(1-R^2)}{(n-p-1)} \le 1$$

Attention à la dimension p+1: c'est le nombre de variables explicatives p+1 pour le coefficient constant (associé à $(1,\ldots,1)$).

Quelques Propriétés de la matrice "hat"

Propriétés de la matrice $H = X(X^{T}X)^{-1}X^{T}$

- 1. $H^2 = H \text{ et } H^{\top} = H$
- 2. rang(H) = tr(H) = p + 1
- 3. $H_{ii} = X_i(X^{\top}X)^{-1}X_i^{\top}$
- 4. $0 \le H_{ii} = H_{ii}^2 + \sum_{k \ne i} H_{ik}^2 \le 1$

Pour une preuve, voir http://www.proba.jussieu.fr/pageperso/rebafka/StatBase_poly_partie2.pdf

Modèle linéaire gaussien

Définition : Modèle linéaire gaussien

$$Y = X\beta + \epsilon$$

οù

$$\epsilon \sim \mathcal{N}((0,\ldots,0)^{\top},\sigma^2 I_n).$$

Théorème de Cochran

Si V_1, \ldots, V_k sont des s.e.v. orthogonaux dans \mathbb{R}^n de dimension n_1, \ldots, n_k et si Z_1, \ldots, Z_k sont les projections orthogonales d'un vecteur gaussien standard sur V_1, \ldots, V_k alors

- les v.a. Z_1, \ldots, Z_k sont gaussiens et deux à deux indépendants
- et, en particulier, $\|Z_j\|^2 \sim \chi^2(n_j)$ pour $j=1,\ldots,k$.

Conséquences du Théorème de Cochran

1. sur $\hat{\beta}$ (projection de Y sur vect(X))

$$\hat{\beta} - \beta \sim \mathcal{N}((0, \dots, 0), \sigma^2(X^\top X)^{-1})$$

2. sur $\hat{\sigma}$ (projection de Y sur $\text{vect}(X)^{\perp}$)

$$\frac{\|Y - X\hat{\beta}\|^2}{\sigma^2} = \frac{(n - p - 1)\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n - p - 1)$$

3. $\hat{\beta} \perp \hat{\sigma}^2$ donc

$$rac{\hat{eta}_j - eta_j}{\hat{\sigma}_j} \sim \mathcal{T}(n-p-1) \ ext{où} \ \hat{\sigma}_j^2 = \hat{\sigma}^2(X^{ op}X)_{jj}^{-1}$$

on utilisera donc le test de Student pour tester la nullité d'un coefficient.

4. si $1 \in \text{vect}(X)$, on peut écrire

$$\mathbb{R}^n = \mathsf{vect}(X)^\perp \bigoplus^\perp \left(\, \mathsf{vect}(1)^{\perp_{\mathsf{vect}(X)}} \right) \bigoplus^\perp \mathsf{vect}(1)$$

On a alors

$$\underbrace{Y - X \hat{\beta}}_{\in \ \text{vect}(X)^{\perp}} \qquad \qquad \underbrace{X \hat{\beta} - \overline{Y} \mathbf{1}}_{\in \ \text{vect}(1)^{\perp_{\text{vect}(X)}}} \cdot \\ \text{de dim. } n - p - 1 \qquad \qquad \text{de dim. } p$$

donc:

$$\frac{\|X\hat{\beta}-\bar{Y}\mathbf{1}\|^2/p}{\|Y-X\hat{\beta}\|^2/(n-p-1)}\sim \mathcal{F}(p,n-p-1).$$

Cette statistique permet de tester si le modèle avec les covariables apporte significativement plus d'information sur la réponse Y que le modèle avec l'intercept $\mathbf 1$ seulement.

Erreur d'estimation de $X_i\beta$

Pour un individu i ($i=1,\ldots,n$), la valeur Y_i (observé) est estimée par

$$\hat{Y}_i = X_i \hat{\beta}.$$

On a

$$\mathbb{E} \hat{Y}_i = X_i \beta \text{ et}$$
 $\mathbb{V}(\hat{Y}_i) = X_i \mathbb{V}(\hat{\beta}) X_i^{\top} = \sigma^2 X_i (X^{\top} X)^{-1} X_i^{\top}.$

Intervalle de confiance pour $X_i\beta$

$$\frac{\widehat{Y}_i - X_i \beta}{\sqrt{\widehat{\sigma}^2 X_i (X^\top X)^{-1} X_i^\top}} \sim \mathcal{T}(n - p - 1).$$

Pour une preuve, voir http://www.proba.jussieu.fr/pageperso/rebafka/StatBase_poly_partie2.pdf

