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Organizational issues

I 3 classes : 02/06, 02/20 and 03/06
I 2 Labs. The solutions of the practical labs have to be submitted and will

be graded.
I 1st on 02/27 for ENSIIE students and 03/02 for M1 MINT students
I 2nd on 03/20 for ENSIIE students and 03/23 for M1 MINT students

I Slides, R examples and labs are on my webpage http ://www.math-
evry.cnrs.fr/members/aguilloux/enseignements/timeseries

I my email agathe.guilloux@math.cnrs.fr

http://www.math-evry.cnrs.fr/members/aguilloux/enseignements/timeseries
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Chapter 1 : Time series characteristics



Johnson & Johnson quaterly earnings [SS10] I
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Fig.: Quarterly earnings per share for the U.S. company Johnson & Johnson.

Notice :
I the increasing underlying trend and variability,
I and a somewhat regular oscillation superimposed on the trend that seems

to repeat over quarters.



Johnson & Johnson quaterly earnings [SS10] II
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Fig.: Quarterly log(earnings) per share for the U.S. company Johnson & Johnson.

Notice :
I the trend is now (almost) linear



Global temperature index from 1880 to 2015 I
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Fig. : Global temperature deviation (in ◦C) from 1880 to 2015, with base period
1951-1980.

Notice :
I the trend is not linear (with periods of leveling off and then sharp upward

trends).



Speech data
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Fig. : Speech recording of the syllable ”aaa ... hhh” sampled at 10,000 points per
seconds with n = 1020 points [SS10]

Notice :
I the repetition of small wavelets.



Dow Jones Industrial Average I
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Fig. : Dayly percent change of the Dow Jones Industrial Average from April 20,2006
to April 20,2016 [SS10]



Dow Jones Industrial Average II

Notice :
I the mean of the series appears to be stable with an average return of

approximately zero,
I the volatility (or variability) of data exhibits clustering ; that is, highly

volatile periods tend to be clustered together.



El Niño and Fish Population I

Southern Oscillation Index
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Fig. : Monthly values of an environmental series called the Southern Oscillation Index
and associated Recruitment (an index of the number of new fish). [SS10]

Notice :
I SOI measures changes in air pressure related to sea surface temperatures

in the central Pacific Ocean.



El Niño and Fish Population II

I The series show two basic oscillations types, an obvious annual cycle (hot
in the summer, cold in the winter), and a slower frequency that seems to
repeat about every 4 years.

I The two series are also related ; it is easy to imagine the fish population is
dependent on the ocean temperature.



fMRI Imaging I
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Fig. : Data collected from various locations in the brain via functional magnetic
resonance imaging (fMRI) [SS10]

I Notice the periodicities.



What we are seeking

To construct models
I to describe
I to forecast

times series.
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Fig.: Twenty-four month forecats for the Recruitment series shown on slide 11



Times series models

Time series and model
A time series is a sequence (Xt)t∈Z of r.v., i.e. a stochastic process.
A time series model specifies (at least partially) the joint distribution of the
sequence.
Notation : when no confusion is possible, we’ll write for short X instead of
(Xt)t∈Z.

White noise
(ωt) ∼ WN(0 , σ2) when

I Cov(ωs , ωt) = 0 ∀s , t ∈ Z
I E(ωt) = 0 ∀t ∈ Z
I V(ωt) = σ2 ∀t ∈ Z

Notation : for white noises, greek letters will be used ω, η



i.i.d. white noise and i.i.d. Gaussian white noise
(ωt) ∼ i .i .d .(0 , σ2) when

I (ωt) ∼ WN(0 , σ2)

I and (ωt) are i.i.d.
(ωt) ∼ i .i .d .N (0 , σ2) if, in addition, ωt ∼ N (0 , σ2) for all t ∈ Z .
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Models with serial correlation I

Moving averages
Consider a white noise (ωt)t∈Z and define the series (Xt)t∈Z as

Xt =
1

3
(ωt−1 + ωt + ωt+1) ∀t ∈ Z.
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Notice the similarity with SIO and some fMRI series.



Models with serial correlation II

Autoregression
Consider a white noise (ωt)t∈Z and define the series (Xt)t∈Z as

Xt = Xt−1 − 0.9Xt−2 + ωt ∀t ∈ Z.
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Autoregression

Notice
I the almost periodic behavior and the similarity with the speech series

example
I the above definition misses initial conditions, we’ll come back on that later.



Models with serial correlation III

Random walk with drift
Consider a white noise (ωt)t∈Z and define the series (Xt)t∈Z as

Xt = δ︸︷︷︸
drift

+ Xt−1︸ ︷︷ ︸
previous position

+ ωt︸︷︷︸
step

∀t ∈ Z,

with X0 = 0
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Fig. : Random walk with drift δ = 0 .2 (upper jagged line), with δ = 0 (lower jagged
line) and line with slope 0 .2 (dashed line)



Models with serial correlation IV

Signal plus noise
Consider a white noise (ωt)t∈Z and define the series (Xt)t∈Z as

Xt = 2 cos
(
2π

t + 15
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)
︸ ︷︷ ︸
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Notice the similarity with fMRI signals.



Measures of dependence

We now introduce various measures that describe the general behavior of a
process as it evolves over time.

Mean measure
Define, for a time series (Xt)t∈Z, the mean function

µX (t) = E(Xt) ∀t ∈ Z

when it exists.

Exercise
Compute the mean functions of

I the moving average defined in slide 17.
I the random walk plus drift defined in slide 19
I the signal+noise model of slide 20



Autocovariance

We now assume that for all t ∈ Z, Xt ∈ L2.

