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Preface

These notes can be used for an introductory time series course where the
prerequisites are an understanding of linear regression and some basic
probability skills (expectation). It also assumes general math skills at the
high school level (trigonometry, complex numbers, polynomials,
calculus, and so on).

• Various topics depend heavily on techniques from nonlinear
regression. Consequently, the reader should have a solid knowledge
of linear regression analysis, including multiple regression and
weighted least squares. Some of this material is reviewed briefly in
Chapters 2 and 3.

• A calculus based course on probability is essential. Readers should
be familiar with most of the content of basic probability facts:
http://www.stat.pitt.edu/stoffer/tsa4/intro_prob.pdf.

• For readers who are a bit rusty on high school math skills, the
WikiBook: http://en.wikibooks.org/wiki/Subject:K-12_mathematics
may be useful. In particular, we mention the book covering calculus:
http://en.wikibooks.org/wiki/Calculus.
We occasionally use matrix notation. For readers lacking this skill,
see the high school page on matrices:
https://en.wikibooks.org/wiki/High_School_Mathematics_Extensions/

Matrices.
For Chapter 4, this primer on complex numbers:
http://tutorial.math.lamar.edu/pdf/Complex/ComplexNumbers.pdf

may be helpful.

All of the numerical examples were done using the freeware R
statistical package and the code is typically listed at the end of an
example. Appendix R has information regarding the use of R and the
package used throughout, astsa.

Two stars (⇤⇤) indicate that skills obtained in a course on basic
mathematical statistics are recommended and these parts may be
skipped. The references are not listed here, but may be found in
Shumway & Stoffer (2016) or earlier versions.

Internal links are dark red, external links are magenta, R code is in
blue, output is purple and comments are # green.

http://www.stat.pitt.edu/stoffer/tsa4/intro_prob.pdf
http://en.wikibooks.org/wiki/Subject:K-12_mathematics
http://en.wikibooks.org/wiki/Calculus
https://en.wikibooks.org/wiki/High_School_Mathematics_Extensions/Matrices
https://en.wikibooks.org/wiki/High_School_Mathematics_Extensions/Matrices
http://tutorial.math.lamar.edu/pdf/Complex/ComplexNumbers.pdf
http://www.stat.pitt.edu/stoffer/tsa4/
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Chapter 1
Time Series Characteristics

1.1 Introduction

The analysis of experimental data that have been observed at different
points in time leads to new and unique problems in statistical modeling
and inference. The obvious correlation introduced by the sampling of
adjacent points in time can severely restrict the applicability of the many
conventional statistical methods traditionally dependent on the
assumption that these adjacent observations are independent and
identically distributed. The systematic approach by which one goes
about answering the mathematical and statistical questions posed by
these time correlations is commonly referred to as time series analysis.

Historically, time series methods were applied to problems in the
physical and environmental sciences. This fact accounts for the basic
engineering flavor permeating the language of time series analysis. In
our view, the first step in any time series investigation always involves
careful scrutiny of the recorded data plotted over time. Before looking
more closely at the particular statistical methods, it is appropriate to
mention that two separate, but not necessarily mutually exclusive,
approaches to time series analysis exist, commonly identified as the time
domain approach (Chapter 3) and the frequency domain approach
(Chapter 4).

1.2 Some Time Series Data

The following examples illustrate some of the common kinds of time
series data as well as some of the statistical questions that might be
asked about such data.

Example 1.1 Johnson & Johnson Quarterly Earnings
Figure 1.1 shows quarterly earnings per share for the U.S. company
Johnson & Johnson. There are 84 quarters (21 years) measured from the
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Fig. 1.1. Johnson & Johnson quarterly earnings per share, 1960-I to 1980-IV.
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Fig. 1.2. Left: Initial deposits of $100, $150, $200, then $75, in quarter 1, 2, 3, then 4, over 20
years, with an annual growth rate of 10%; xt = (1 + .10)xt�4. Right: Logs of the quarterly values;
log(xt) = log(1 + .10) + log(xt�4).

first quarter of 1960 to the last quarter of 1980. Modeling such series
begins by observing the primary patterns in the time history. In this
case, note the increasing underlying trend and variability, and a
somewhat regular oscillation superimposed on the trend that seems to
repeat over quarters. Methods for analyzing data such as these are
explored in Chapter 2 (see Problem 2.1) using regression techniques.
Also, compare Figure 1.1 with Figure 1.2.

To use package astsa, and then plot the data for this example using
R, type the following (try plotting the logged data yourself).
library(astsa) # ** SEE FOOTNOTE
plot(jj, type="o", ylab="Quarterly Earnings per Share")
plot(log(jj)) # not shown

Example 1.2 Global Warming
Consider the global temperature series record shown in Figure 1.3. The
data are the global mean land–ocean temperature index from 1880 to
2015, with the base period 1951-1980. The values are deviations (�C)
from the 1951-1980 average, updated from Hansen et al. (2006). The
upward trend in the series during the latter part of the twentieth
century has been used as an argument for the climate change

** Throughout the text, we assume that the R package for the book, astsa, has been
downloaded and installed. See Appendix R (Section R.2) for further details.
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Fig. 1.3. Yearly average global temperature deviations (1880–2009) in �C.

Apr 21 2006 Oct 01 2008 Oct 01 2010 Oct 01 2012 Oct 01 2014

−0
.0

5
0.

00
0.

05
0.

10
D

JI
A 

R
et

ur
ns

Fig. 1.4. The daily returns of the Dow Jones Industrial Average (DJIA) from April 20, 2006 to April
20, 2016.

hypothesis. Note that the trend is not linear, with periods of leveling
off and then sharp upward trends. The question of interest is whether
the overall trend is natural or caused by some human-induced
interface. The R code for this example is:
plot(globtemp, type="o", ylab="Global Temperature Deviations")

Example 1.3 Dow Jones Industrial Average
As an example of financial time series data, Figure 1.4 shows the daily
returns (or percent change) of the Dow Jones Industrial Average (DJIA)
from April 20, 2006 to April 20, 2016. It is easy to spot the financial
crisis of 2008 in the figure. The data shown in Figure 1.4 are typical of
return data. The mean of the series appears to be stable with an
average return of approximately zero, however, the volatility (or
variability) of data exhibits clustering; that is, highly volatile periods
tend to be clustered together. A problem in the analysis of these type
of financial data is to forecast the volatility of future returns. Models
such as ARCH and GARCH models (Engle, 1982; Bollerslev, 1986) have
been developed to handle these problems; see Chapter 5. The data
were obtained using the Technical Trading Rules (TTR) package to
download the data from YahooTM and then plot it. We then used the
fact that if xt is the actual value of the DJIA and rt = (xt � xt�1)/xt�1
is the return, then 1 + rt = xt/xt�1 and
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Fig. 1.5. Monthly SOI and Recruitment (estimated new fish), 1950-1987.

log(1 + rt) = log(xt/xt�1) = log(xt)� log(xt�1) ⇡ rt.1 The data set is
also provided in astsa but xts must be loaded.
# library(TTR)
# djia = getYahooData("^DJI", start=20060420, end=20160420, freq="daily")
library(xts)
djiar = diff(log(djia$Close))[-1] # approximate returns
plot(djiar, main="DJIA Returns", type="n")
lines(djiar)

Example 1.4 El Niño and Fish Population
We may also be interested in analyzing several time series at once.
Figure 1.5 shows monthly values of an environmental series called the
Southern Oscillation Index (SOI) and associated Recruitment (an index
of the number of new fish). Both series are for a period of 453 months
ranging over the years 1950–1987. SOI measures changes in air pressure
related to sea surface temperatures in the central Pacific Ocean. The
central Pacific warms every three to seven years due to the El Niño
effect, which has been blamed for various global extreme weather
events. The series show two basic oscillations types, an obvious annual
cycle (hot in the summer, cold in the winter), and a slower frequency
that seems to repeat about every 4 years. The study of the kinds of
cycles and their strengths is the subject of Chapter 4. The two series are
also related; it is easy to imagine the fish population is dependent on
the ocean temperature. The following R code will reproduce Figure 1.5:
par(mfrow = c(2,1)) # set up the graphics
plot(soi, ylab="", xlab="", main="Southern Oscillation Index")
plot(rec, ylab="", xlab="", main="Recruitment")

1 log(1 + p) = p � p2

2 + p3

3 � · · · for �1 < p  1. If p is near zero, the higher-order terms
in the expansion are negligible.
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Fig. 1.6. fMRI data from various locations in the cortex, thalamus, and cerebellum; n = 128 points,
one observation taken every 2 seconds.

Example 1.5 fMRI Imaging
Often, time series are observed under varying experimental conditions
or treatment configurations. Such a set of series is shown in Figure 1.6,
where data are collected from various locations in the brain via
functional magnetic resonance imaging (fMRI). In this example, a
stimulus was applied for 32 seconds and then stopped for 32 seconds;
thus, the signal period is 64 seconds. The sampling rate was one
observation every 2 seconds for 256 seconds (n = 128). The series are
consecutive measures of blood oxygenation-level dependent (bold)
signal intensity, which measures areas of activation in the brain. Notice
that the periodicities appear strongly in the motor cortex series and
less strongly in the thalamus and cerebellum. The fact that one has
series from different areas of the brain suggests testing whether the
areas are responding differently to the brush stimulus. Use the
following R commands to plot the data:
par(mfrow=c(2,1), mar=c(3,2,1,0)+.5, mgp=c(1.6,.6,0))
ts.plot(fmri1[,2:5], col=1:4, ylab="BOLD", xlab="", main="Cortex")
ts.plot(fmri1[,6:9], col=1:4, ylab="BOLD", xlab="", main="Thalam & Cereb")
mtext("Time (1 pt = 2 sec)", side=1, line=2)

1.3 Time Series Models

The primary objective of time series analysis is to develop mathematical
models that provide plausible descriptions for sample data, like that
encountered in the previous section.

The fundamental visual characteristic distinguishing the different
series shown in Example 1.1 – Example 1.5 is their differing degrees of
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Fig. 1.7. Gaussian white noise series (top) and three-point moving average of the Gaussian white
noise series (bottom).

smoothness. A parsimonious explanation for this smoothness is that
adjacent points in time are correlated, so the value of the series at time t,
say, xt, depends in some way on the past values xt�1, xt�2, . . .. This idea
expresses a fundamental way in which we might think about generating
realistic looking time series.

Example 1.6 White Noise (3 flavors)
A simple kind of generated series might be a collection of uncorrelated
random variables, wt, with mean 0 and finite variance s2

w. The time
series generated from uncorrelated variables is used as a model for
noise in engineering applications where it is called white noise; we shall
sometimes denote this process as wt ⇠ wn(0, s2

w). The designation
white originates from the analogy with white light (details in
Chapter 4).