Erreur de prévision de Y

Si on considère un nouvel individu indépendant de $1,\ldots,n$ pour lequel on connaît X_+ (mais pas Y_+), on peut prédire la valeur de $Y_+=X_+\beta+\epsilon_+$ par

$$Y_+^p = X_+ \hat{\beta},$$

l'erreur commise est alors donné par :

$$Y_{+}^{p} - Y_{+} = X_{+}\hat{\beta} - (X_{+}\beta + \epsilon_{+}) = X_{+}(X^{T}X)^{-1}X\epsilon - \epsilon_{+}.$$

Intervalle de prévision pour Y_k

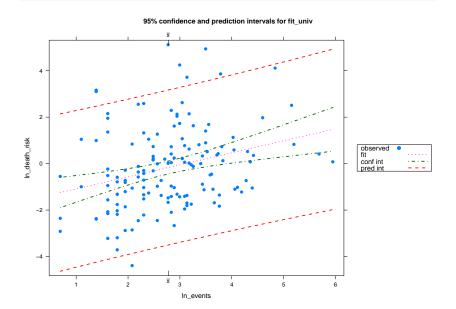
$$\frac{Y_{+}^{p}-Y_{+}}{\sqrt{\hat{\sigma}^{2}(X_{+}(X^{\top}X)^{-1}X_{+}^{\top}+1)}}\sim \mathcal{T}(n-p-1).$$

Pour une preuve, voir http://www.proba.jussieu.fr/pageperso/rebafka/StatBase_poly_partie2.pdf

Modèle avec 1 covariable

```
fit_univ = lm(ln_death_risk~ln_events)
ic=predict(fit_univ,interval="confidence")
print(ic[1:5,])
##
            fit.
                        lwr
                                   upr
## 1 -0.41346753 -0.72116718 -0.1057679
## 2 0.20424358 -0.14006908 0.5485563
## 3 -0.02960412 -0.31691647 0.2577082
## 4 0.27723443 -0.09224715 0.6467160
## 5 -0.88753758 -1.36903423 -0.4060409
newdata=data.frame(ln events=3.4)
pred=predict(fit_univ,newdata,interval="predict")
print(pred)
##
          fit
                    lwr
                             upr
## 1 0.1543123 -3.185642 3.494266
```

ci.plot(fit_univ)



Lien entre valeur ajustée et prévision

On considère deux situations pour l'individu i

1. On a X, Y et calcule $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$ et

$$\hat{Y}_i = X_i \hat{\beta} = X_i (X^\top X)^{-1} X^\top Y$$

2. On efface les données de i pour obtenir $X_{(i)}$ et $Y_{(i)}$ et

$$\hat{\beta}_{(i)} = (X_{(i)}^{\top} X_{(i)})^{-1} X_{(i)}^{\top} Y_{(i)}$$

avec lequel on prédit

$$Y_{i}^{p} = X_{i} \hat{\beta}_{(i)} = X_{i} (X_{(i)}^{\top} X_{(i)})^{-1} X_{(i)}^{\top} Y_{(i)}.$$

Estimation et prévision

On montre alors que

$$Y_i - \hat{Y}_i = (1 - H_{ii})(Y_i - Y_i^p)$$

Pour une preuve, voir http://www.proba.jussieu.fr/pageperso/rebafka/StatBase_poly_partie2.pdf

Lemme d'inversion matricielle Sherman-Morrison

A inversible dans \mathbb{R}^n et , $uv \in \mathbb{R}^n$ alors

$$(A + uv^{\top})^{-1} = A^{-1} - \frac{A^{-1}uv^{\top}A^{-1}}{1 + v^{\top}A^{-1}u}.$$

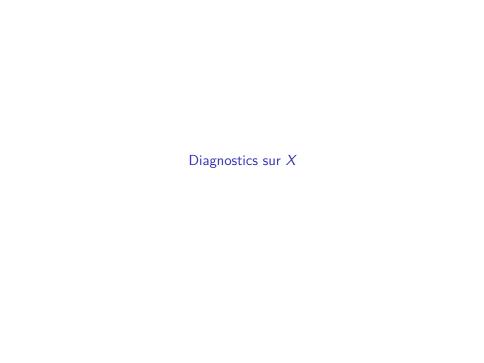
Preuve : il suffit de vérifier...

On doit vérifier les hypothèses du modèle, i.e.

▶ la présence d'individus "influents"

▶ l'hypothèse de linéarité...