Autocovariance
The autocovariance function of a time series (Xt)t∈Z is defined as

γX (s, t) = Cov(Xs ,Xt) = E
(
(Xs − E(Xs))(Xt − E(Xt))

)
for all s , t ∈ Z . It is a symmetric function γX (s , t) = γX (t , s) .
It measures the linear dependence between two values of the same series
observed at different times.

Exercise
Compute the autocovariance functions of

I the white noise defined in slide 15
I the moving average defined in slide 17



Autocorrelation function (ACF)

Autocorrelation function
The ACF of a time series (Xt)t∈Z is defined as

ρX (s, t) =
γX (s, t)√

γX (s, s)γX (t, t)

for all s , t ∈ Z . Is is a symmetric function.



Stationarities

Strict stationarity
A time series (Xt) is strictly stationary if for all k ≥ 1, t1 , . . . , tk and h ∈ Z

L(Xt1 , . . . ,Xtk ) = L(Xt1+h, . . . ,Xtk+h)

Weak stationarity
A time series (Xt) is weakly stationary if

I µX is independent of t and
I h 7 → γX (t + h , t) is independent ot t.

In this case, we write γX (h) as short for γX (h , 0) .



Exercise
Check the stationarity of the following processes :

I the white noise, defined on slide 15
I the random walk, defined on slide 19



Theorem
The autocovariance function γX of a stationary time series X verifies

1. γX (0) ≥ 0

2. |γX (h)| ≤ γX (0)

3. γX (h) = γX (−h)
4. γX is positive-definite.

Furthermore, any function γ that satisfies (3) and (4) is the autocovariance of
some stationary time series.

Reminder : A function f : Z 7 → R is positive-definite if for all n, the matrix Fn,
with entries (Fn)i,j = f (i−j), is positive definite. A matrix Fn ∈ Rn×n is
positive-definite if, for all vectors a ∈ Rn , a>Fna ≥ 0.



Moving average MA(1) model

Warning : not to be confused with moving average of slide 17.

Moving average model MA(1)
Consider a white noise (ωt)t∈Z ∼ WN(0 , σ2) and construct the MA(1) as

Xt = ωt + θωt−1 ∀t ∈ Z

Exercise
I Is it stationary ?
I Compute its ACF.



Autoregressive AR(1) model

Autoregressive AR(1)
Consider a white noise (ωt)t∈Z ∼ WN(0 , σ2) and construct the AR(1) as

Xt = φXt−1 + ωt ∀t ∈ Z

Exercise
Assume that it is stationary and compute

I its mean function
I its ACF.



Linear processes

Linear process
Consider a white noise (ωt)t∈Z ∼ WN(0 , σ2) and define the linear process X
as follows

Xt = µ+
∑
j∈Z

ψjωt−j ∀t ∈ Z (1)

where µ ∈ R and (ψj) satisfies
∑

j∈Z |ψj | <∞ . X

Theorem
The series in Equation (1) converges in L2 and the linear process X defined
above is stationary. (see Proposition 3.1.2 in [BD13]).

Exercise
Compute the mean and autocovariance functions of (Xt)t∈Z.



Examples of linear processes

Exercise
I Show that the following processes are particular linear processes

I the white noise process
I the MA(1) process.

I Consider a linear process as defined on slide 29, put µ = 0,{
ψj = φj if j ≥ 0

ψj = 0 if j < 0

and suppose |φ| < 1. Show that X is in fact an AR(1) process.



Estimation

Suppose that X is a stationary time series and recall that

µX (t) = µ, γX (h) = Cov(Xt ,Xt+h) and ρX (h) =
γX (h)
γX (0)

for all t , h ∈ Z .

Estimation
From observations X1 , . . . ,Xn (from the stationary time series X), we can
compute

I the sample mean X̄ = 1
n
∑n

t=1 Xt

I the sample autocovariance function

γ̂X (h) =
1

n

n−|h|∑
t=1

(Xt+|h| − X̄)(Xt − X̄)  ∀ − n < h < n

I the sample autocorrelation function

ρ̂X (h) =
γ̂X (h)
γ̂X (0)

.



Warning : γX (h) = Cov(Xt ,Xt+h) but the sample autocorrelation function is
not the corresponding empirical covariance ! !

1

n

n−|h|∑
t=1

(Xt+|h| − X̄)(Xt − X̄) 6=

1

n − |h|

n−|h|∑
t=1

(
Xt+|h| −

1

n − |h|

n−|h|∑
t=1

Xt+h
)(

Xt −
1

n − |h|

n−|h|∑
t=1

Xt
)



Examples of sample ACF

Exercise
Can you find the generating time series models (white noise, MA(1), AR(1),
random noise with drift) associated with the sample ACF ?
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Examples of sample ACF
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Fig.: The ACF of speech data example on slide 8

Notice :
I the regular repetition of short peaks with decreasing amplitude.



Properties of X̄n

Theorem
If X is a stationary time series, the sample mean verifies

E(X̄n) = µ

V(X̄n) =
1

n

n∑
h=−n

(
1− |h|

n
)
γ(h).

As a consequence, if
∞∑

h=−∞

|γ(h)| <∞ then nV(X̄n)
n→∞→

∞∑
h=−∞

γ(h) = σ2
∞∑

h=−∞

ρ(h)

and X̄n converges in L2 to µ .
Notice that, in the independent case, nV(X̄n)

n→∞→ σ2. The correlation has
hence the effect of reducing to sample size from n to n/

∑∞
h=−∞ ρ(h) .