We often require stronger conditions and need the noise to be
independent and identically distributed (iid) random variables with
mean 0 and variance s2

w. We will distinguish this by saying white
independent noise, or by writing wt ⇠ iid(0, s2

w).
A particularly useful white noise series is Gaussian white noise,

wherein the wt are independent normal random variables, with mean
0 and variance s2

w; or more succinctly, wt ⇠ iid N(0, s2
w). Figure 1.7

shows in the upper panel a collection of 500 such random variables,
with s2

w = 1, plotted in the order in which they were drawn. The
resulting series bears a resemblance to portions of the DJIA returns in
Figure 1.4.

If the stochastic behavior of all time series could be explained in
terms of the white noise model, classical statistical methods would
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suffice. Two ways of introducing serial correlation and more smoothness
into time series models are given in Example 1.7 and Example 1.8.

Example 1.7 Moving Averages and Filtering
We might replace the white noise series wt by a moving average that
smooths the series. For example, consider replacing wt in Example 1.6
by an average of its current value and its immediate neighbors in the
past and future. That is, let

vt = 1
3
�

wt�1 + wt + wt+1
�

, (1.1)

which leads to the series shown in the lower panel of Figure 1.7. This
series is much smoother than the white noise series, and it is apparent
that averaging removes some of the high frequency behavior of the
noise. We begin to notice a similarity to some of the non-cyclic fMRI
series in Figure 1.6.

To reproduce Figure 1.7 in R use the following commands. A linear
combination of values in a time series such as in (1.1) is referred to,
generically, as a filtered series; hence the command filter.
w = rnorm(500,0,1) # 500 N(0,1) variates
v = filter(w, sides=2, rep(1/3,3)) # moving average
par(mfrow=c(2,1))
plot.ts(w, main="white noise")
plot.ts(v, ylim=c(-3,3), main="moving average")

The SOI and Recruitment series in Figure 1.5, as well as some of the
fMRI series in Figure 1.6, differ from the moving average series because
they are dominated by an oscillatory behavior. A number of methods
exist for generating series with this quasi-periodic behavior; we illustrate
a popular one based on the autoregressive model considered in
Chapter 3.

Example 1.8 Autoregressions
Suppose we consider the white noise series wt of Example 1.6 as input
and calculate the output using the second-order equation

xt = xt�1 � .9xt�2 + wt (1.2)
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Fig. 1.9. Random walk, sw = 1, with drift d = .2 (upper jagged line), without drift, d = 0 (lower
jagged line), and dashed lines showing the drifts.

successively for t = 1, 2, . . . , 500. The resulting output series is shown
in Figure 1.8. Equation (1.2) represents a regression or prediction of the
current value xt of a time series as a function of the past two values of
the series, and, hence, the term autoregression is suggested for this
model. A problem with startup values exists here because (1.2) also
depends on the initial conditions x0 and x�1, but, for now, we assume
that we are given these values and generate the succeeding values by
substituting into (1.2). That is, given w1, w2, . . . , w500, and x0, x�1, we
start with x1 = x0 � .9x�1 + w1, then recursively compute
x2 = x1 � .9x0 + w2, then x3 = x2 � .9x1 + w3, and so on. We note the
approximate periodic behavior of the series, which is similar to that
displayed by the SOI and Recruitment in Figure 1.5 and some fMRI
series in Figure 1.6. The autoregressive model above and its
generalizations can be used as an underlying model for many
observed series and will be studied in detail in Chapter 3.

One way to simulate and plot data from the model (1.2) in R is to
use the following commands (another way is to use arima.sim). The
initial conditions are set equal to zero, so we let the filter run an extra
50 values to avoid startup problems.
w = rnorm(550,0,1) # 50 extra to avoid startup problems
x = filter(w, filter=c(1,-.9), method="recursive")[-(1:50)]
plot.ts(x, main="autoregression")

Example 1.9 Random Walk with Drift
A model for analyzing trend such as seen in the global temperature
data in Figure 1.3, is the random walk with drift model given by

xt = d + xt�1 + wt (1.3)

for t = 1, 2, . . ., with initial condition x0 = 0, and where wt is white
noise. The constant d is called the drift, and when d = 0, the model is
called simply a random walk because the value of the time series at
time t is the value of the series at time t � 1 plus a completely random
movement determined by wt. Note that we may rewrite (1.3) as a
cumulative sum of white noise variates. That is,
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Fig. 1.10. Cosine wave with period 50 points (top panel) compared with the cosine wave contaminated
with additive white Gaussian noise, sw = 1 (middle panel) and sw = 5 (bottom panel); see (1.5).

xt = d t +
t

Â
j=1

wj (1.4)

for t = 1, 2, . . .; either use induction, or plug (1.4) into (1.3) to verify
this statement. Figure 1.9 shows 200 observations generated from the
model with d = 0 and .2, and with standard normal nose. For
comparison, we also superimposed the straight lines dt on the graph.

To reproduce Figure 1.9 in R use the following code (notice the use
of multiple commands per line using a semicolon).
set.seed(154) # so you can reproduce the results
w = rnorm(200); x = cumsum(w) # two commands in one line
wd = w +.2; xd = cumsum(wd)
plot.ts(xd, ylim=c(-5,55), main="random walk", ylab='')
abline(a=0, b=.2, lty=2) # drift
lines(x, col=4)
abline(h=0, col=4, lty=2)

Example 1.10 Signal in Noise
Many realistic models for generating time series assume an underlying
signal with some consistent periodic variation, contaminated by adding
a random noise. For example, it is easy to detect the regular cycle fMRI
series displayed on the top of Figure 1.6. Consider the model

xt = 2 cos(2p t+15
50 ) + wt (1.5)

for t = 1, 2, . . . , 500, where the first term is regarded as the signal,
shown in the upper panel of Figure 1.10. We note that a sinusoidal
waveform can be written as

A cos(2pwt + f), (1.6)
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where A is the amplitude, w is the frequency of oscillation, and f is a
phase shift. In (1.5), A = 2, w = 1/50 (one cycle every 50 time points),
and f = .6p.

An additive noise term was taken to be white noise with sw = 1
(middle panel) and sw = 5 (bottom panel), drawn from a normal
distribution. Adding the two together obscures the signal, as shown in
the lower panels of Figure 1.10. Of course, the degree to which the
signal is obscured depends on the amplitude of the signal relative to
the size of sw. The ratio of the amplitude of the signal to sw (or some
function of the ratio) is sometimes called the signal-to-noise ratio (SNR);
the larger the SNR, the easier it is to detect the signal. Note that the
signal is easily discernible in the middle panel, whereas the signal is
obscured in the bottom panel. Typically, we will not observe the signal
but the signal obscured by noise.

To reproduce Figure 1.10 in R, use the following commands:
cs = 2*cos(2*pi*1:500/50 + .6*pi)
w = rnorm(500,0,1)
par(mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)
plot.ts(cs, main=expression(2*cos(2*pi*t/50+.6*pi)))
plot.ts(cs+w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,1)))
plot.ts(cs+5*w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,5^2)))

1.4 Measures of Dependence

We now discuss various measures that describe the general behavior of a
process as it evolves over time. A rather simple descriptive measure is
the mean function.

Definition 1.1 The mean function is defined as

µxt = E(xt) (1.7)

provided it exists, where E denotes the usual expected value operator.2 When no
confusion exists about which time series we are referring to, we will drop a
subscript and write µxt as µt.

Example 1.11 Mean Function of a Moving Average Series
If wt denotes a white noise series, then µwt = E(wt) = 0 for all t. The
top series in Figure 1.7 reflects this, as the series clearly fluctuates
around a mean value of zero. Smoothing the series as in Example 1.7
does not change the mean because we can write

µvt = E(vt) = 1
3 [E(wt�1) + E(wt) + E(wt+1)] = 0.

2 Expectation is discussed in the third chapter of the basic probability facts pdf mentioned
in the preface. For continuous-valued finite variance processes, the mean is µt = E(xt) =
R •
�• x ft(x) dx and the variance is s2

t = E(xt � µt)2 =
R •
�•(x � µt)2 ft(x) dx, where ft is

the density of xt. If xt is Gaussian with mean µt and variance s2
t , abbreviated as xt ⇠

N(µt, s2
t ), the marginal density is given by ft(x) = 1

st
p

2p
exp

�

� 1
2s2

t
(x � µt)2 for x 2 R.

http://www.stat.pitt.edu/stoffer/tsa4/intro_prob.pdf
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Example 1.12 Mean Function of a Random Walk with Drift
Consider the random walk with drift model given in (1.4),

xt = d t +
t

Â
j=1

wj, t = 1, 2, . . . .

Because E(wt) = 0 for all t, and d is a constant, we have

µxt = E(xt) = d t +
t

Â
j=1

E(wj) = d t

which is a straight line with slope d. A realization of a random walk
with drift can be compared to its mean function in Figure 1.9.

Example 1.13 Mean Function of Signal Plus Noise
A great many practical applications depend on assuming the observed
data have been generated by a fixed signal waveform superimposed on
a zero-mean noise process, leading to an additive signal model of the
form (1.5). It is clear, because the signal in (1.5) is a fixed function of
time, we will have

µxt = E
⇥

2 cos(2p t+15
50 ) + wt

⇤

= 2 cos(2p t+15
50 ) + E(wt)

= 2 cos(2p t+15
50 ),

and the mean function is just the cosine wave.

The mean function describes only the marginal behavior of a time
series. The lack of independence between two adjacent values xs and xt
can be assessed numerically, as in classical statistics, using the notions of
covariance and correlation. Assuming the variance of xt is finite, we have
the following definition.

Definition 1.2 The autocovariance function is defined as the second moment
product

gx(s, t) = cov(xs, xt) = E[(xs � µs)(xt � µt)], (1.8)

for all s and t. When no possible confusion exists about which time series we are
referring to, we will drop the subscript and write gx(s, t) as g(s, t).

Note that gx(s, t) = gx(t, s) for all time points s and t. The
autocovariance measures the linear dependence between two points on
the same series observed at different times. Recall from classical statistics
that if gx(s, t) = 0, then xs and xt are not linearly related, but there still
may be some dependence structure between them. If, however, xs and xt
are bivariate normal, gx(s, t) = 0 ensures their independence. It is clear
that, for s = t, the autocovariance reduces to the (assumed finite)
variance, because

gx(t, t) = E[(xt � µt)
2] = var(xt). (1.9)
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Example 1.14 Autocovariance of White Noise
The white noise series wt has E(wt) = 0 and

gw(s, t) = cov(ws, wt) =

(

s2
w s = t,

0 s 6= t.
(1.10)

A realization of white noise with s2
w = 1 is shown in the top panel of

Figure 1.7.

We often have to calculate the autocovariance between filtered series.
A useful result is given in the following proposition.

Property 1.1 If the random variables

U =
m

Â
j=1

ajXj and V =
r

Â
k=1

bkYk

are linear filters of (finite variance) random variables {Xj} and {Yk},
respectively, then

cov(U, V) =
m

Â
j=1

r

Â
k=1

ajbkcov(Xj, Yk). (1.11)

Furthermore, var(U) = cov(U, U).

An easy way to remember (1.11) is to treat it like multiplication:

(a1X1 + a2X2)(b1Y1) = a1b1X1Y1 + a2b1X2Y1 .