- les hypothèses sur X (de plein rang)
- les hypothèses sur les erreurs



Rang de la matrice X

- ▶ On veut vérifier l'hypothèse que X est de plein rang, i.e. que les p+1 colonnes de X engendrent un s.e.v. de \mathbb{R}^n de dimension p+1.
- Si ce n'est pas le cas, la matrice X^TX n'est pas inversible, il n'y a donc pas de solution unique à l'équation

$$X^{\top} Y = X^{\top} X \hat{\beta}.$$

On veut donc vérifier qu'il n'y pas de colinéarité entre les colonnes 1, X¹,..., X^p de X.

Valeurs propres de la matrice de corrélation

On définit la matrice R des corrélations empiriques entre les variables X^j , $j=1,\ldots,p$:

$$R_{jj'} = \frac{\sum_{i=1}^{n} (X_i^j - \bar{X}^j)(X_i^{j'} - \bar{X}^{j'})}{\sqrt{\sum_{i=1}^{n} (X_i^j - \bar{X}^j)^2 \sum_{i=1}^{n} (X_i^{j'} - \bar{X}^{j'})^2}} = \mathbb{C}\text{orr}(X^j, X^{j'}).$$

- ▶ C'est une matrice symétrique positive de rang = $dim(vect(X)) \le p$ (< p si il y a colinéarité).
- ▶ On calcule les p valeurs propres $\lambda_1 \geq \ldots \geq \lambda_p$ de cette matrice.
 - S'il y a une relation linéaire parfaite entre des X^j, une des valeurs propres vaut 0.

Règle

On définit l'indice de conditionnement $\kappa = \lambda_1/\lambda_p$ et la règle

$$\kappa > 500$$
 ou $1000 \Longrightarrow$ colinéarité trop forte

Si on veut une étude plus fine, il faut étudier les vecteurs propres associées aux trop petites valeurs propres.

Matrice de correlations

Definition de la matrice

```
X = vul[,c(3:6)]
cor_mat = cor(X)
```

Calcul des valeurs propres et vecteurs propres

```
propres = eigen(cor_mat)
propres$values[1] / propres$values
```

```
## [1] 1.000000 1.248879 7.351330 14.939503
```

Variance inflation factor (VIF) et tolérance

Considérons la régression de la variable X^j sur les autres variables explicatives $X^1,\ldots,X^{j-1},X^{j+1},\ldots,X^p$, on note R_j^2 le R^2 associé à cette régression.

- ▶ Si $R_i^2 = 0$, X^j n'est pas fonction linéaire des autres variables
- ▶ Si $R_i^2 = 1$, X^i est fonction linéaire des autres variables \implies colinéarité

On définit les coefficients de "variance inflation factor" (VIF) pour $j=1,\ldots,p$ par :

$$VIF_j = \frac{1}{1 - R_j^2}.$$

Règle

Si VIF > 10 ou $100 \Longrightarrow$ colinéarité

vif(fit)

```
## ln_events ln_fert hdi ln_pop
## 2.421759 3.642415 3.767663 2.460624
```

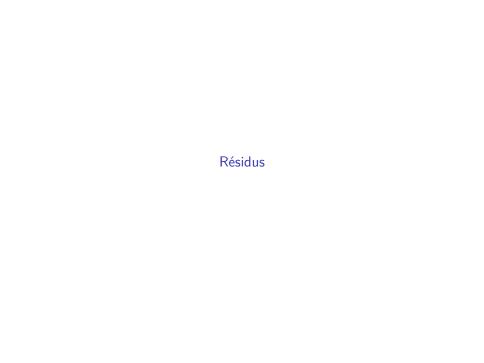
Propriété d'inflation de variance

On montre que

$$\mathbb{V}\hat{eta}_j = rac{\sigma^2}{\|oldsymbol{\mathcal{X}}^j - ar{oldsymbol{\mathcal{X}}}^j\|^2} rac{1}{1 - R_j^2}.$$

Règle à suivre pour les problèmes de colinéarité

- ▶ Si on détecte un problème de colinéarité, il faut enlever les variables posant problème une à une.
- Le choix des variables devrait se faire avec ceux qui ont fourni le jeu de données.



Analyse des résidus

On veut vérifier les hypothèses sur les erreurs ϵ , i.e.