See Appendix A [SS10]



Large sample property

Theorem
Under general conditions, if X is a white noise, then for n large, the sample
ACF, ρ̂X (h), for h = 1 , 2 , . . . ,H, where H is fixed but arbitrary, is
approximately normally distributed with zero mean and standard deviation
given by

σρ̂X (h) =
1√
n

Consequence : only the peaks outside of ±2/
√

n may be considered to be
significant.
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See Appendix A [SS10]



ACF and prediction

Linear predictor and ACF
Let X be a stationary time series with ACF ρ. The linear predictor X̂{n}

n+h of
Xn+h given Xn is defined as

X̂{n}
n+h = argmin

a,b
E
((

Xn+h − (aXn + b)
)2)

= ρ(h)(Xn − µ) + µ

Exercise
Prove the result.
Notice that

I linear prediction needs only second order statistics, we’ll see later that it is
a crucial property for forecasting.

I the result extends to longer histories (Xn ,Xn−1 , . . .).



Chapter 2 : Chasing stationarity, exploratory data analysis



I Why do we need to chase stationarity ?
Because we want to do statistics : averaging lagged products over time, as
in the previous section, has to be a sensible thing to do.

I But....
Real time series are often non-stationary, so we need methods to
“stationarize” the series.



An example I
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Fig. : Monthly sales for a souvenir shop on the wharf at a beach resort town in
Queensland, Australia. [MWH08]



An example II

Notice that the variance grows with the mean, this usually calls for a log
transformation (X → log(X)), which is part of the general family of Box-Cox
transformation {

X → Xλ−1/λ λ 6= 0

X → log(X) λ = 0



An example III
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Fig.: Log of monthly sales.

The series is not yet stationary because there are a trend and a seasonal
components.



An example IV
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Fig.: Decomposition of monthly sales with slt function in R



Classical decomposition of a time series

Yt = Tt + St + Xt

où
I T = (Tt)t∈Z is the trend
I S = (St)t∈Z is the seasonality
I X = (Xt)t∈Z is a stationary centered time series.



Back to the global temperature I
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Fig. : Global temperature deviation (in ◦C) from 1880 to 2015, with base period
1951-1980 - see slide 7



Back to the global temperature II
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Fig.: ACF of global temperature deviation



Back to the global temperature III

We model this time series as

Yt = Tt + Xt

and are now looking for a model for T = (Tt)t∈Z .
Looking at the series, two possible models for T are

I (model 1) a linear function of t Tt = β1 + β2t
I (model 2) a random walk with drift Tt = δ + Tt−1 + ηt , where η is a

white noise (see slide 19).
In both models, we notice that

Yt − Yt−1 = Tt − Tt−1 + ωt − ωt−1 = β2 + ωt − ωt−1 (model 1)
Yt − Yt−1 = Tt − Tt−1 + ωt − ωt−1 = δ + ηt + ωt − ωt−1 (model 2)

are stationary time series (check this fact as an exercise).



Back to the global temperature IV
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Fig.: Differenced global temperature deviation



Back to the global temperature V
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Fig.: Differenced global temperature deviation

Not far from a white noise ! !



Backshift operator

Backshift operator
For a time series X , we define the backshift operator as

BXt = Xt−1,

similary
BkXt = Xt−k .

Difference of order d
Differences of order d are defined as

∇d = (1− B)d .

To stationarize the global temperature series, we applied the 1st order
difference to it.
See http ://a-little-book-of-r-for-time-
series.readthedocs.io/en/latest/src/timeseries.html for an example of 2nd order
integrated ts.

http://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html
http://a-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html


Moving average smoother

Moving average smoother
For a time series X ,

Mt =
k∑

j=−k

ajXt−j

with aj = a−j ≥ 0 and
∑k

j=−k aj = 1 is a symmetric moving average.

Note : slt function in R uses loess regression, the moving average smoother
is just a loess regression with polynomials of order 1. More details on this on
http ://www.wessa.net/download/stl.pdf, [CCT90].

http://www.wessa.net/download/stl.pdf
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Fig. : Average daily cardiovascular mortality in Los Angeles county over the 10 year
period 1970-1979.
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Chapter 3 : ARMA models



Introduction

We now consider that we have estimated the trend and seasonal components of

Yt = Tt + St + Xt

Aim of the chapter : to propose to the time series X via ARMA models. They
allow

I to describe this time series
I to forecast.

Key fact : we know that
I for every stationary process with autocovariance function γ verifying

limh→∞ γ(h) = 0, it is possible to find an ARMA process with the same
autocovariance function, see [BD13].

I The Wold decomposition (see [SS10] Appendix B) also plays an important
role. Its says that every stationary process is the sum of a MA(∞) process
and a deterministic process.



AR(1)

Exercice
Consider a time series X following the AR(1) model

Xt = φXt−1 + ωt ∀t ∈ Z.

1. Show that for all k > 0 Xt = φkXt−k +
∑k−1

j=0 φ
j ωt−j .

2. Assume that |φ| < 1 and prove Xt
L2

=
∑∞

j=0 φ
j ωt−j .

3. Assume now that |φ|> 1 and prove that
3.1

∑k−1
j=0 φj ωt−j does not converge in L2

3.2 one can write Xt = −
∑∞

j=1 φ
−jwt+j

3.3 Discuss why the case |φ|> 1 is useless.

The case where |φ| = 1 is a random walk (slide 19) and we already proved that
this is not a stationary time series.
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Note on polynomials

Notice that manipulating operators like φ(B) is like manipulating polynomials
with complex variables.
In particular :

1

1− φz = 1 + φz + φ2z + . . .

provided that |φ| < 1 and |z| ≤ 1 .