Example 1.15 Autocovariance of a Moving Average
Consider applying a three-point moving average to the white noise
series wt of the previous example as in Example 1.7. In this case,

gv(s, t) = cov(vs, vt) = cov
n

1
3 (ws�1 + ws + ws+1) , 1

3 (wt�1 + wt + wt+1)
o

.

When s = t we have

gv(t, t) = 1
9 cov{(wt�1 + wt + wt+1), (wt�1 + wt + wt+1)}

= 1
9 [cov(wt�1, wt�1) + cov(wt, wt) + cov(wt+1, wt+1)]

= 3
9 s2

w.

When s = t + 1,

gv(t + 1, t) = 1
9 cov{(wt + wt+1 + wt+2), (wt�1 + wt + wt+1)}

= 1
9 [cov(wt, wt) + cov(wt+1, wt+1)]

= 2
9 s2

w,

using (1.10). Similar computations give gv(t � 1, t) = 2s2
w/9,

gv(t + 2, t) = gv(t � 2, t) = s2
w/9, and 0 when |t � s| > 2. We

summarize the values for all s and t as
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gv(s, t) =

8

>

>

>

>

<

>

>

>

>

:

3
9 s2

w s = t,
2
9 s2

w |s � t| = 1,
1
9 s2

w |s � t| = 2,

0 |s � t| > 2.

(1.12)

Example 1.15 shows clearly that the smoothing operation introduces
a covariance function that decreases as the separation between the two
time points increases and disappears completely when the time points
are separated by three or more time points. This particular
autocovariance is interesting because it only depends on the time
separation or lag and not on the absolute location of the points along the
series. We shall see later that this dependence suggests a mathematical
model for the concept of weak stationarity.

Example 1.16 Autocovariance of a Random Walk
For the random walk model, xt = Ât

j=1 wj, we have

gx(s, t) = cov(xs, xt) = cov

 

s

Â
j=1

wj,
t

Â
k=1

wk

!

= min{s, t} s2
w ,

because the wt are uncorrelated random variables. For example, with
s = 1 and t = 2, cov(w1, w1 + w2) = cov(w1, w1) + cov(w1, w2) = s2

w.
Note that, as opposed to the previous examples, the autocovariance
function of a random walk depends on the particular time values s and
t, and not on the time separation or lag. Also, notice that the variance
of the random walk, var(xt) = gx(t, t) = t s2

w, increases without bound
as time t increases. The effect of this variance increase can be seen in
Figure 1.9 where the processes start to move away from their mean
functions d t (note that d = 0 and .2 in that example).

As in classical statistics, it is more convenient to deal with a measure
of association between �1 and 1, and this leads to the following
definition.

Definition 1.3 The autocorrelation function (ACF) is defined as

r(s, t) =
g(s, t)

p

g(s, s)g(t, t)
. (1.13)

The ACF measures the linear predictability of the series at time t, say
xt, using only the value xs. We can show easily that �1  r(s, t)  1
using the Cauchy–Schwarz inequality.3 If we can predict xt perfectly from
xs through a linear relationship, xt = b0 + b1xs, then the correlation will
be +1 when b1 > 0, and �1 when b1 < 0. Hence, we have a rough
measure of the ability to forecast the series at time t from the value at
time s.

Often, we would like to measure the predictability of another series
yt from the series xs. Assuming both series have finite variances, we have
the following definition.

3 The Cauchy–Schwarz inequality implies |g(s, t)|2  g(s, s)g(t, t).
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Definition 1.4 The cross-covariance function between two series, xt and yt,
is

gxy(s, t) = cov(xs, yt) = E[(xs � µxs)(yt � µyt)]. (1.14)

The cross-covariance function can be scaled to live in [�1, 1]:

Definition 1.5 The cross-correlation function (CCF) is given by

rxy(s, t) =
gxy(s, t)

q

gx(s, s)gy(t, t)
. (1.15)

1.5 Stationary Time Series
The preceding definitions of the mean and autocovariance functions are
completely general. Although we have not made any special
assumptions about the behavior of the time series, many of the
preceding examples have hinted that a sort of regularity may exist over
time in the behavior of a time series.

Definition 1.6 A strictly stationary time series is one for which the
probabilistic behavior of every collection of values and shifted values

{xt1 , xt2 , . . . , xtk} and {xt1+h, xt2+h, . . . , xtk+h} ,

are identical, for all k = 1, 2, ..., all time points t1, t2, . . . , tk, and all time shifts
h = 0,±1,±2, ... .

It is difficult to assess strict stationarity from data. Rather than
imposing conditions on all possible distributions of a time series, we will
use a milder version that imposes conditions only on the first two
moments of the series.

Definition 1.7 A weakly stationary time series is a finite variance process
where

(i) the mean value function, µt, defined in (1.7) is constant and does not
depend on time t, and

(ii) the autocovariance function, g(s, t), defined in (1.8) depends on s and t
only through their difference |s � t|.

Henceforth, we will use the term stationary to mean weakly stationary; if a
process is stationary in the strict sense, we will use the term strictly stationary.

Stationarity requires regularity in the mean and autocorrelation
functions so that these quantities (at least) may be estimated by
averaging. It should be clear that a strictly stationary, finite variance,
time series is also stationary. The converse is not true in general. One
important case where stationarity implies strict stationarity is if the time
series is Gaussian [meaning all finite collections of the series are
Gaussian].
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Example 1.17 A Random Walk is Not Stationary
A random walk is not stationary because its autocovariance function,
g(s, t) = min{s, t}s2

w, depends on time; see Example 1.16 and
Problem 1.6. Also, the random walk with drift violates both conditions
of Definition 1.7 because, as shown in Example 1.12, the mean
function, µxt = dt, is also a function of time t.

Because the mean function, E(xt) = µt, of a stationary time series is
independent of time t, we will write

µt = µ. (1.16)

Also, because the autocovariance function, g(s, t), of a stationary time
series, xt, depends on s and t only through their difference |s � t|, we
may simplify the notation. Let s = t + h, where h represents the time
shift or lag. Then

g(t + h, t) = cov(xt+h, xt) = cov(xh, x0) = g(h, 0)

because the time difference between times t + h and t is the same as the
time difference between times h and 0. Thus, the autocovariance function
of a stationary time series does not depend on the time argument t.
Henceforth, for convenience, we will drop the second argument of
g(h, 0).

Definition 1.8 The autocovariance function of a stationary time series
will be written as

g(h) = cov(xt+h, xt) = E[(xt+h � µ)(xt � µ)]. (1.17)

Definition 1.9 The autocorrelation function (ACF) of a stationary time
series will be written using (1.13) as

r(h) =
g(h)
g(0)

. (1.18)

The Cauchy–Schwarz inequality shows again that �1  r(h)  1 for
all h, enabling one to assess the relative importance of a given
autocorrelation value by comparing with the extreme values �1 and 1.

Example 1.18 Stationarity of White Noise
The mean and autocovariance functions of the white noise series
discussed in Example 1.6 and Example 1.14 are easily evaluated as
µwt = 0 and

gw(h) = cov(wt+h, wt) =

(

s2
w h = 0,

0 h 6= 0.

Thus, white noise satisfies the conditions of Definition 1.7 and is
weakly stationary or stationary.
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Fig. 1.11. Autocovariance function of a three-point moving average.

Example 1.19 Stationarity of a Moving Average
The three-point moving average process of Example 1.7 is stationary
because, from Example 1.11 and Example 1.15, the mean and
autocovariance functions µvt = 0, and

gv(h) =

8

>

>

>

>

<

>

>

>

>

:

3
9 s2

w h = 0,
2
9 s2

w h = ±1,
1
9 s2

w h = ±2,
0 |h| > 2

are independent of time t, satisfying the conditions of Definition 1.7.
Note that the ACF is given by

rv(h) =

8

>

>

>

>

<

>

>

>

>

:

1 h = 0,
2
3 h = ±1,
1
3 h = ±2,
0 |h| > 2

.

Figure 1.11 shows a plot of the autocorrelation as a function of lag h.
Note that the autocorrelation function is symmetric about lag zero.

Example 1.20 Trend Stationarity
For example, if xt = a + bt + yt, where yt is stationary, then the mean
function is µx,t = E(xt) = a + bt + µy, which is not independent of
time. Therefore, the process is not stationary. The autocovariance
function, however, is independent of time, because
gx(h) = cov(xt+h, xt) = E[(xt+h � µx,t+h)(xt � µx,t)] =
E[(yt+h � µy)(yt � µy)] = gy(h). Thus, the model may be considered as
having stationary behavior around a linear trend; this behavior is
sometimes called trend stationarity. An example of such a process is the
price of chicken series displayed in Figure 2.1.

The autocovariance function of a stationary process has several useful
properties. First, the value at h = 0, namely

g(0) = E[(xt � µ)2] = var(xt). (1.19)

Also, the Cauchy–Schwarz inequality implies |g(h)|  g(0). Another
useful property is that the autocovariance function of a stationary series
is symmetric around the origin,
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g(h) = g(�h) (1.20)

for all h. This property follows because

g(h) = g((t + h)� t) = E[(xt+h � µ)(xt � µ)]

= E[(xt � µ)(xt+h � µ)] = g(t � (t + h)) = g(�h),

which shows how to use the notation as well as proving the result.
When several series are available, a notion of stationarity still applies

with additional conditions.

Definition 1.10 Two time series, say, xt and yt, are jointly stationary if they
are each stationary, and the cross-covariance function

gxy(h) = cov(xt+h, yt) = E[(xt+h � µx)(yt � µy)] (1.21)

is a function only of lag h.

Definition 1.11 The cross-correlation function (CCF) of jointly stationary
time series xt and yt is defined as

rxy(h) =
gxy(h)

q

gx(0)gy(0)
. (1.22)

Again, we have the result �1  rxy(h)  1 which enables comparison
with the extreme values �1 and 1 when looking at the relation between
xt+h and yt. The cross-correlation function is not generally symmetric
about zero [i.e., typically rxy(h) 6= rxy(�h)]; however, it is the case that

rxy(h) = ryx(�h), (1.23)

which can be shown by manipulations similar to those used to show
(1.20).

Example 1.21 Joint Stationarity
Consider the two series, xt and yt, formed from the sum and difference
of two successive values of a white noise process, say,

xt = wt + wt�1 and yt = wt � wt�1,

where wt are independent random variables with zero means and
variance s2

w. It is easy to show that gx(0) = gy(0) = 2s2
w and

gx(1) = gx(�1) = s2
w, gy(1) = gy(�1) = �s2

w. Also,

gxy(1) = cov(xt+1, yt) = cov(wt+1 + wt, wt � wt�1) = s2
w

because only one term is nonzero (recall Property 1.1). Similarly,
gxy(0) = 0, gxy(�1) = �s2

w. We obtain, using (1.22),

rxy(h) =

8

>

>

>

>

<

>

>

>

>

:

0 h = 0,
1
2 h = 1,

� 1
2 h = �1,
0 |h| � 2.

Clearly, the autocovariance and cross-covariance functions depend only
on the lag separation, h, so the series are jointly stationary.