▶ indépendantes (ou décorrélées) avec

$$\mathbb{E}(\epsilon_i) = 0 \text{ et } \mathbb{V}ar(\epsilon_i) = \sigma^2$$

voire gaussiennes

Test de normalité

On suppose

$$\epsilon \sim \mathcal{N}((0,\ldots,0)^{\top},\sigma^2 I_n).$$

- ▶ Si les ϵ_i ($i=1,\ldots,n$) étaient observables, on pourrait tracer un QQ-plot des ϵ_i/σ contre les quantiles de la $\mathcal{N}(0,1)$.
- ▶ On n'observe que les erreurs résiduelles e_i (i = 1, ..., n), qu'on prend comme estimateurs des ϵ_i .
- ▶ On a

$$e = Y - X\hat{\beta} = (I_n - H)Y = (I_n - H)X\beta + (I_n - H)\epsilon = (I_n - H)\epsilon.$$

Les erreurs résiduelles sont gaussiennes avec

$$\mathbb{E}(e) = 0 \text{ et}, \ \mathbb{V}(e) = \sigma^2(1 - H) \text{ et } \mathbb{V}(e_i) = \sigma^2(1 - H_{ii}).$$

 Les erreurs résiduelles ne sont donc pas homoscédastiques. On définit les résidus standardisés par :

$$e_i' = \frac{e_i}{\sqrt{\hat{\sigma}^2(1-H_{ii})}}.$$

On leur préfère les résidus studentisés

$$e_i^* = rac{e_i}{\sqrt{\hat{\sigma}_{(i)}^2(1-H_{ii})}},$$

où $\hat{\sigma}_{(i)}^2$ est l'estimateur de σ^2 calculé en enlevant l'observation i.

Loi des résidus studentisés

On montre que

$$e_i^* \sim \mathcal{T}(\textit{n}-\textit{p}-1)$$

et

$$e_i^* = rac{e_i'}{\sqrt{rac{n-p-(e_i')^2}{n-p-1}}}$$

Pour une preuve, voir http://www.proba.jussieu.fr/pageperso/rebafka/StatBase_poly_partie2.pdf

On conseille de faire le QQ-plot sur ces résidus (si n-p-1 est grand, on peut le faire avec les quantiles gaussiens)

Valeurs ajustées \hat{y}

yhat = fit\$fitted.values

Résidus $e = y - \hat{y}$

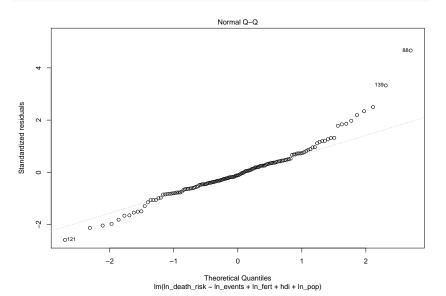
e = fit\$residuals

Residus studentisés e^*

e_star = rstudent(fit)

Normalité des erreurs

plot(fit, which=2)



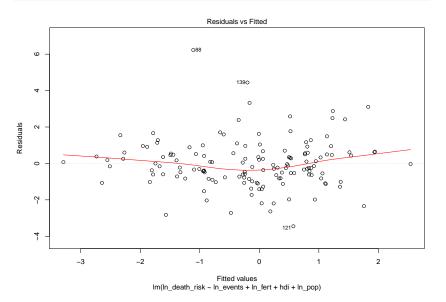
Dans le modèle linéaire

On veut vérifier les autres hypothèses sur les erreurs ϵ :

- 1. pour le centrage : c'est toujours vrai si on inclut l'intercept $(1,\ldots,1)^{\top}$ dans la matrice X.
- 2. pour l'indépendance, il n'existe pas de test dans R. On conseille de représenter les résidus e^* contre les valeurs ajustées $X\hat{\beta}$ qui doivent décorrélées.
- 3. pour l'égalité des variances, on recommande de représenter les résidus e^* contre les différents régresseurs X^j , $j=1,\ldots,p$. Cela permet d'identifier un régresseur responsable d'une hétéroscédasticité
- si on suspecte une autocorrélation, en particulier si on étudie une série chronologique, on utilise le test de Durbin-Watson (fonction dwtest du package Imtest).

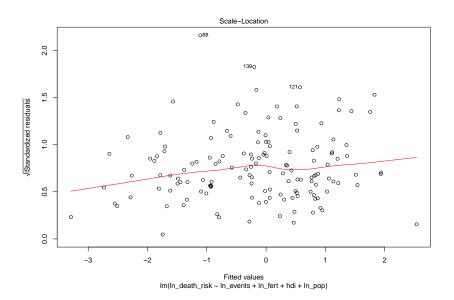
Graphique résidus/valeurs ajustées

plot(fit,which=1)



Graphique scale-location

plot(fit, which=3)