Causality

Causal linear process
A linear process X is said to be causal when there is

I a power series π : π(x) = π0 + π1x + π2x2 , . . .,
I with

∑∞
j=0 |πj | <∞

I and Xt = π(B)ωt

ω is a white noise WN(0 , σ2).
In this case Xt is σ{ωt , ωt−1 , . . .}-measurable.

We will exclude non-causal AR models from consideration. In fact this is not a
restriction because we can find causal counterpart to such process.

Exercise
Consider the non-causal AR(1) model Xt = φXt−1 +ωt with |φ|> 1 and
suppose that ω ∼ i .i .d .N (0 , σ2)

1. Which distribution has Xt ?
2. Define the time series Yt = φ−1Yt−1 + ηt with η ∼ i .i .d .N (0 , σ2/φ2).

Prove that Xt and Yt have the same distribution.



Autoregressive model

AR(p)
An autoregressive model of order p is of the form

Xt = φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + ωt ∀t ∈ Z

where X is assumed to be stationary and ω is a white noise WN(0 , σ2). We
will write more concisely

Φ(B)Xt = ωt ∀t ∈ Z

where φ is the polynomial of degree p φ(x) = (1− φ1x − φ2x2 − . . .− φpxp).
Without loss of generality, we assume that each Xt is centered.



Condition of existence and causality of AR(p)
A stationary solution to Φ(B)Xt =ωt ∀t ∈ Z exists if and only if

φ(z) = 0 =⇒ |z| 6= 1.

In this case, this defines an AR(p) process, which is causal iff in addition

φ(z) = 0 =⇒ |z| > 1.
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Moving average model

MA(q)
An moving average model of order q is of the form

Xt = ωt + θ1ωt−1 + θ2ωt−2 + . . .+ θqωt−q ∀t ∈ Z

where ω is a white noise WN(0 , σ2). We will write more concisely

Xt = Θ(B)ωt ∀t ∈ Z

where θ is the polynomial of degree q θ(x) = (1− θ1x − θ2x2 − . . .− θqxq).

Unlike the AR model, the MA model is stationary for any values of the
thetas.
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Invertibility I

Invertibility of a MA(1) process
Consider the MA(1) process

Xt = ωt + θωt−1 = (1 + θB)ωt ∀t ∈ Z

where ω is a white noise WN(0 , σ2).
Show that

I If |θ| < 1, ωt =
∑∞

j=0(−θ)
jXt−j

I If |θ|> 1, ωt = −
∑∞

j=1(−θ)
−jXt+j

In the first case, X is invertible.

Invertibility
A linear process X is invertible when there is

I a power series π : π(x) = π0 + π1x + π2x2 , . . .,
I with

∑∞
j=0 |πj | <∞

I and ωt = π(B)Xt

ω is a white noise WN(0 , σ2).



Invertibility II

Exercise
Consider the non-invertible MA(1) model Xt =ωt + θ ωt−1 with |θ|> 1 and
suppose that ω ∼ i .i .d .N (0 , σ2)

1. Which distribution has Xt ?
2. Can we define an invertible time series Y defined through a new Gaussian

white noise η such that Xt and Yt have the same distribution (∀t) ?



Autoregressive moving average model

Autoregressive moving average model ARMA(p , q)
An ARMA(p , q) process X is a stationary process that is defined through

Φ(B)Xt = Θ(B)ωt

where ω ∼ WN(0 , σ2), Φ is a polynomial of order p, Θ is a polynomial of
order q and Φ and Θ have no common factors.

Exercise
Consider the process X defined by Xt − 0 .5Xt−1 =ωt − 0 .5ωt−1. Is it trully
an ARMA(1,1) process ?



Stationarity, causality and invertibility

Theorem
Consider the equation Φ(B)Xt = Θ(B)ωt , where Φ and Θ have no common
factors.

I There exists a stationary solution iff

φ(z) = 0 ⇔ |z| 6= 1.

I This process ARMA(p , q) is causal iff

φ(z) = 0 ⇔ |z| > 1.

I It is invertible iff the roots of θ(z) are outside the unit circle.

Exercise
Discuss the stationarity, causality and invertibility of
(1− 1 .5B)Xt = (1 + 0 .2B)ωt .



Theorem
Let X be an ARMA process defined by Φ(B)Xt = Θ(B)ωt .
If

∀|z| = 1 θ(z) 6= 0,

then there are polynomials φ̃ and θ̃ and a white noise sequence ω̃ such that X
satisfies

I Φ̃(B)Xt = Θ̃(B)ω̃t ,
I and is a causal,
I invertible ARMA process.

We can now consider only causal and invertible ARMA processes.



The linear process representation of an ARMA

Causal and invertible representations
Consider a causal, invertible ARMA process defined by Φ(B)Xt = Θ(B)ωt . It
can be rewritten

I as a MA(∞) :

Xt =
Θ(B)

Φ(B)
ωt = ψ(B)ωt =

∑
k≥0

ψkωt−k

I or as an AR((∞))

ωt =
Φ(B)

Θ(B)
Xt = π(B)Xt =

∑
k≥0

πkXt−k

Notice that both π0 and ψ0 equal 1 and (ψk) and (πk) are entirely determined
by (φk) and (θk).



Autocovariance function of an ARMA

Autocovariance of an ARMA
The autocovariance function of an ARMA(p , q) follows from its MA(∞)
representation and equals

γ(h) = σ2
∑
k≥0

ψkψk+h ∀h ≥ 0.