22 1 Time Series Characteristics

−15 −10 −5 0 5 10 15

0.
0

0.
5

1.
0

LAG

C
C

ov
F x leadsy leads

y & x

Fig. 1.12. Demonstration of the results of Example 1.22 when ` = 5. The title indicates which series
is leading.

Example 1.22 Prediction Using Cross-Correlation
Consider the problem of determining possible leading or lagging
relations between two series xt and yt. If the model

yt = Axt�` + wt

holds, the series xt is said to lead yt for ` > 0 and is said to lag yt for
` < 0. Hence, the analysis of leading and lagging relations might be
important in predicting the value of yt from xt. Assuming that the
noise wt is uncorrelated with the xt series, the cross-covariance
function can be computed as

gyx(h) = cov(yt+h, xt) = cov(Axt+h�` + wt+h, xt)

= cov(Axt+h�`, xt) = Agx(h � `) .

Since the largest value of |gx(h � `)| is gx(0), i.e., when h = `, the
cross-covariance function will look like the autocovariance of the input
series xt, and it will have a “peak” on the positive side if xt leads yt
and a “peak” on the negative side if xt lags yt. Below is the R code of
an example with ` = 5 and ĝyx(h) is shown in Figure 1.12.
x = rnorm(100); y = lag(x,-5) + rnorm(100)
ccf(y, x, ylab='CCovF', type='covariance')

1.6 Estimation of Correlation
For data analysis, only the sample values, x1, x2, . . . , xn, are available for
estimating the mean, autocovariance, and autocorrelation functions. In
this case, the assumption of stationarity becomes critical and allows the
use of averaging to estimate the population means and covariance
functions.

Accordingly, if a time series is stationary, the mean function (1.16)
µt = µ is constant so that we can estimate it by the sample mean,

x̄ =
1
n

n

Â
t=1

xt. (1.24)

The estimate is unbiased, E(x̄) = µ, and its standard error is the square
root of var(x̄), which can be computed using first principles (recall
Property 1.1), and is given by
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Fig. 1.13. Display for Example 1.23. For the SOI series, we have a scatterplot of pairs of values one
month apart (left) and six months apart (right). The estimated correlation is displayed in the box.

var(x̄) =
1
n

n

Â
h=�n

⇣

1 � |h|
n

⌘

gx(h) . (1.25)

If the process is white noise, (1.25) reduces to the familiar s2
x /n

recalling that gx(0) = s2
x . Note that in the case of dependence, the

standard error of x̄ may be smaller or larger than the white noise case
depending on the nature of the correlation structure (see Problem 1.13).

The theoretical autocorrelation function, (1.18), is estimated by the
sample ACF as follows.

Definition 1.12 The sample autocorrelation function (ACF) is defined as

br(h) =
bg(h)
bg(0)

=
Ân�h

t=1 (xt+h � x̄)(xt � x̄)
Ân

t=1(xt � x̄)2 (1.26)

for h = 0, 1, . . . , n � 1.

The sum in the numerator of (1.26) runs over a restricted range
because xt+h is not available for t + h > n. Note that we are in fact
estimating the autocovariance function by

bg(h) = n�1
n�h

Â
t=1

(xt+h � x̄)(xt � x̄), (1.27)

with bg(�h) = bg(h) for h = 0, 1, . . . , n � 1. That is, we divide by n even
though there are only n � h pairs of observations at lag h,

{(xt+h, xt); t = 1, . . . , n � h} . (1.28)

This assures that the sample ACF will behave as a true autocorrelation
function, and for example, will not give values bigger than one in
absolute value.

Example 1.23 Sample ACF and Scatterplots
Estimating autocorrelation is similar to estimating of correlation in the
classical case, but now we have the n � h pairs of observations
displayed in (1.28). Figure 1.13 shows an example using the SOI series
where br(1) = .604 and br(6) = �.187. The following code was used for
Figure 1.13.
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(r = round(acf(soi, 6, plot=FALSE)$acf[-1], 3)) # sample acf values
[1] 0.604 0.374 0.214 0.050 -0.107 -0.187

par(mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
plot(lag(soi,-1), soi)
legend('topleft', legend=r[1])
plot(lag(soi,-6), soi)
legend('topleft', legend=r[6])

The sample autocorrelation function has a sampling distribution that
allows us to assess whether the data comes from a completely random
or white series or whether correlations are statistically significant at
some lags.

Property 1.2 Large-Sample Distribution of the ACF
If xt is white noise, then for n large and under mild conditions, the sample

ACF, brx(h), for h = 1, 2, . . . , H, where H is fixed but arbitrary, is
approximately normal with zero mean and standard deviation given by of 1p

n .

Based on Property 1.2, we obtain a rough method for assessing
whether a series is white noise by determining how many values of br(h)
are outside the interval ±2/

p
n (two standard errors); for white noise,

approximately 95% of the sample ACFs should be within these limits.4
The bounds do not hold in general and can be ignored if the interest is
other than assessing whiteness. The applications of this property
develop because many statistical modeling procedures depend on
reducing a time series to a white noise series using various kinds of
transformations. Afterwards the plotted ACF of the residuals behave as
stated.

Example 1.24 A Simulated Time Series
To compare the sample ACF for various sample sizes to the theoretical
ACF, consider a contrived set of data generated by tossing a fair coin,
letting xt = 2 when a head is obtained and xt = �2 when a tail is
obtained. Then, because we can only appreciate 2, 4, 6, or 8, we let

yt = 5 + xt � .5xt�1 . (1.29)

We consider two cases, one with a small sample size (n = 10; see
Figure 1.14) and another with a moderate sample size (n = 100).
set.seed(101011)
x1 = 2*(2*rbinom(11, 1, .5) - 1) # simulated sequence of coin tosses
x2 = 2*(2*rbinom(101, 1, .5) - 1)
y1 = 5 + filter(x1, sides=1, filter=c(1,-.5))[-1]
y2 = 5 + filter(x2, sides=1, filter=c(1,-.5))[-1]
plot.ts(y1, type='s'); plot.ts(y2, type='s') # only one shown

acf(y1, lag.max=4, plot=FALSE) # 1/
p

10 =.32
Autocorrelations of series 'y1', by lag

0 1 2 3 4
1.000 -0.352 -0.316 0.510 -0.245

acf(y2, lag.max=4, plot=FALSE) # 1/
p

100 =.1
Autocorrelations of series 'y2', by lag

0 1 2 3 4
1.000 -0.496 0.067 0.087 0.063
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Fig. 1.14. Realization of (1.29), n = 10.

The theoretical ACF can be obtained from the model (1.29) using
first principles so that

ry(1) =
�.5

1 + .52 = �.4

and ry(h) = 0 for |h| > 1 (do Problem 1.18 now). It is interesting to
compare the theoretical ACF with sample ACFs for the realization
where n = 10 and the other realization where n = 100; note the
increased variability in the smaller size sample.

Definition 1.13 The estimators for the cross-covariance function, gxy(h), as
given in (1.21) and the cross-correlation, rxy(h), in (1.22) are given,
respectively, by the sample cross-covariance function

bgxy(h) = n�1
n�h

Â
t=1

(xt+h � x̄)(yt � ȳ), (1.30)

where bgxy(�h) = bgyx(h) determines the function for negative lags, and the
sample cross-correlation function

brxy(h) =
bgxy(h)

q

bgx(0)bgy(0)
. (1.31)

The sample cross-correlation function can be examined graphically as
a function of lag h to search for leading or lagging relations in the data
using the property mentioned in Example 1.22 for the theoretical
cross-covariance function. Because �1  brxy(h)  1, the practical
importance of peaks can be assessed by comparing their magnitudes
with their theoretical maximum values.

Property 1.3 Large-Sample Distribution of Cross-Correlation
If xt and yt are independent processes, then under mild conditions, the large

sample distribution of brxy(h) is normal with mean zero and standard deviation
1p
n if at least one of the processes is independent white noise.

4 In this text, z.025 = 1.95996398454005423552 . . . of normal fame, which is often rounded
to 1.96, is rounded to 2.
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Fig. 1.15. Sample ACFs of the SOI series (top) and of the Recruitment series (middle), and the sample
CCF of the two series (bottom); negative lags indicate SOI leads Recruitment. The lag axes are in
terms of seasons (12 months).

Example 1.25 SOI and Recruitment Correlation Analysis
The autocorrelation and cross-correlation functions are also useful for
analyzing the joint behavior of two stationary series whose behavior
may be related in some unspecified way. In Example 1.4 (see
Figure 1.5), we have considered simultaneous monthly readings of the
SOI and the number of new fish (Recruitment) computed from a
model. Figure 1.15 shows the autocorrelation and cross-correlation
functions (ACFs and CCF) for these two series.

Both of the ACFs exhibit periodicities corresponding to the
correlation between values separated by 12 units. Observations 12
months or one year apart are strongly positively correlated, as are
observations at multiples such as 24, 36, 48, . . . Observations separated
by six months are negatively correlated, showing that positive
excursions tend to be associated with negative excursions six months
removed. This appearance is rather characteristic of the pattern that
would be produced by a sinusoidal component with a period of 12
months; see Example 1.26. The cross-correlation function peaks at
h = �6, showing that the SOI measured at time t � 6 months is
associated with the Recruitment series at time t. We could say the SOI
leads the Recruitment series by six months. The sign of the CCF at
h = �6 is negative, leading to the conclusion that the two series move
in different directions; that is, increases in SOI lead to decreases in
Recruitment and vice versa. Again, note the periodicity of 12 months
in the CCF.
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Fig. 1.16. Display for Example 1.26

The flat lines shown on the plots indicate ±2/
p

453, so that upper
values would be exceeded about 2.5% of the time if the noise were
white as specified in Property 1.2 and Property 1.3. Of course, neither
series is noise, so we can ignore these lines. To reproduce Figure 1.15 in
R, use the following commands:
par(mfrow=c(3,1))
acf(soi, 48, main="Southern Oscillation Index")
acf(rec, 48, main="Recruitment")
ccf(soi, rec, 48, main="SOI vs Recruitment", ylab="CCF")

Example 1.26 Prewhitening and Cross Correlation Analysis
Although we do not have all the tools necessary yet, it is worthwhile to
discuss the idea of prewhitening a series prior to a cross-correlation
analysis. The basic idea is simple; in order to use Property 1.3, at least
one of the series must be white noise. If this is not the case, there is no
simple way to tell if a cross-correlation estimate is significantly
different from zero. Hence, in Example 1.25, we were only guessing at
the linear dependence relationship between SOI and Recruitment.

For example, in Figure 1.16 we generated two series, xt and yt, for
t = 1, . . . , 120 independently as

xt = 2 cos(2p t 1
12 ) + wt1 and yt = 2 cos(2p [t + 5] 1

12 ) + wt2

where {wt1, wt2; t = 1, . . . , 120} are all independent standard normals.
The series are made to resemble SOI and Recruitment. The generated
data are shown in the top row of the figure. The middle row of
Figure 1.16 show the sample ACF of each series, each of which exhibits
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the cyclic nature of each series. The bottom row (left) of Figure 1.16
shows the sample CCF between xt and yt, which appears to show
cross-correlation even though the series are independent. The bottom
row (right) also displays the sample CCF between xt and the
prewhitened yt, which shows that the two sequences are uncorrelated.
By prewhtiening yt, we mean that the signal has been removed from
the data by running a regression of yt on cos(2pt) and sin(2pt) [see
Example 2.10] and then putting ỹt = yt � ŷt, where ŷt are the predicted
values from the regression.

