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Boostrap for estimating the generalization error



The data

Supervised learning

I Features Xi ∈ Rd

I Labels Yi ∈ R (regression) Yi ∈ {−1, 1} (classification)
I (Xi , Yi) ∼ P unknown

I With Dn =
(

(X1, Y1), . . . , (Xn, Yn)
)

,

I and a loss function `(y , f (x))

we construct a learner f̂ , that minimize the empirical risk (or a penalized version,
or a majoration...)

Rn(f ) = 1
n

n∑
i=1

`(Yi , f (Xi)).



Generalisation error

What we are actually seeking is to minimize the generalization error

R(f ) = E{`(Y+, f (X+)}

where (X+, Y+) has the distribution P and is independent of all data in Dn.

We know that minimizing the empirical risk instead of the generalization error
leads to over-fitting, in other words the empirical risk is a too optimistic
version of the generalization error.

To estimate the generaralisation error

I a solution is to consider cross-validation,
I an other one is to consider the bootstrap.



Efron’s bootstrap (1)

From the data Dn =
(

(X1, Y1), . . . , (Xn, Yn)
)

, we construct new sample

D?
1 =

(
(X?

1,1, Y ?
1,1), . . . , (X?

1,n, Y ?
1,n)

)
. . .

D?
b =

(
(X?

b,1, Y ?
b,1), . . . , (X?

b,n, Y ?
b,n)

)
. . .

by sampling the observations (X?
b,i , Y ?

b,i) randomly and with replacement for the
data Dn.

We know that, conditionnaly to Dn

I each (X?
b,i , Y ?

b,i) has the distribution P̂, the empirical distribution
constructed from

(
(X1, Y1), . . . , (Xn, Yn)

)
.

I the boostraped samples D?
1 , . . . D?

B are independent.



Boostrap estimation of the generalization error

An idea would be to consider a bootstrap sample D?
b as a learning sample and

the initial sample as a testing sample. But they are too many dependences here.

What we can do is to measure how optimistic is the empirical error in the
estimation of the generalization error. It suffices to find an equivalent of

R(f ) − Rn(f )

constructed with the boostraped samples.



Boostrap estimation of the generalization error (1)

1. Consider a boostrap sample D?
b and construct a learner f̂ ?

b on it.
2. Compute the empirical risk of the learner

R?
b(f̂ ?

b ) = 1
n

n∑
i=1

`
(
Y ?

b,i , f̂ ?
b (X?

b,i)
)

3. Compute the estimation

1
n

n∑
i=1

`
(
Yi , f̂ ?

b (Xi)
)

− R?
b(f̂ ?

b )



Boostrap estimation of the generalization error (2)

With the B estimates 1
n

∑n
i=1 `

(
Yi , f̂ ?

b (Xi)
)

− R?
b (f̂ ?

b ), the generalization error of
a learner f̂ is estimated by

1
B

B∑
b=1

{ 1
n

n∑
i=1

`
(
Yi , f̂ ?

b (Xi)
)

− R?
b(f̂ ?

b )
}

+ Rn(f̂ ).



Bagging Breiman 1996



The data

Supervised learning

I Features Xi ∈ Rd

I Labels Yi ∈ R (regression) Yi ∈ {−1, 1} (classification)
I (Xi , Yi) ∼ P unknown

Weak learners

I Consider a set “weak learners” H such that
I each weak leaner h : Rd → R ou Rd → {−1, 1} is very simple



Efron’s bootstrap (1)

From the data Dn =
(

(X1, Y1), . . . , (Xn, Yn)
)

, we construct new sample

D?
1 =

(
(X?

1,1, Y ?
1,1), . . . , (X?

1,n, Y ?
1,n)

)
. . .

D?
b =

(
(X?

b,1, Y ?
b,1), . . . , (X?

b,n, Y ?
b,n)

)
. . .

by sampling the observations (X?
b,i , Y ?

b,i) randomly and with replacement for the
data Dn.

We know that, conditionnaly to Dn, each (X?
b,i , Y ?

b,i) has the distribution P̂, the
empirical distribution constructed from

(
(X1, Y1), . . . , (Xn, Yn)

)
.



Efron’s bootstrap (2)

From each bootstrapped sample D?
b , we can construct a learner f̂ ?

b :

Figure 1: From Friedman, Hastie, and Tibshirani 2001



Efron’s bootstrap (3)
The bootstrap aggregation or bagging averages the learners over the
bootstrapped samples

1
B

B∑
b=1

f̂ ?
b

with the intuition that (in the regression case) it would have a smaller variance
that f̂ , hence a smaller generalization error.

Figure 2: From Friedman, Hastie, and Tibshirani 2001



Simple facts on the bagging

As the boostraped samples are i.i.d. (conditionnally to the initial sample), the
expectation of

1
B

B∑
b=1

f̂ ?
b

is the same as the one of f̂ ?
b , so we cannot hope to reduce the bias.

For the variance on the contrary, we can hope a reduction based on the fact that
the boostraped samples are independent. (Just write that if Z1, . . . , ZB are i.i.d.
the variance of 1/B

∑B
1 Zb is V(Zb)/B.)



Random forests



Why this is not so simple !

We just gave arguments conditionally to the initial sample, we should reason
without this conditionning. In this case, it is clear that the f̂ ?

b are dependent.

If Z1, . . . , ZB are i.d. with correlation ρ (we assume it positive) the variance of
1/B

∑B
1 Zb is

ρV(Zb) + 1 − ρ

B V(Zb).

So what we should be concern about it the correlation between the trees.



Random forestsBreiman 2001

Figure 3: From Friedman, Hastie, and Tibshirani 2001
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