Exercise
I Compute the ACF of a causal ARMA(1 , 1).
I Show that the ACF of this ARMA verifies a linear difference equation of

order 1. Solve this equation.
I Compute φ and θ from the ACF.



Chapter 4 : Linear prediction and partial autocorrelation
function



Introduction

We’ll see that if we know
I the orders (p and q) and
I the coefficients

of the ARMA model under consideration, we can build predictions and
prediction intervals.



Just to be sure....

I The linear space L2 of r.v. with finite variance with the inner-product
〈X ,Y 〉 = E(XY ) is an Hilbert space.

I Now considering a time series X with Xt ∈ L2 for all t
I the subspace Hn = span(X1 , . . . ,Xn) is a closed subspace of L2 hence
I for all Y ∈ L2 there exists an unique projection P(Y ) in Hn such that, for

all ∀w ∈ Hn

‖P(Y )− Y ‖ ≤ ‖w − Y ‖
〈P(Y )− Y ,w〉 = 0.



Best linear predictor
Given X1 ,X2 , . . . ,Xn, the best linear m-step-ahead predictor of Xn+m
defined as

X (n)
n+m = α0 + φ

(m)
n1 Xn + φ

(m)
n2 Xn−1 + φ(m)

nn X1 = α0 +
n∑

j=1

φ
(m)
nj Xn+1−j

is the orthogonal projection of Xn+m onto span{1 ,X1 , . . . ,Xn}. In particular, it
satisfies the prediction equations

E(X (n)
n+m − Xn+m) = 0

E((X (n)
n+m − Xn+m)Xk) = 0 ∀k = 1, . . . , n

We’ll now compute α0 and the φ(m)
nj ’s.



Derivation of α0

We get

X (n)
n+m − µ = α0 +

n∑
j=1

φ
(m)
nj Xn+1−j − µ =

n∑
j=1

φ
(m)
nj (Xn+1−j − µ)

I Thus, we’ll ignore α0 and put µ = 0 until we discuss estimation.
I There are two consequences

1. the projection of Xn+m on onto span{1 ,X1 , . . . ,Xn} is in fact the
projection onto span{X1 , . . . ,Xn}

2. E(XkXl ) = Cov(Xk ,Xl )



Derivation of the φ
(m)
nj ’s

As X (n)
n+m satisfies the prediction equations of slide 74, we can write for all

k = 1 , . . . , n

E((X (n)
n+m − Xn+m)Xk) = 0

⇐⇒
n∑

j=1

φ
(m)
nj E

(
Xn+1−jXn+1−k

)
= E

(
Xn+mXn+1−k)

)
⇐⇒

n∑
j=1

αjγ(k − j) = γ(m + k − 1)

This can rewritten in matrix notation.



Prediction

Prediction equations
The φ(m)

nj ’s verify
Γnφ

(m)
n = γ(m)

n

where

Γn =
(
γ(k − j)

)
1≤j,k≤n

φ(m)
n =

(
φ
(m)
n1 , . . . , φ

(m)
nn
)>
,

γ(m)
n =

(
γ(m), . . . , γ(m + n − 1)

)>
.

Prediction error
The mean square prediction error is given by

Pn
n+m = E

((
Xn+m − X (n)

n+m
)2)

= γ(0)− (γ(m)
n )>Γ−1

n γ(m)
n .



Forecasting an AR(2)

Exercise
Consider the causal AR(2) model Xt = φ1Xt−1 + φ2Xt−2 +ωt .

1. Determine the one-step-ahead X (2)
3 prediction of X3 based on X1 ,X2 from

the prediction equations.
2. From causality, determine X (2)

3 .
3. How φ

(1)
21 , φ

(1)
22 and φ1 , φ2 are related ?



PACF

Partial autocorrelation function
The partial autocorrelation function (PACF) of a stationary time series X is
defined as

φ11 = cor
(
X1,X0

)
= ρ(1)

φhh = cor
(
Xh − X (h−1)

h ,X0 − X̂ (h−1)
0

)
for h ≥ 2,

where X̂ (h−1)
0 is the orthogonal projection of X0 onto span{X1 , . . . ,Xh−1}.

Notice that
I Xh − X (h−1)

h and X0 − X̂ (h−1)
0 are, by construction, uncorrelated with

{X1 , . . . ,Xh−1}, so φhh is the correlation between Xh and X0 with the
linear dependence of X1 , . . . ,Xh−1 on each removed.

I The coefficient φhh is also the last coefficient (i.e. φ(1)
hh ) in the best linear

one-step-ahead prediction of Xh+1 given X1 , . . . ,Xh .



Forecasting and PACF of causal AR(p) models

PACF of an AR(p) model
Consider the causal AR(p) model Xt =

∑p
i=1 φiXt−i +ωt

1. Consider p = 2 and verify that X (n)
n+1 = φ1Xn + φ2Xn−1 . Deduce the value

of the PACF for h> 2

2. In the general case, deduce the value of the PACF for h> p.
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PACF of invertible MA models

Exercise : PACF of a MA(1) model
Consider the invertible MA(1) model Xt =ωt + θ ωt−1

1. Compute X̂ (2)
3 and X̂ (2)

1 , the orthogonal projections of X3 and X1 onto
span{X2}.

2. Deduce the first two values of the PACF.

More calculations (see Problem 3.23 in [BD13]) give

φhh = − (−θ)h(1− θ2)

1− θ2(h+1)
.