The following code will reproduce Figure 1.16.
set.seed(1492); num = 120; t = 1:num
X = ts(2*cos(2*pi*t/12) + rnorm(num), freq=12 )
Y = ts(2*cos(2*pi*(t+5)/12) + rnorm(num), freq=12 )
Yw = resid( lm(Y~ cos(2*pi*t/12) + sin(2*pi*t/12), na.action=NULL) )
par(mfrow=c(3,2), mgp=c(1.6,.6,0), mar=c(3,3,1,1) )
plot(X); plot(Y)
acf(X, 48, ylab='ACF(X)')
acf(Y, 48, ylab='ACF(Y)')
ccf(X, Y, 24, ylab='CCF(X,Y)' )
ccf(X, Yw, 24, ylab='CCF(X,Yw)', ylim=c(-.6,.6) )

Problems

1.1 In 25 words or less, and without using symbols, why is stationarity
important?

1.2 (a) Generate n = 100 observations from the autoregression

xt = �.9xt�2 + wt

with sw = 1, using the method described in Example 1.8. Next, apply
the moving average filter

vt = (xt + xt�1 + xt�2 + xt�3)/4

to xt, the data you generated. Now plot xt as a line and superimpose
vt as a dashed line. Note: v = filter(x, rep(1/4, 4), sides = 1)

(b) Repeat (a) but with

xt = 2 cos(2pt/4) + wt,

where wt ⇠ iid N(0, 1).
(c) Repeat (a) but where xt is the log of the Johnson & Johnson data

discussed in Example 1.1.
(d) What is seasonal adjustment (you can do an internet search)?
(e) State your conclusions (in other words, what did you learn from this

exercise).

1.3 Show that the autocovariance function can be written as

g(s, t) = E[(xs � µs)(xt � µt)] = E(xsxt)� µsµt,

where E[xt] = µt.



Problems 29

1.4 Consider the time series

xt = b0 + b1t + wt,

where b0 and b1 are regression coefficients, and wt is a white noise
process with variance s2

w.

(a) Determine whether xt is stationary.
(b) Show that the process yt = xt � xt�1 is stationary.
(c) Show that the mean of the moving average

vt =
1
3
(xt�1 + xt + xt+1)

is b0 + b1t.

1.5 For a moving average process of the form

xt = wt�1 + 2wt + wt+1,

where wt are independent with zero means and variance s2
w, determine

the autocovariance and autocorrelation functions as a function of lag h
and sketch the ACF as a function of h.

1.6 Consider the random walk with drift model

xt = d + xt�1 + wt,

for t = 1, 2, . . . , with x0 = 0, where wt is white noise with variance s2
w.

(a) Show that the model can be written as xt = dt + Ât
k=1 wk.

(b) Find the mean function and the autocovariance function of xt.
(c) Argue that xt is not stationary.

(d) Show rx(t � 1, t) =
q

t�1
t ! 1 as t ! •. What is the implication of

this result?
(e) Suggest a transformation to make the series stationary, and prove

that the transformed series is stationary. (Hint: See Problem 1.4b.)

1.7 Would you treat the global temperature data discussed in
Example 1.2 and shown in Figure 1.3 as stationary or non-stationary?
Support your answer.

1.8 A time series with a periodic component can be constructed from

xt = U1 sin(2pw0t) + U2 cos(2pw0t),

where U1 and U2 are independent random variables with zero means
and E(U2

1) = E(U2
2) = s2. The constant w0 determines the period or

time it takes the process to make one complete cycle. Show that this
series is weakly stationary with autocovariance function

g(h) = s2 cos(2pw0h).
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1.9 Suppose we would like to predict a single stationary series xt with
zero mean and autocorrelation function g(h) at some time in the future,
say, t + m, for m > 0.

(a) If we predict using only xt and some scale multiplier A, show that
the mean-square prediction error

MSE(A) = E[(xt+m � Axt)
2]

is minimized by the value

A = r(m).

(b) Show that the minimum mean-square prediction error is

MSE(A) = g(0)[1 � r2(m)].

(c) Show that if xt+m = Axt, then r(m) = 1 if A > 0, and r(m) = �1 if
A < 0.

1.10 For two jointly stationary series xt and yt, verify (1.23).

1.11 Consider the two series
xt = wt

yt = wt � qwt�1 + ut,

where wt and ut are independent white noise series with variances s2
w

and s2
u , respectively, and q is an unspecified constant.

(a) Express the ACF, ry(h), for h = 0,±1,±2, . . . of the series yt as a
function of s2

w, s2
u , and q.

(b) Determine the CCF, rxy(h) relating xt and yt.
(c) Show that xt and yt are jointly stationary.

1.12 Let wt, for t = 0,±1,±2, . . . be a normal white noise process, and
consider the series

xt = wtwt�1.

Determine the mean and autocovariance function of xt, and state
whether it is stationary.

1.13 Suppose xt = µ + wt + qwt�1, where wt ⇠ wn(0, s2
w).

(a) Show that mean function is E(xt) = µ.
(b) Show that the autocovariance function of xt is given by

gx(0) = s2
w(1 + q2), gx(±1) = s2

wq, and gx(h) = 0 otherwise.
(c) Show that xt is stationary for all values of q 2 R.
(d) Use (1.25) to calculate var(x̄) for estimating µ when (i) q = 1, (ii)

q = 0, and (iii) q = �1
(e) In time series, the sample size n is typically large, so that (n�1)

n ⇡ 1.
With this as a consideration, comment on the results of part (d); in
particular, how does the accuracy in the estimate of the mean µ
change for the three different cases?
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1.14 (a) Simulate a series of n = 500 Gaussian white noise observations
as in Example 1.6 and compute the sample ACF, br(h), to lag 20.
Compare the sample ACF you obtain to the actual ACF, r(h). [Recall
Example 1.18.]

(b) Repeat part (a) using only n = 50. How does changing n affect the
results?

1.15 (a) Simulate a series of n = 500 moving average observations as in
Example 1.7 and compute the sample ACF, br(h), to lag 20. Compare
the sample ACF you obtain to the actual ACF, r(h). [Recall
Example 1.19.]

(b) Repeat part (a) using only n = 50. How does changing n affect the
results?

1.16 Simulate 500 observations from the AR model specified in
Example 1.8 and then plot the sample ACF to lag 50. What does the
sample ACF tell you about the approximate cyclic behavior of the data?
Hint: Recall Example 1.25.

1.17 Simulate a series of n = 500 observations from the signal-plus-noise
model presented in Example 1.10 with (a) sw = 0, (b) sw = 1 and (c)
sw = 5. Compute the sample ACF to lag 100 of the three series you
generated and comment.

1.18 For the time series yt described in Example 1.24, verify the stated
result that ry(1) = �.4 and ry(h) = 0 for h > 1.



Chapter 2
Time Series Regression and EDA

2.1 Classical Regression for Time Series

We begin our discussion of linear regression in the time series context by
assuming some output or dependent time series, say, xt, for t = 1, . . . , n,
is being influenced by a collection of possible inputs or independent
series, say, zt1, zt2, . . . , ztq, where we first regard the inputs as fixed and
known. This assumption, necessary for applying conventional linear
regression, will be relaxed later on. We express this relation through the
linear regression model

xt = b0 + b1zt1 + b2zt2 + · · ·+ bqztq + wt, (2.1)

where b0, b1, . . . , bq are unknown fixed regression coefficients, and {wt}
is a random error or noise process consisting of independent and
identically distributed (iid) normal variables with mean zero and
variance s2

w; we will relax the iid assumption later.

Example 2.1 Estimating a Linear Trend
Consider the monthly price (per pound) of a chicken in the US from
mid-2001 to mid-2016 (180 months), say xt, shown in Figure 2.1. There
is an obvious upward trend in the series, and we might use simple
linear regression to estimate that trend by fitting the model

xt = b0 + b1zt + wt, zt = 2001 7
12 , 2001 8

12 , . . . , 2016 6
12 .

This is in the form of the regression model (2.1) with q = 1. Note that
we are making the assumption that the errors, wt, are an iid normal
sequence, which may not be true; the problem of autocorrelated errors
is discussed in detail in Chapter 3.

In ordinary least squares (OLS), we minimize the error sum of
squares

Q =
n

Â
t=1

w2
t =

n

Â
t=1

(xt � [b0 + b1zt])
2
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Fig. 2.1. The price of chicken: monthly whole bird spot price, Georgia docks, US cents per pound,
August 2001 to July 2016, with fitted linear trend line.

with respect to bi for i = 0, 1. In this case we can use simple calculus to
evaluate ∂Q/∂bi = 0 for i = 0, 1, to obtain two equations to solve for
the bs. The OLS estimates of the coefficients are explicit and given by

b̂1 =
Ân

t=1(xt � x̄)(zt � z̄)
Ân

t=1(zt � z̄)2 and b̂0 = x̄ � b̂1 z̄ ,

where x̄ = Ât xt/n and z̄ = Ât zt/n are the respective sample means.
Using R, we obtained the estimated slope coefficient of b̂1 = 3.59

(with a standard error of .08) yielding a highly significant estimated
increase of about 3.6 cents per year. Finally, Figure 2.1 shows the data
with the estimated trend line superimposed. To perform this analysis
in R, use the following commands:
summary(fit <- lm(chicken~time(chicken))) # regress price on time
plot(chicken, ylab="cents per pound")
abline(fit) # add the fitted regression line to the plot

The multiple linear regression model described by (2.1) can be
conveniently written in a more general notation by defining the column
vectors zt = (1, zt1, zt2, . . . , ztq)0 and b = (b0, b1, . . . , bq)0, where 0 denotes
transpose, so (2.1) can be written in the alternate form

xt = b0 + b1zt1 + · · ·+ bqztq + wt = b0zt + wt. (2.2)

where wt ⇠ iid N(0, s2
w). As in the previous example, OLS estimation

minimizes the error sum of squares

Q =
n

Â
t=1

w2
t =

n

Â
t=1

(xt � b0zt)
2, (2.3)

with respect to b0, b1, . . . , bq. This minimization can be accomplished by
solving ∂Q/∂bi = 0 for i = 0, 1, . . . , q, which yields q + 1 equations with
q + 1 unknowns. In vector notation, this procedure gives the normal
equations

✓ n

Â
t=1

ztz0t

◆

bb =
n

Â
t=1

ztxt. (2.4)

If Ân
t=1 ztz0t is non-singular, the least squares estimate of b is
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bb =

✓ n

Â
t=1

ztz0t

◆�1 n

Â
t=1

ztxt.