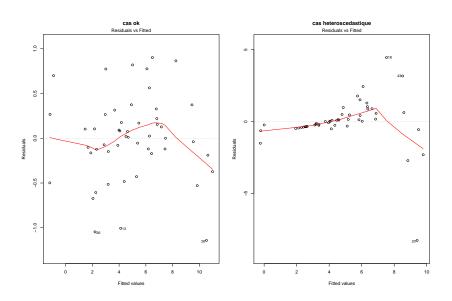
Cas avec hétéroscédasticité :

Données simulées

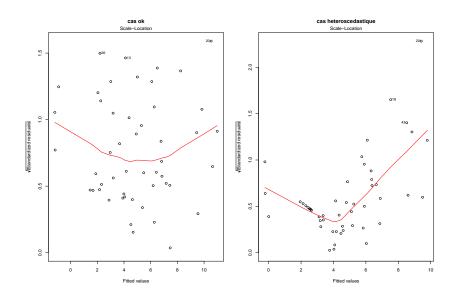
```
n =50
X=rnorm(n,1)
epsilon = rnorm(n,0,0.5)
Yok = 2 +3* X+epsilon
lmok = lm(Yok~X)

Yhs = 2 +3* X+ abs(X)^2*epsilon
lmhs = lm(Yhs~X)
```

Graphiques résidus/ajustées



Graphiques scale/location



Différentes observations atypiques

On cherche maintenant des mesures de l'influence des observations dans l'estimation.

- Une "enquête" sur les observations/les individus "trop influent(e)s" devra être faite, pour déterminer notamment s'il n'y a pas eu d'erreur de mesure, de relevé, etc.
- Le rôle du statisticien est de les détecter.

On peut distinguer deux types d'observations atypiques :

- celles qui ont un "trop" grand résidu
- celles qui sont trop isolées.

Observation aberrante

On connaît la loi des résidus studentisés e_i^*

$$e_i^* \sim \mathcal{T}(n-p-1).$$

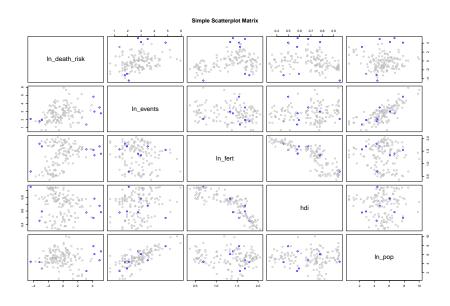
Régle

on dit qu'une observation est aberrante si

$$|e_i^*| > F_{\mathcal{T}(n-p-1)}^{-1}(1-\alpha).$$

On choisit souvent α de l'ordre de 1/n ou $F_{\mathcal{T}(n-p-1)}^{-1}(1-\alpha)=2$.

Où sont les points "aberrants" ?



Le levier

Une bonne mesure de l'isolement des observations est le **coefficient** H_{ii} **appelé** "levier" ("leverage") .

On sait que $0 \le H_{ii} \le 1$ et $0 \le H_{ii} = H_{ii}^2 + \sum_{k \ne i} H_{ik}^2 \le 1$

Propriétés des leviers

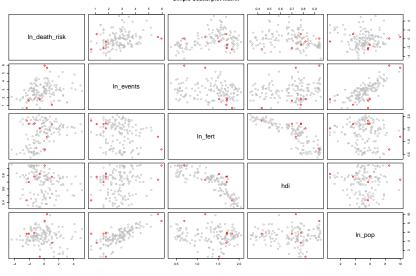
On montre que:

- ▶ $H_{ii} = 1$ ssi $\text{vect}(X_j, j \neq i)$ est de dimension p + 1 1.
- $e_i = Y_i \sum_k H_{ik} Y_k = (1 H_{ii}) Y_i \sum_{k \neq i} H_{ik} Y_k$

Règle pour les leviers

On sait aussi que $\sum_i H_{ii} = p+1$, on considère donc qu'une observation est **isolée** quand a un levier sup. à 2p/n (ou (2p+2)/n ou 3p/n).

Simple Scatterplot Matrix



Sur les leviers

Exercice

A titre d'exercice, vous pouvez montrer dans le cas d'un design orthogonal et normé

que si, pour l'individu n, $\|X_n\| \to \infty$ alors $H_{nn} \to 1$ (remarque : l'indice n de l'individu est seulement choisi pour faciliter les calculs, c'est vrai pour tout individu $i=1,\ldots,n$).

On comprend alors pourquoi le levier H_{ii} sont une mesure de l'isolement de l'individu i dans l'espace des covariables.