In general, the PACF of a MA(q) model does not vanish for larger lag, it is
however bounded by a geometrically decreasing function.
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An AR(2) model for the recruitement series
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Fig.: Twenty-four month forecats for the Recruitment series shown on slide 11



ACF and PACF

So far, we show that

Model ACF PACF
AR(p) decays zero for h > p
MA(q) zero for h > q decays
ARMA decays decays

I We can use these results to build a model.
I And we know how to forecast in an AR(p) model.
I It remains to give algorithms that will allow to forecast in MA and ARMA

models.



Innovations

So far, we have written X n
n+1 as

∑n
j=1 φ

(m)
nj Xn+1−j i.e. as the projection of Xn+1

onto span{X1 , . . . ,Xn} but we clearly have

span{X1,X2 − X1
2 ,X3 − X2

3 , . . . ,Xn − X n−1
n }.

Innovations
The values Xt − X t−1

t are called the innovations. They verify Xt − X t−1
t is

orthogonal to span{X1 , . . . ,Xt−1} .
As a consequence, we can rewrite

X n
n+1 =

n∑
j=1

θnj(Xn+1−j − X n−j
n+1−j)

The one-step-ahead predictors X t
t+1 and their mean-squared errors P t

t+1 can be
calculated iteratively via the innovations algorithm.



The innovations algorithm

The innovations algorithm
The one-step-ahead predictors can be iteratively be computed via

X0
1 = 0,P0

1 = γ(0) and t = 1, 2, . . .

X t
t+1 =

t∑
j=1

θtj(Xt+1−j − X t−j
t+1−j)

P t
t+1 = γ(0)−

t−1∑
j=0

θ2t,t−jP j
j+1 where

θt,t−h =
(
γ(t − h)−

h−1∑
k=0

θh,h−kθt,t−kPk
k+1

)
(Ph

h+1)
−1 h = 0, 1, . . . , t − 1

This can be solve by calculting P0
1 , θ11, P1

2 , θ22, θ21, etc.



Prediction for an MA(1)

Exercise
Consider the MA(1) model Xt =ωt + θ ωt−1 with ω ∼ WN(0 , σ2). We know
that γ(0) = σ2(1 + θ2), γ(1) = θσ2 and γ(h) = 0 for h ≥ 2 .
Show that

X n
n+1 = θ

Xn − X n−1
n

rn

with
rn = Pn−1

n /σ2.



The innovations algorithm for the ARMA(p , q) model

Consider an ARMA(p , q) model

Φ(B)Xt = Θ(B)ωt with ω ∼ WN(0, σ2).

Let m = max(p , q), to simplify calculations, the innovation algorithm is not
applied directly to X but to{

Wt = σ−1Xt t = 1, . . . ,m
Wt = σ−1Φ(B)Xt t > m.

see page 175 of [BD13]



Infinite past

We will now show that it is easier for a causal, invertible ARMA process

Φ(B)Xt = Θ(B)ωt

to approximate X (n)
n+h by a truncation of the projection of Xn+h onto the

infinite past
H̄n = ¯span{Xn,Xn−1, . . .} = ¯span{Xk , k ≤ n}.

The projection onto H̄n = ¯span(Xk , k ≤ n) can be defined as

lim
k→∞

Pspan(Xn−k ,...,Xn)

We will define
X̃n+h and ω̃n+h

as the projections of Xn+h and ωn+h onto H̄n.



Causal and invertible

Recall (see slide 69) that since X is causal and invertible, we may write
I Xn+h =

∑
k≥0 ψk ωn+h−k (MA(∞) representation)

I ωn+h =
∑

k≥0 πkXn+h−k (AR((∞)) representation).

Now, applying the projection operator onto Mn on both sides of both
equations, we get

X̃n+h =
∑
k≥0

ψk ω̃n+h−k (2)

ω̃n+h =
∑
k≥0

πk X̃n+h−k . (3)



Iteration

We get

X̃n+h = −
∑
k≥1

πk X̃n+h−k and

E
(
(Xn+h − X̃n+h)

2) = σ2
h−1∑
j=0

ψ2
j .

As X̃t = Xt for all t ≤ n, we can define recursively

X̃n+1 = −
∑
k≥1

πkXn+h−k

X̃n+2 = −π1X̃n+1 −
∑
k≥2

πkXn+h−k

. . . .



Truncation

In practice, we do not observe the past from −∞ but only X1 , . . . ,Xn, but we
can use a truncated version

X̃T
n+1 = −

n∑
k=1

πkXn+h−k

X̃T
n+2 = −π1X̃T

n+1 −
n+1∑
k=2

πkXn+h−k

. . .

and E
(
(Xn+h − X̃n+h)

2
)
= σ2∑h−1

j=0 ψ
2
j is used an approximation of the

predictor error.



Chapter 5 : Estimation and model selection



Introduction

We saw in the last chapter, that if we know
I the orders (p and q) and
I the coefficients

of the ARMA model under consideration, we can build predictions and
prediction intervals.

The aim of this chapter is to present
I methods for estimating the coefficients when the orders (p and q) are

known
I model selection methods, i.e. methods for selecting p and q

Caution :
I To avoid confusion, true parameters now wear a star :

σ2,?, φ?
1, . . . , φ

?
p , θ

?
1 , . . . , θ

?
q

I we have a sample (X1 , . . . ,Xn) to build estimators.



Moment estimations

We assume that µ? = 0 (without loss of generality) in Chapter 4. We now
consider causal and invertible ARMA processes of the form

Φ(B)(Xt − µ?) = Θ(B)ωt

where E(Xt) = µ?