The minimized error sum of squares (2.3), denoted SSE, can be written
as

SSE =
n

Â
t=1

(xt � bxt)
2 =

n

Â
t=1

(xt � bb0zt)
2. (2.5)

The ordinary least squares estimators are unbiased, i.e., E(bb) = b, and
have the smallest variance within the class of linear unbiased estimators.

If the errors wt are normally distributed, bb is normally distributed
with

cov(bb) = s2
wC , (2.6)

where

C =

 

n

Â
t=1

ztz0t

!�1

(2.7)

is a convenient notation. An unbiased estimator for the variance s2
w is

s2
w = MSE =

SSE
n � (q + 1)

, (2.8)

where MSE denotes the mean squared error. Under the normal
assumption,

t =
(bbi � bi)
sw
p

cii
(2.9)

has the t-distribution with n � (q + 1) degrees of freedom; cii denotes the
i-th diagonal element of C, as defined in (2.7). This result is often used
for individual tests of the null hypothesis H0 : bi = 0 for i = 1, . . . , q.

Various competing models are often of interest to isolate or select the
best subset of independent variables. Suppose a proposed model
specifies that only a subset r < q independent variables, say,
zt,1:r = {zt1, zt2, . . . , ztr} is influencing the dependent variable xt. The
reduced model is

xt = b0 + b1zt1 + · · ·+ brztr + wt (2.10)

where b1, b2, . . . , br are a subset of coefficients of the original q variables.
The null hypothesis in this case is H0 : br+1 = · · · = bq = 0. We can

test the reduced model (2.10) against the full model (2.2) by comparing
the error sums of squares under the two models using the F-statistic

F =
(SSEr � SSE)/(q � r)

SSE/(n � q � 1)
=

MSR
MSE

, (2.11)

where SSEr is the error sum of squares under the reduced model (2.10).
Note that SSEr � SSE because the full model has more parameters. If
H0 : br+1 = · · · = bq = 0 is true, then SSEr ⇡ SSE because the estimates
of those bs will be close to 0. Hence, we do not believe H0 if
SSR = SSEr � SSE is big. Under the null hypothesis, (2.11) has a central
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Table 2.1. Analysis of Variance for Regression

Source df Sum of Squares Mean Square F

zt,r+1:q q � r SSR = SSEr � SSE MSR = SSR/(q � r) F = MSR
MSE

Error n � (q + 1) SSE MSE = SSE/(n � q � 1)

F-distribution with q � r and n � q � 1 degrees of freedom when (2.10) is
the correct model.

These results are often summarized in an ANOVA table as given in
Table 2.1 for this particular case. The difference in the numerator is often
called the regression sum of squares (SSR). The null hypothesis is
rejected at level a if F > Fq�r

n�q�1(a), the 1 � a percentile of the F
distribution with q � r numerator and n � q � 1 denominator degrees of
freedom.

A special case of interest is H0 : b1 = · · · = bq = 0. In this case r = 0,
and the model in (2.10) becomes

xt = b0 + wt .

We may measure the proportion of variation accounted for by all the
variables using

R2 =
SSE0 � SSE

SSE0
, (2.12)

where the residual sum of squares under the reduced model is

SSE0 =
n

Â
t=1

(xt � x̄)2 . (2.13)

In this case SSE0 is the sum of squared deviations from the mean x̄ and
is otherwise known as the adjusted total sum of squares. The measure
R2 is called the coefficient of determination.

The techniques discussed in the previous paragraph can be used to
test various models against one another using the F-test given in (2.11).
These tests have been used in the past in a stepwise manner, where
variables are added or deleted when the values from the F-test either
exceed or fail to exceed some predetermined levels. The procedure,
called stepwise multiple regression, is useful in arriving at a set of useful
variables. An alternative is to focus on a procedure for model selection
that does not proceed sequentially, but simply evaluates each model on
its own merits. Suppose we consider a normal regression model with k
coefficients and denote the maximum likelihood estimator for the
variance as

bs2
k =

SSE(k)
n

, (2.14)

where SSE(k) denotes the residual sum of squares under the model with
k regression coefficients. Then, Akaike (1969, 1973, 1974) suggested
measuring the goodness of fit for this particular model by balancing the
error of the fit against the number of parameters in the model; we define
the following.
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Definition 2.1 Akaike’s Information Criterion (AIC)

AIC = log bs2
k +

n + 2k
n

, (2.15)

where bs2
k is given by (2.14) and k is the number of parameters in the model.

The value of k yielding the minimum AIC specifies the best model.1
The idea is roughly that minimizing bs2

k would be a reasonable objective,
except that it decreases monotonically as k increases. Therefore, we
ought to penalize the error variance by a term proportional to the
number of parameters. The choice for the penalty term given by (2.15) is
not the only one, and a considerable literature is available advocating
different penalty terms. A corrected form, suggested by Sugiura (1978),
and expanded by Hurvich and Tsai (1989), can be based on small-sample
distributional results for the linear regression model. The corrected form
is defined as follows.

Definition 2.2 AIC, Bias Corrected (AICc)

AICc = log bs2
k +

n + k
n � k � 2

, (2.16)

where bs2
k is given by (2.14), k is the number of parameters in the model, and n

is the sample size.

We may also derive a correction term based on Bayesian arguments,
as in Schwarz (1978), which leads to the following.

Definition 2.3 Bayesian Information Criterion (BIC)

BIC = log bs2
k +

k log n
n

, (2.17)

using the same notation as in Definition 2.2.

BIC is also called the Schwarz Information Criterion (SIC); see also
Rissanen (1978) for an approach yielding the same statistic based on a
minimum description length argument. Various simulation studies have
tended to verify that BIC does well at getting the correct order in large
samples, whereas AICc tends to be superior in smaller samples where
the relative number of parameters is large; see McQuarrie and Tsai
(1998) for detailed comparisons. In fitting regression models, two
measures that have been used in the past are adjusted R-squared, which
is essentially s2

w, and Mallows Cp, Mallows (1973), which we do not
consider in this context.

1 Formally, AIC is defined as �2 log Lk + 2k where Lk is the maximum value of the likeli-
hood and k is the number of parameters in the model. For the normal regression problem,
AIC can be reduced to the form given by (2.15).
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Fig. 2.2. Average weekly cardiovascular mortality (top), temperature (middle) and particulate pollu-
tion (bottom) in Los Angeles County. There are 508 six-day smoothed averages obtained by filtering
daily values over the 10 year period 1970-1979.

Example 2.2 Pollution, Temperature and Mortality
The data shown in Figure 2.2 are extracted series from a study by
Shumway et al. (1988) of the possible effects of temperature and
pollution on weekly mortality in Los Angeles County. Note the strong
seasonal components in all of the series, corresponding to
winter-summer variations and the downward trend in the
cardiovascular mortality over the 10-year period.

A scatterplot matrix, shown in Figure 2.3, indicates a possible linear
relation between mortality and the pollutant particulates and a possible
relation to temperature. Note the curvilinear shape of the temperature
mortality curve, indicating that higher temperatures as well as lower
temperatures are associated with increases in cardiovascular mortality.

Based on the scatterplot matrix, we entertain, tentatively, four
models where Mt denotes cardiovascular mortality, Tt denotes
temperature and Pt denotes the particulate levels. They are

Mt = b0 + b1t + wt (2.18)
Mt = b0 + b1t + b2(Tt � T·) + wt (2.19)
Mt = b0 + b1t + b2(Tt � T·) + b3(Tt � T·)2 + wt (2.20)
Mt = b0 + b1t + b2(Tt � T·) + b3(Tt � T·)2 + b4Pt + wt (2.21)

where we adjust temperature for its mean, T· = 74.26, to avoid
collinearity problems. It is clear that (2.18) is a trend only model, (2.19)
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Fig. 2.3. Scatterplot matrix showing relations between mortality, temperature, and pollution.

Table 2.2. Summary Statistics for Mortality Models

Model k SSE df MSE R2 AIC BIC

(2.18) 2 40,020 506 79.0 .21 5.38 5.40
(2.19) 3 31,413 505 62.2 .38 5.14 5.17
(2.20) 4 27,985 504 55.5 .45 5.03 5.07
(2.21) 5 20,508 503 40.8 .60 4.72 4.77

is linear temperature, (2.20) is curvilinear temperature and (2.21) is
curvilinear temperature and pollution. We summarize some of the
statistics given for this particular case in Table 2.2.

We note that each model does substantially better than the one
before it and that the model including temperature, temperature
squared, and particulates does the best, accounting for some 60% of
the variability and with the best value for AIC and BIC (because of the
large sample size, AIC and AICc are nearly the same). Note that one
can compare any two models using the residual sums of squares and
(2.11). Hence, a model with only trend could be compared to the full
model using q = 4, r = 1, n = 508, so

F3,503 =
(40, 020 � 20, 508)/3

20, 508/503
= 160,

which exceeds F3,503(.001) = 5.51. We obtain the best prediction model,

M̂t = 2831.5 � 1.396(.10)trend � .472(.032)(Tt � 74.26)

+ .023(.003)(Tt � 74.26)2 + .255(.019)Pt,

for mortality, where the standard errors, computed from (2.6)–(2.8), are
given in parentheses. As expected, a negative trend is present in time
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as well as a negative coefficient for adjusted temperature. The
quadratic effect of temperature can clearly be seen in the scatterplots of
Figure 2.3. Pollution weights positively and can be interpreted as the
incremental contribution to daily deaths per unit of particulate
pollution. It would still be essential to check the residuals
ŵt = Mt � M̂t for autocorrelation (of which there is a substantial
amount), but we defer this question to Section 3.9 when we discuss
regression with correlated errors.

Below is the R code to plot the series, display the scatterplot matrix,
fit the final regression model (2.21), and compute the corresponding
values of AIC, AICc and BIC.2 Finally, the use of na.action in lm() is to
retain the time series attributes for the residuals and fitted values.
par(mfrow=c(3,1)) # plot the data
plot(cmort, main="Cardiovascular Mortality", xlab="", ylab="")
plot(tempr, main="Temperature", xlab="", ylab="")
plot(part, main="Particulates", xlab="", ylab="")
dev.new() # open a new graphic device
ts.plot(cmort,tempr,part, col=1:3) # all on same plot (not shown)
dev.new()
pairs(cbind(Mortality=cmort, Temperature=tempr, Particulates=part))
temp = tempr-mean(tempr) # center temperature
temp2 = temp^2
trend = time(cmort) # time
fit = lm(cmort~ trend + temp + temp2 + part, na.action=NULL)
summary(fit) # regression results
summary(aov(fit)) # ANOVA table (compare to next line)
summary(aov(lm(cmort~cbind(trend, temp, temp2, part)))) # Table 2.1
num = length(cmort) # sample size
AIC(fit)/num - log(2*pi) # AIC
BIC(fit)/num - log(2*pi) # BIC
(AICc = log(sum(resid(fit)^2)/num) + (num+5)/(num-5-2)) # AICc

As previously mentioned, it is possible to include lagged variables in
time series regression models and we will continue to discuss this type
of problem throughout the text. This concept is explored further in
Problem 2.2. The following is a simple example of lagged regression.