Autres mesures d'influence

▶ la distance de Cook est une mesure globale :

$$DCOOK_i = \frac{(e_i)^2 H_{ii}}{(p+1)(1-H_{ii})^2} > 4/n \text{ ou } 1 \Longrightarrow \text{influence}$$

les dfbetas permettent de mesurer l'influence d'une observation i sur une variable j

$$|\mathsf{DFBETA}_{ij}| = |\frac{\beta_i - \beta_j(-i)}{\sqrt{\hat{\sigma}^2(-i)(X^\top X)_{jj}^{-1}}}| > 2/\sqrt{n} \Longrightarrow \mathsf{influence} \; \mathsf{sur} \; \mathsf{la} \; \mathsf{variable} \; j$$

Sur la distance de Cook (1)

Exercice A titre d'exercice, vous pouvez montrer, via la formule de Sherman-Morrison, que

$$X(\hat{\beta} - \hat{\beta}_{(i)}) = (1 - H_{ii}) - 1X(X^{\top}X)^{-1}X_{i}^{\top}e_{i}.$$

Montrer ensuite que

$$\frac{\|X(\hat{\beta}-\hat{\beta}_{(\hat{\imath})})\|^2}{\sigma^2} = \frac{e_{\hat{\imath}}^2 H_{ii}}{\sigma^2 (1-H_{ii})^2}.$$

On comprend alors que la distance de Cook essaie de mesurer l'influence de l'observation i sur l'estimation.

Sur la distance de Cook (2)

Exercice

On souhaite déterminer l'ordre de grandeur d'un seuil critique pour la distance de Cook.

Calculer l'espérance de $e_i^2/(\sigma^2(1-H_{ii}))$. Puis calculer pour un H_{ii} moyen, i.e. égal à (p+1)/n, la valeur de $H_{ii}/(1-H_{ii})$. Quelle alors la valeur de la pseudo-distance de Cook

$$\frac{e_i^2 H_{ii}}{(p+1)\sigma^2(1-H_{ii})^2}$$

on fera l'approximation $n - p \simeq n$.

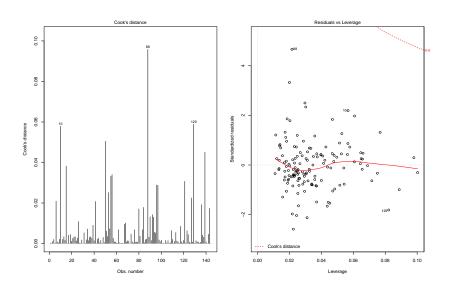
le **covratio** permet d'évaluer si une observation *i* augmente ou diminue la prévision de l'estimation

prévision de l'estimation
$$\mathsf{COVRATIO}_i = \frac{\hat{\sigma}^2(-i)\|(X^\top X)^{-1}(-i)\|}{\hat{\sigma}^2\|(X^\top X)^{-1}\|}$$

si $|COVRATIO_i - 1| > 3(p+1)/n \Longrightarrow influence$

▶ Mesures de l'influence sur les valeurs prédites DFFITS et PRESS

Graphique DCook



Résidus partiels

Quand on suspecte un problème de linéarité entre un X^j et Y, on repr?ente le résidu partiel

$$e_P^j = e + X^j \hat{\beta}_j$$

contre le régresseur X^{j} .

En effet

$$\frac{(X^j)^\top e_P^j}{\|X^j\|^2} = \hat{\beta}_j$$

Résidus partiels

On peut trouver une autre "justification" en raisonnant comme suit. On veut vérifier si l'influence de X^j sur Y est bien linéaire, enlevons dans un premier temps cette hypothèse

$$Y = \sum_{k \neq j} X^k \beta_k + \psi(X^j) + \epsilon.$$

On voudrait idéalement représenter le nuages $(X_i^j, \psi(X_i^j))$ pour avoir une idée de la forme de ψ . On a accès aux X_i^j mais pas aux $\psi(X_i^j)$, estimons les. On a

$$\psi(X^{j}) = Y - \sum_{k \neq j} X^{k} \beta_{k} - \epsilon,$$

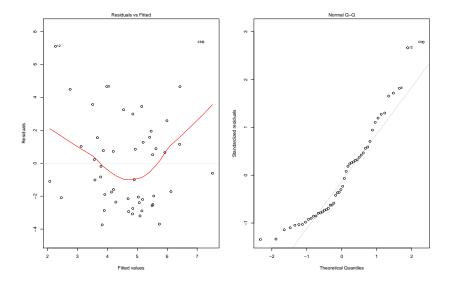
remplaçons les β_k inconnus par leurs estimateurs et ϵ par son espérance, on obtient