Estimation of the mean
For a stationary time series, the moment estimator of µ? is the sample mean
X̄n.

AR(1) model
Give the moment estimators in a stationary AR(1) model.



Moment estimators for AR(p) models

Yule-Walker equations for an AR(p)
The autocovariance function and parameters of the AR(p) model verify

Γpφ
? = γp and σ2,? = γ(0)− (φ?)>γp

where

Γp =
(
γ(k − j)

)
1≤j,k≤p

φ? =
(
φ?
1, . . . , φ

?
p
)>
, and γp =

(
γ(1), . . . , γ(p)

)>
.

This leads to
φ̂ = Γ̂−1

p γ̂p and σ̂2 = γ̂(0)− φ̂>γ̂p .

AR(2)
Verify the Yule Walker equation for a causal AR(2) model.



Asymptotics

The only case in which the moment method is (asymptotically) efficient is the
AR(p) model.

Asymptotic distribution of moment estimators
Under mild conditions on ω, and if the AR(p) is causal, the Yule-Walker
estimators verify

√
n
(
φ̂− φ?) L→ N (0, σ2,?Γ−1

p )

σ̂2 P→ σ2,?.



Likelihood of an causal AR(1) model I

We now deal with maximum likelihood estimation, we assume that

ω ∼ i .i .d.N (0, σ2,?).

The likelihood the causal AR(1) model

Xt = µ? + φ?(Xt−1 − µ?) + ωt

is given by

Ln(µ, φ, σ
2) = fµ,φ,σ2(X1, . . . ,Xn)

= fµ,φ,σ2(X1)fµ,φ,σ2(X2|X1)fµ,φ,σ2(X3|X1,X2) . . . fµ,φ,σ2(Xn|X1,X2, . . . ,Xn−1)



Likelihood of an causal AR(1) model II

We can now write the log-likelihood

`n(µ, φ, σ
2) = logLn(µ, φ, σ

2)

= −n
2

log(2π) + n
2

log(σ2)− 1

2
log(1− φ2)− 1

2σ2
S(µ,  φ)

with

S(µ,  φ) = (1− φ2)(X1 − µ) +

n∑
k=2

(
Xk − µ+ φ(Xk−1 − µ)

)2
.

It is straightforward to see that

σ̂2 =
1

n S(µ̂,  φ̂)

where
µ̂, φ̂ = argminµ,φ log(S(µ,  φ)/n)− 1

n log(1− φ2).



Likelihood for causal, invertible ARMA model I

Consider the causal and invertible ARMA(p , q)

Φ(B)Xt = Θ(B)ωt ,

when ω ∼ i .i .d .N (0 , σ2,?), one can show that

Xt |X1, . . . ,Xt−1 ∼ N (X (t−1)
t ,P t−1

t ) with

P t−1
t = σ2,?

∑
j≥0

ψ2,?

j

t−1∏
k=1

(1− φ2,?
kk ) := σ2,?rt

see the details on pages 126 and following of [SS10] and the Durbin-Levinson
algorithm (see page 112).



Likelihood for causal, invertible ARMA model II

Log-likelihood of an Gaussian ARMA(p , q) process
Denoting by β the vector (µ , φ1 , φp , θ1 , . . . , θq), we have

`n(β, σ
2) = logLn(β, σ

2)

= −n
2

log(2π) + n
2

log(σ2)− 1

2

n∑
k=1

log(rk(β))−
1

2σ2
S(β)

with

S(β) =
n∑

k=1

(
Xk − X k−1

k
rk(β)

)2

and σ̂2 =
1

n S(β̂)

where

β̂ = argminβ log(S(β)/n)− 1

n

n∑
k=1

log(rk(β)).

The minimization problem is usually solve via Newton-Raphson algorithm.



Asymptotics

Asymptotic distribution of maximum likelihood estimators
Under appropriate conditions, and if the ARMA(p , q) is causal and invertible,
the maximum likelihood estimators verify

√
n
(
β̂ − β?) L→ N (0, σ2,?Γ−1,?

p,q )

σ̂2 P→ σ2,?

where the matrix Γ?
p,q depends on (φ?

1 , . . . , φ
?
p , θ

?
1 , . . . , θ

?
q ).

Other options involve in particular conditional sum of squares and the
Gauss-Newton algorithm (details may be found on page 129 and following
in [SS10]).



Model selection

Once the likelihood is given, model selection for the choice of parameters p and
q can be performed via usual criteria.

To avoid confusion, we now denote by

β̂p,q = (µ̂, φ̂1, φ̂p , θ̂1, . . . , θ̂q) and σ̂2
p,q

the maximum likelihood estimators in the ARMA(p , q) model, that is

β̂p,q, σ̂
2
p,q = argminβp,q,σ2 − 2`n(βp,q, σ

2)



AICc and BIC

AICc
The corrected AIC (Akaike Information Criterion) choose p and q that minimize

−2`n(β̂p,q, σ̂
2) + 2

(p + q + 1)n
n − p − q − 2

.

BIC
The BIC (Bayesian Information Critetion) choose p and q that minimize

−2`n(β̂p,q, σ̂
2) + log(n)(p + q + 1).



Residuals

The final step of model building is diagnostics on residuals.

Standardized innovations (residuals)
In a given model, the standardized innovations are given by

Xi − X (i−1)
i√

P(i−1)
i

for i = 1 , . . . , n.



Diagnostics on residuals

In the model is correct standardized innovations should behave like a white
noise (even a Gaussian white noise if Gaussian maximum likelihood has been
used.)