Example 2.3 Regression With Lagged Variables
In Example 1.25, we discovered that the Southern Oscillation Index
(SOI) measured at time t � 6 months is associated with the Recruitment
series at time t, indicating that the SOI leads the Recruitment series by
six months. Although there is strong evidence that the relationship is
NOT linear (this is discussed further in Example 2.8), for demonstration
purposes only, we consider the following regression,

Rt = b0 + b1St�6 + wt, (2.22)

where Rt denotes Recruitment for month t and St�6 denotes SOI six
months prior. Assuming the wt sequence is white, the fitted model is

2 The easiest way to extract AIC and BIC from an lm() run in R is to use the command
AIC() or BIC(). Our definitions differ from R by terms that do not change from model
to model. In the example, we show how to obtain (2.15) and (2.17) from the R output. It
is more difficult to obtain AICc.
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bRt = 65.79 � 44.28(2.78)St�6 (2.23)

with bsw = 22.5 on 445 degrees of freedom. This result indicates the
strong predictive ability of SOI for Recruitment six months in advance.
Of course, it is still essential to check the the model assumptions, but
we defer this discussion until later.

Performing lagged regression in R is a little difficult because the
series must be aligned prior to running the regression. The easiest way
to do this is to create an object that we call fish using ts.intersect,
which aligns the lagged series.
fish = ts.intersect( rec, soiL6=lag(soi,-6) )
summary(fit1 <- lm(rec~ soiL6, data=fish, na.action=NULL))

The headache of aligning the lagged series can be avoided by using the
R package dynlm, which must be downloaded and installed.
library(dynlm)
summary(fit2 <- dynlm(rec~ L(soi,6)))

In the dynlm example, fit2 is similar to a lm object, but the time series
attributes are retained without any additional commands.

2.2 Exploratory Data Analysis
In general, it is necessary for time series data to be stationary so
averaging lagged products over time, as in the previous section, will be a
sensible thing to do. With time series data, it is the dependence between
the values of the series that is important to measure; we must, at least,
be able to estimate autocorrelations with precision. It would be difficult
to measure that dependence if the dependence structure is not regular or
is changing at every time point. Hence, to achieve any meaningful
statistical analysis of time series data, it will be crucial that, if nothing
else, the mean and the autocovariance functions satisfy the conditions of
stationarity (for at least some reasonable stretch of time) stated in
Definition 1.7. Often, this is not the case, and we mention some methods
in this section for playing down the effects of nonstationarity so the
stationary properties of the series may be studied.

A number of our examples came from clearly nonstationary series.
The Johnson & Johnson series in Figure 1.1 has a mean that increases
exponentially over time, and the increase in the magnitude of the
fluctuations around this trend causes changes in the covariance function;
the variance of the process, for example, clearly increases as one
progresses over the length of the series. Also, the global temperature
series shown in Figure 1.3 contains some evidence of a trend over time;
human-induced global warming advocates seize on this as empirical
evidence to advance their hypothesis that temperatures are increasing.

Perhaps the easiest form of nonstationarity to work with is the trend
stationary model wherein the process has stationary behavior around a
trend. We may write this type of model as

xt = µt + yt (2.24)
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where xt are the observations, µt denotes the trend, and yt is a stationary
process. Quite often, strong trend, µt, will obscure the behavior of the
stationary process, yt, as we shall see in numerous examples. Hence,
there is some advantage to removing the trend as a first step in an
exploratory analysis of such time series. The steps involved are to obtain
a reasonable estimate of the trend component, say bµt, and then work
with the residuals

byt = xt � bµt. (2.25)

Consider the following example.

Example 2.4 Detrending Chicken Prices
Here we suppose the model is of the form of (2.24),

xt = µt + yt,

where, as we suggested in the analysis of the chicken price data
presented in Example 2.1, a straight line might be useful for
detrending the data; i.e.,

µt = b0 + b1 t.

In that example, we estimated the trend using ordinary least squares
and found

µ̂t = �7131 + 3.59 t.

Figure 2.1 shows the data with the estimated trend line superimposed.
To obtain the detrended series we simply subtract µ̂t from the
observations, xt, to obtain the detrended series3

ŷt = xt + 7131 � 3.59 t.

The top graph of Figure 2.4 shows the detrended series. Figure 2.5
shows the ACF of the original data (top panel) as well as the ACF of
the detrended data (middle panel).

In Example 1.9 and the corresponding Figure 1.9 we saw that a
random walk might also be a good model for trend. That is, rather than
modeling trend as fixed (as in Example 2.4), we might model trend as a
stochastic component using the random walk with drift model,

µt = d + µt�1 + wt, (2.26)

where wt is white noise and is independent of yt. If the appropriate
model is (2.24), then differencing the data, xt, yields a stationary process;
that is,

3 Because the error term, yt, is not assumed to be iid, the reader may feel that weighted
least squares is called for in this case. The problem is, we do not know the behavior of
yt and that is precisely what we are trying to assess at this stage. A notable result by
Grenander and Rosenblatt (1957, Ch 7), however, is that under mild conditions on yt, for
polynomial regression or periodic regression, asymptotically, ordinary least squares is
equivalent to weighted least squares with regard to efficiency.
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Fig. 2.4. Detrended (top) and differenced (bottom) chicken price series. The original data are shown
in Figure 2.1.

xt � xt�1 = (µt + yt)� (µt�1 + yt�1) (2.27)
= d + wt + yt � yt�1.

It is easy to show zt = yt � yt�1 is stationary using Property 1.1. That is,
because yt is stationary,

gz(h) = cov(zt+h, zt) = cov(yt+h � yt+h�1, yt � yt�1)

= 2gy(h)� gy(h + 1)� gy(h � 1) (2.28)

is independent of time; we leave it as an exercise (Problem 2.5) to show
that xt � xt�1 in (2.27) is stationary.

One advantage of differencing over detrending to remove trend is
that no parameters are estimated in the differencing operation. One
disadvantage, however, is that differencing does not yield an estimate of
the stationary process yt as can be seen in (2.27). If an estimate of yt is
essential, then detrending may be more appropriate. If the goal is to
coerce the data to stationarity, then differencing may be more
appropriate. Differencing is also a viable tool if the trend is fixed, as in
Example 2.4. That is, e.g., if µt = b0 + b1 t in the model (2.24),
differencing the data produces stationarity (see Problem 2.4):

xt � xt�1 = (µt + yt)� (µt�1 + yt�1) = b1 + yt � yt�1.

Because differencing plays a central role in time series analysis, it
receives its own notation. The first difference is denoted as

rxt = xt � xt�1. (2.29)

As we have seen, the first difference eliminates a linear trend. A second
difference, that is, the difference of (2.29), can eliminate a quadratic
trend, and so on. In order to define higher differences, we need a
variation in notation that we will use often in our discussion of ARIMA
models in Chapter 3.
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Definition 2.4 We define the backshift operator by

Bxt = xt�1

and extend it to powers B2xt = B(Bxt) = Bxt�1 = xt�2, and so on. Thus,

Bkxt = xt�k. (2.30)

The idea of an inverse operator can also be given if we require
B�1B = 1, so that

xt = B�1Bxt = B�1xt�1.

That is, B�1 is the forward-shift operator. In addition, it is clear that we
may rewrite (2.29) as

rxt = (1 � B)xt, (2.31)

and we may extend the notion further. For example, the second
difference becomes

r2xt = (1 � B)2xt = (1 � 2B + B2)xt = xt � 2xt�1 + xt�2 (2.32)

by the linearity of the operator. To check, just take the difference of the
first difference r(rxt) = r(xt � xt�1) = (xt � xt�1)� (xt�1 � xt�2).

Definition 2.5 Differences of order d are defined as

rd = (1 � B)d, (2.33)

where we may expand the operator (1 � B)d algebraically to evaluate for higher
integer values of d. When d = 1, we drop it from the notation.

The first difference (2.29) is an example of a linear filter applied to
eliminate a trend. Other filters, formed by averaging values near xt, can
produce adjusted series that eliminate other kinds of unwanted
fluctuations, as in Chapter 4. The differencing technique is an important
component of the ARIMA model discussed in Chapter 3.

Example 2.5 Differencing Chicken Prices
The first difference of the chicken prices series, also shown in
Figure 2.4, produces different results than removing trend by
detrending via regression. For example, the differenced series does not
contain the long (five-year) cycle we observe in the detrended series.
The ACF of this series is also shown in Figure 2.5. In this case, the
difference series exhibits an annual cycle that was not seen in the
original or detrended data.

The R code to reproduce Figure 2.4 and Figure 2.5 is as follows.
fit = lm(chicken~time(chicken), na.action=NULL) # regress chicken on time
par(mfrow=c(2,1))
plot(resid(fit), type="o", main="detrended")
plot(diff(chicken), type="o", main="first difference")
par(mfrow=c(3,1)) # plot ACFs
acf(chicken, 48, main="chicken")
acf(resid(fit), 48, main="detrended")
acf(diff(chicken), 48, main="first difference")
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Fig. 2.5. Sample ACFs of chicken prices (top), and of the detrended (middle) and the differenced
(bottom) series. Compare the top plot with the sample ACF of a straight line: acf(1:100).

Example 2.6 Differencing Global Temperature
The global temperature series shown in Figure 1.3 appears to behave
more as a random walk than a trend stationary series. Hence, rather
than detrend the data, it would be more appropriate to use differencing
to coerce it into stationarity. The detreded data are shown in Figure 2.6
along with the corresponding sample ACF. In this case it appears that
the differenced process shows minimal autocorrelation, which may
imply the global temperature series is nearly a random walk with drift.
It is interesting to note that if the series is a random walk with drift,
the mean of the differenced series, which is an estimate of the drift, is
about .008, or an increase of about one degree centigrade per 100 years.

The R code to reproduce Figure 2.4 and Figure 2.5 is as follows.
par(mfrow=c(2,1))
plot(diff(globtemp), type="o")
mean(diff(globtemp)) # drift estimate = .008
acf(diff(gtemp), 48)

Often, obvious aberrations are present that can contribute
nonstationary as well as nonlinear behavior in observed time series. In
such cases, transformations may be useful to equalize the variability over
the length of a single series. A particularly useful transformation is

yt = log xt, (2.34)

which tends to suppress larger fluctuations that occur over portions of
the series where the underlying values are larger. Other possibilities are
power transformations in the Box–Cox family of the form

yt =

(

(xl
t � 1)/l l 6= 0,

log xt l = 0.
(2.35)
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Fig. 2.6. Differenced global temperature series and its sample ACF.

Methods for choosing the power l are available (see Johnson and
Wichern, 1992, §4.7) but we do not pursue them here. Often,
transformations are also used to improve the approximation to normality
or to improve linearity in predicting the value of one series from another.