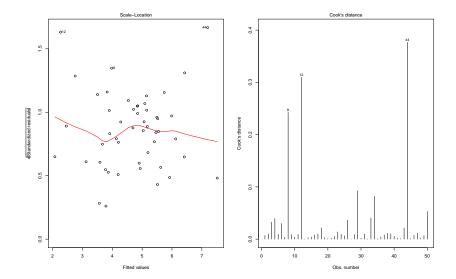
$$\widehat{\psi(\mathcal{X})} = Y - \sum_{k \neq j} X^k \hat{\beta}_k = Y - \sum_{k=1}^p X^k \hat{\beta}_k + X^j \hat{\beta}^j = e_p^j.$$

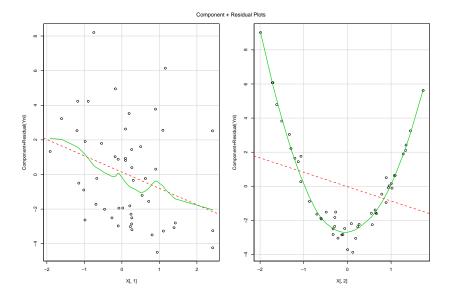
Relation non-linéaire due à une covariable

```
n =50
X=matrix(rnorm(n*2),ncol=2)
epsilon = rnorm(n,0,0.5)

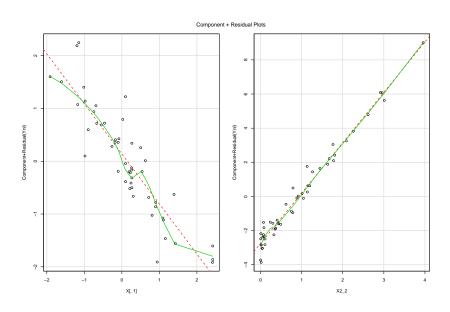
Ynl = 2 - X[,1] + 3* X[,2]^2 + epsilon
lmnl = lm(Ynl~X[,1]+X[,2])
```







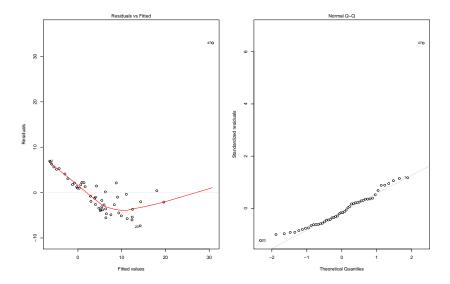
Transformation de la variable

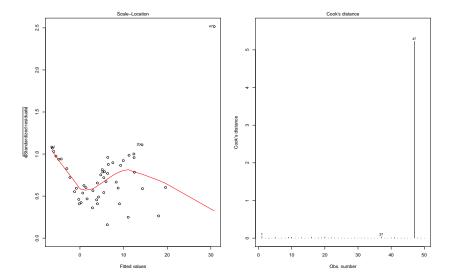


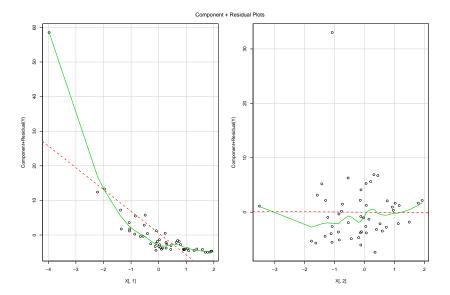
Relation non-linéaire due à Y

```
n =50
X=matrix(rnorm(n*2),ncol=2)
epsilon = rnorm(n,0,0.5)

ln_Y = 1 - X[,1] + 0.1* X[,2] + epsilon
Y = exp(ln_Y)
lm_ln = lm(Y-X[,1]+X[,2])
```

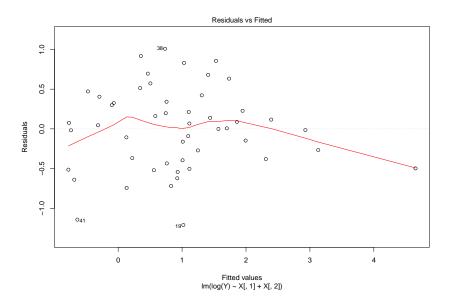




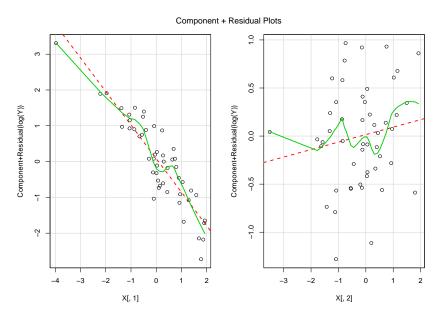


Transformation de Y

```
lm_ln_trans = lm(log(Y)~X[,1]+X[,2])
plot(lm_ln_trans)
```



crPlots(lm_ln_trans)