1. Plot the standardized innovations and their ACFs.
2. To check for normality, plot a histogram or a QQ-plot.
3. Verify that the ACF coefficients stay in the confidence interval for h ≥ 1

4. Use a Ljung-Box test

Ljung-Box test
To test H0 :ω is a white noise, use the test statistic

Q = n(n + 2)
H∑

h=1

ρ̂2p,q(h)
n − h

where ρ̂p,q is the sample ACF of the residuals in a given ARMA(p , q) model.

Q is asymptotically (under mild conditions) of χ2
H−p−q distribution.



This is my link



Chapter 6 : Non-stationarity and seasonality



Integrated models

We now introduce a new class of models, which, based on ARMA models,
incorporates a wide range of non-stationary series.

ARIMA(p,d,q) model
A process X is said to be ARIMA(p, d, q) if

(1− B)dXt

is an ARMA(p , q). We can rewrite

Φ(B)(1− B)dXt = Θ(B)ωt .

If E
(
(1− B)dXt

)
= µ, we write

Φ(B)(1− B)dXt = δ +Θ(B)ωt ,

where δ = µ(1− φ1 − φ2 − . . .− φp).
Caution : X is not stationary but (1−B)dX is, provided that the roots of Φ are
outside the unit circle.



A special example

Random walk with drift
Consider the model of slide 19

Xt = δ + Xt−1 + ωt

with X0 = 0

1. Check that X is an ARIMA(0,1,0).
2. Given data X1 , . . . ,Xn, give the one-step-ahead prediction of Xn+1

3. Deduce the m-step-ahead prediction X (n)
n+m

4. Compute the prediction error P(n)
n+m.



Forecasting in ARIMA models

Exponentially weighted moving averages
Consider the process :

Xt = Xt−1 + ωt − θωt−1,

with |θ| < 1

1. Write it as an ARIMA(0,1,1).
2. Define Yt =ωt−θ ωt−1 and verify that Y is invertible.
3. Deduce that

Xt =

∞∑
j=1

(1− θ)θj−1Xt−j + ωt

4. and finally that, based on the data X1 , . . . ,Xn

X (n)
n+1 = (1− θ)Xn + θX (n−1)

n .



Building ARIMA model I

Here a the steps you should follow to build an ARIMA model
1. Construct a time plot of the data and inspect the graph for anomalies. For

example, if the variability in the data depends upon time, you need to
stabilize the variance via a Box-Cox transformation

2. Transform the data and construct a new time plot.
3. Choice of d : a look at the new time plot will help you determine if a

differentiation is needed. If it is the case
I Differentiate the series and inspect the time plot
I If additional differentiating is required, apply the operator (1− B)2 and so

on
I Do not forget that a ACF decreasing too slowly is also a sign of

non-stationarity
I Caution : do not differentiate too many times

Counter example
Show that if ωt is a white noise, ωt −ωt−1 is a MA(1) ! !



Building ARIMA model II

4. The next step is to identify reasonable values (or a set of reasonable
values) for q, p
4.1 Represent the ACFs and PACFs of the differentiated series (they can be

more than one if you hesitate between two values for d) and
4.2 choose few reasonable values for q and p

5. At this stage, you should have few preliminary reasonable values for d, q
and p. Estimate the parameters in the different models and compute their
AICc and BIC.

6. Choose one model and conduct diagnostic tests on its residuals



Back to seasonality

Can you you think of a model for data with these sample ACF and PACF ?
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Pure seasonal ARMA model

Pure seasonal ARMA(P ,Q)s
A pure seasonal ARMA(P ,Q)s process X is a stationary process that is
defined through

ΦP(Bs)Xt = ΘQ(Bs)ωt

where ω ∼ WN(0 , σ2), ΦP is a polynomial of order P , ΘQ is a polynomial of
order Q and ΦP and ΘQ have no common factors.



Exercise
1. Verify that the pure seasonal (s = 12) ARMA(0 , 1)12 (this is an MA(1)12)

has a ACF given by

ρ(12) = θ/(1 + θ2)

ρ(h) = 0 otherwise.

2. Verify that the pure seasonal (s = 12) ARMA(1 , 0)12 (this is an AR(1)12)
has a ACF given by

ρ(12k) = φk for k = 1, . . .

ρ(h) = 0 otherwise.



ARMA(p , q)× (P ,Q)s
In general, we will mix seasonal and non-seasonal operators to build
multiplicative seasonal ARMA : ARMA(p , q)× (P ,Q)s .

ARMA(0 , 1)× (1 , 0)12
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Fig.: ACF and PACF of the process (1− 0.8B12)Xt = (1− 0.5B)ωt see [SS10]



SARIMA

Multiplicative seasonal ARIMA(p , d , q)× (P ,D ,Q)s
A multiplicative seasonal ARIMA(p , d , q)× (P ,D ,Q)s process X is a process
that is defined through

ΦP(Bs)Φ(B)(1− Bs)D(1− B)dXt = ΘQ(Bs)Θ(B)ωt

where
I ω ∼ WN(0 , σ2),
I ΦP is a polynomial of order P
I ΘQ is a polynomial of order Q
I Φ is a polynomial of order p
I Θ is a polynomial of order q



Model building

To choose p,q,P,Q,d,D
I First difference sufficiently to get to stationarity.
I Then find suitable orders for ARMA or seasonal ARMA models for the

differenced time series. The ACF and PACF is again a useful tool here.
I Select few models, compare their AICc and BIC
I Finally conduct a diagnosis check for the residuals of the select model.
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