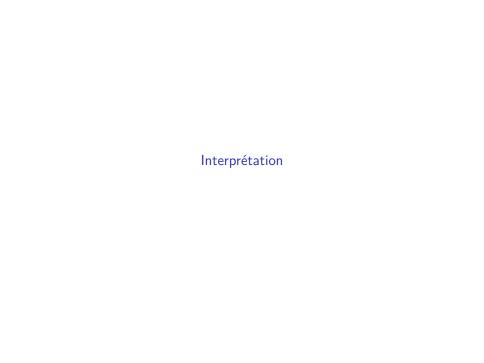


A cette étape, on doit avoir un jeu de données propre pour le modèle linéaire :

- relations linéaires entre variables explicatives et variable à expliquer
 - matrice X de plein rang
 - matrice st de prem ran
 - résidus normaux

Il reste à sélectionner un modèle et à l'interpréter !

pas d'observation aberrante ou trop influente



```
?mtcars
mtcars_simple = mtcars[c(1,2,6)]
summary(mtcars simple)
```

```
##
                       cyl
                                       wt.
        mpg
##
   Min.
          :10.40
                  Min.
                         :4.000
                                 Min.
                                        :1.513
   1st Qu.:15.43
                  1st Qu.:4.000
                                 1st Qu.:2.581
##
##
   Median :19.20
                 Median :6.000
                                 Median :3.325
##
   Mean
          :20.09
                 Mean
                         :6.188
                                 Mean
                                        :3.217
##
   3rd Qu.:22.80
                  3rd Qu.:8.000
                                 3rd Qu.:3.610
##
   Max.
          :33.90
                  Max.
                         :8.000
                                 Max.
                                        :5.424
```

glimpse(mtcars_simple)

Observations: 32

\$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4...
\$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3...

```
mtcars_simple<- dplyr::mutate(mtcars_simple, cyl = factor(cyl))
glimpse(mtcars_simple)</pre>
```

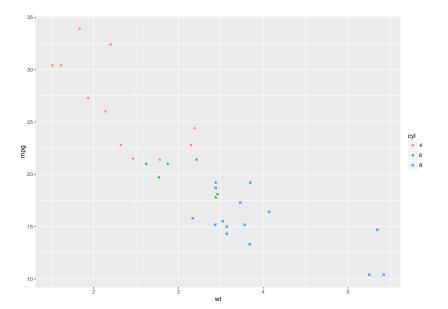
Observations: 32

```
## Variables: 3
## $ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2..
```

\$ cyl <fctr> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 8, 4, 4, ...
\$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3...

```
fit_simple = lm(mpg~wt+factor(cyl),data=mtcars_simple)
summary(fit simple)
##
## Call:
## lm(formula = mpg ~ wt + factor(cyl), data = mtcars_simple)
##
## Residuals:
     Min 1Q Median 3Q
##
                                    Max
## -4.5890 -1.2357 -0.5159 1.3845 5.7915
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 33.9908 1.8878 18.006 < 2e-16 ***
## wt.
      -3.2056 0.7539 -4.252 0.000213 ***
## factor(cyl)6 -4.2556 1.3861 -3.070 0.004718 **
## factor(cyl)8 -6.0709 1.6523 -3.674 0.000999 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.557 on 28 degrees of freedom
## Multiple R-squared: 0.8374, Adjusted R-squared: 0.82
## F-statistic: 48.08 on 3 and 28 DF, p-value: 3.594e-11
```

ggplot(mtcars_simple, aes(x=wt, y=mpg, color=cyl, shape=cyl)) +
 geom_point()



```
fit_croise = lm(mpg ~ wt * cyl, data = mtcars_simple)
summary(fit_croise)
##
## Call:
## lm(formula = mpg ~ wt * cyl, data = mtcars_simple)
##
## Residuals:
##
      Min
         1Q Median 3Q
                                  Max
## -4.1513 -1.3798 -0.6389 1.4938 5.2523
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 39.571 3.194 12.389 2.06e-12 ***
       -5.647 1.359 -4.154 0.000313 ***
## wt.
## cyl6 -11.162 9.355 -1.193 0.243584
## cyl8 -15.703 4.839 -3.245 0.003223 **
## wt:cyl6 2.867 3.117 0.920 0.366199
## wt:cyl8 3.455 1.627 2.123 0.043440 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.449 on 26 degrees of freedom
## Multiple R-squared: 0.8616, Adjusted R-squared: 0.8349
```