Example 2.7 Paleoclimatic Glacial Varves
Melting glaciers deposit yearly layers of sand and silt during the
spring melting seasons, which can be reconstructed yearly over a
period ranging from the time deglaciation began in New England
(about 12,600 years ago) to the time it ended (about 6,000 years ago).
Such sedimentary deposits, called varves, can be used as proxies for
paleoclimatic parameters, such as temperature, because, in a warm
year, more sand and silt are deposited from the receding glacier.
Figure 2.7 shows the thicknesses of the yearly varves collected from
one location in Massachusetts for 634 years, beginning 11,834 years
ago. For further information, see Shumway and Verosub (1992).
Because the variation in thicknesses increases in proportion to the
amount deposited, a logarithmic transformation could remove the
nonstationarity observable in the variance as a function of time.
Figure 2.7 shows the original and transformed varves, and it is clear
that this improvement has occurred. We may also plot the histogram of
the original and transformed data, as in Problem 2.6, to argue that the
approximation to normality is improved. The ordinary first differences
(2.31) are also computed in Problem 2.6, and we note that the first
differences have a significant negative correlation at lag h = 1. Later, in
Chapter 5, we will show that perhaps the varve series has long
memory and will propose using fractional differencing.

Figure 2.7 was generated in R as follows:
par(mfrow=c(2,1))
plot(varve, main="varve", ylab="")
plot(log(varve), main="log(varve)", ylab="" )
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Fig. 2.7. Glacial varve thicknesses (top) from Massachusetts for n = 634 years compared with log
transformed thicknesses (bottom).

Next, we consider another preliminary data processing technique
that is used for the purpose of visualizing the relations between series at
different lags, namely, scatterplot matrices. In the definition of the ACF,
we are essentially interested in relations between xt and xt�h; the
autocorrelation function tells us whether a substantial linear relation
exists between the series and its own lagged values. The ACF gives a
profile of the linear correlation at all possible lags and shows which
values of h lead to the best predictability. The restriction of this idea to
linear predictability, however, may mask a possible nonlinear relation
between current values, xt, and past values, xt�h. This idea extends to
two series where one may be interested in examining scatterplots of yt
versus xt�h.

Example 2.8 Scatterplot Matrices, SOI and Recruitment
To check for nonlinear relations of this form, it is convenient to display
a lagged scatterplot matrix, as in Figure 2.8, that displays values of the
SOI, St, on the vertical axis plotted against St�h on the horizontal axis.
The sample autocorrelations are displayed in the upper right-hand
corner and superimposed on the scatterplots are locally weighted
scatterplot smoothing (lowess) lines that can be used to help discover
any nonlinearities. We discuss smoothing in the next section, but for
now, think of lowess as a method for fitting local regression.

In Figure 2.8, we notice that the lowess fits are approximately linear,
so that the sample autocorrelations are meaningful. Also, we see strong
positive linear relations at lags h = 1, 2, 11, 12, that is, between St and
St�1, St�2, St�11, St�12, and a negative linear relation at lags h = 6, 7.

Similarly, we might want to look at values of one series, say
Recruitment, denoted Rt plotted against another series at various lags,
say the SOI, St�h, to look for possible nonlinear relations between the
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Fig. 2.8. Scatterplot matrix relating current SOI values, St, to past SOI values, St�h, at lags h =
1, 2, ..., 12. The values in the upper right corner are the sample autocorrelations and the lines are a
lowess fit.

two series. Because, for example, we might wish to predict the
Recruitment series, Rt, from current or past values of the SOI series,
St�h, for h = 0, 1, 2, ... it would be worthwhile to examine the
scatterplot matrix. Figure 2.9 shows the lagged scatterplot of the
Recruitment series Rt on the vertical axis plotted against the SOI index
St�h on the horizontal axis. In addition, the figure exhibits the sample
cross-correlations as well as lowess fits.

Figure 2.9 shows a fairly strong nonlinear relationship between
Recruitment, Rt, and the SOI series at St�5, St�6, St�7, St�8, indicating
the SOI series tends to lead the Recruitment series and the coefficients
are negative, implying that increases in the SOI lead to decreases in the
Recruitment. The nonlinearity observed in the scatterplots (with the
help of the superimposed lowess fits) indicates that the behavior
between Recruitment and the SOI is different for positive values of SOI
than for negative values of SOI.

The R code for this example is
lag1.plot(soi, 12) # Figure 2.8
lag2.plot(soi, rec, 8) # Figure 2.9

Example 2.9 Regression with Lagged Variables (cont)
In Example 2.3 we regressed Recruitment on lagged SOI,

Rt = b0 + b1St�6 + wt.
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Fig. 2.9. Scatterplot matrix of the Recruitment series, Rt, on the vertical axis plotted against the SOI
series, St�h, on the horizontal axis at lags h = 0, 1, . . . , 8. The values in the upper right corner are
the sample cross-correlations and the lines are a lowess fit.

However, in Example 2.8, we saw that the relationship is nonlinear and
different when SOI is positive or negative. In this case, we may
consider adding a dummy variable to account for this change. In
particular, we fit the model

Rt = b0 + b1St�6 + b2Dt�6 + b3Dt�6 St�6 + wt,

where Dt is a dummy variable that is 0 if St < 0 and 1 otherwise. This
means that

Rt =

(

b0 + b1St�6 + wt if St�6 < 0 ,
(b0 + b2) + (b1 + b3)St�6 + wt if St�6 � 0 .

The result of the fit is given in the R code below. Figure 2.10 shows
Rt vs St�6 with the fitted values of the regression and a lowess fit
superimposed. The piecewise regression fit is similar to the lowess fit,
but we note that the residuals are not white noise (see the code below).
This is followed up in Example 3.37.
dummy = ifelse(soi<0, 0, 1)
fish = ts.intersect(rec, soiL6=lag(soi,-6), dL6=lag(dummy,-6), dframe=TRUE)
summary(fit <- lm(rec~ soiL6*dL6, data=fish, na.action=NULL))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 74.479 2.865 25.998 < 2e-16
soiL6 -15.358 7.401 -2.075 0.0386
dL6 -1.139 3.711 -0.307 0.7590
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Fig. 2.10. Display for Example 2.9: Plot of Recruitment (Rt) vs SOI lagged 6 months (St�6) with
the fitted values of the regression as points (+) and a lowess fit (—).

soiL6:dL6 -51.244 9.523 -5.381 1.2e-07
---
Residual standard error: 21.84 on 443 degrees of freedom
Multiple R-squared: 0.4024, Adjusted R-squared: 0.3984
F-statistic: 99.43 on 3 and 443 DF, p-value: < 2.2e-16

attach(fish) # so we can use the names of the variables in fish
plot(soiL6, rec)
lines(lowess(soiL6, rec), col=4, lwd=2)
points(soiL6, fitted(fit), pch='+', col=2)
plot(resid(fit)) # not shown ...
acf(resid(fit)) # ... but obviously not noise

As a final exploratory tool, we discuss assessing periodic behavior in
time series data using regression analysis; this material may be thought
of as an introduction to spectral analysis, which we discuss in detail in
Chapter 4. In Example 1.10, we briefly discussed the problem of
identifying cyclic or periodic signals in time series. A number of the time
series we have seen so far exhibit periodic behavior. For example, the
data from the pollution study example shown in Figure 2.2 exhibit
strong yearly cycles. Also, the Johnson & Johnson data shown in
Figure 1.1 make one cycle every year (four quarters) on top of an
increasing trend and the speech data in Figure 1.3 is highly repetitive.
The monthly SOI and Recruitment series in Figure 1.6 show strong
yearly cycles, but hidden in the series are clues to the El Niño cycle.

Example 2.10 Using Regression to Discover a Signal in Noise
In Example 1.10, we generated n = 500 observations from the model

xt = A cos(2pwt + f) + wt, (2.36)

where w = 1/50, A = 2, f = .6p, and sw = 5; the data are shown on
the bottom panel of Figure 1.10. At this point we assume the frequency
of oscillation w = 1/50 is known, but A and f are unknown
parameters. In this case the parameters appear in (2.36) in a nonlinear
way, so we use a trigonometric identity4 and write

A cos(2pwt + f) = b1 cos(2pwt) + b2 sin(2pwt),
4 cos(a ± b) = cos(a) cos(b)⌥ sin(a) sin(b).
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Fig. 2.11. Data generated by (2.36) [top] and the fitted line superimposed on the data [bottom].

where b1 = A cos(f) and b2 = �A sin(f). Now the model (2.36) can
be written in the usual linear regression form given by (no intercept
term is needed here)

xt = b1 cos(2pt/50) + b2 sin(2pt/50) + wt. (2.37)

Using linear regression, we find b̂1 = �.74(.33), b̂2 = �1.99(.33) with
ŝw = 5.18; the values in parentheses are the standard errors. We note
the actual values of the coefficients for this example are
b1 = 2 cos(.6p) = �.62, and b2 = �2 sin(.6p) = �1.90. It is clear that
we are able to detect the signal in the noise using regression, even
though the signal-to-noise ratio is small. Figure 2.11 shows data
generated by (2.36) with the fitted line superimposed.

To reproduce the analysis and Figure 2.11 in R, use the following:
set.seed(90210) # so you can reproduce these results
x = 2*cos(2*pi*1:500/50 + .6*pi) + rnorm(500,0,5)
z1 = cos(2*pi*1:500/50)
z2 = sin(2*pi*1:500/50)
summary(fit <- lm(x~ 0 + z1 + z2)) # zero to exclude the intercept
Coefficients:
Estimate Std. Error t value Pr(>|t|)

z1 -0.7442 0.3274 -2.273 0.0235
z2 -1.9949 0.3274 -6.093 2.23e-09
Residual standard error: 5.177 on 498 degrees of freedom

par(mfrow=c(2,1))
plot.ts(x)
plot.ts(x, col=8, ylab=expression(hat(x)))
lines(fitted(fit), col=2)

We will discuss this and related approaches in more detail in
Chapter 4.

2.3 Smoothing Time Series

In Section 1.4, we introduced the concept of smoothing a time series, and
in Example 1.7, we discussed using a moving average to smooth white
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Fig. 2.12. The SOI series smoothed using (2.38) with k = 6 (and half-weights at the ends). The insert
shows the shape of the moving average (“boxcar”) kernel [not drawn to scale] described in (2.40).
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Fig. 2.13. Kernel smoother of the SOI. The insert shows the shape of the normal kernel [not drawn to
scale].

noise. This method is useful for discovering certain traits in a time series,
such as long-term trend and seasonal components (see Section 4.7 for
details). In particular, if xt represents the observations, then

mt =
k

Â
j=�k

ajxt�j, (2.38)

where aj = a�j � 0 and Âk
j=�k aj = 1 is a symmetric moving average of

the data.

Example 2.11 Moving Average Smoother
For example, Figure 2.12 shows the monthly SOI series discussed in
Example 1.4 smoothed using (2.38) with weights
a0 = a±1 = · · · = a±5 = 1/12, and a±6 = 1/24; k = 6. This particular
method removes (filters out) the obvious annual temperature cycle and
helps emphasize the El Niño cycle. To reproduce Figure 2.12 in R:
wgts = c(.5, rep(1,11), .5)/12
soif = filter(soi, sides=2, filter=wgts)
plot(soi)
lines(soif, lwd=2, col=4)

Although the moving average smoother does a good job in
highlighting the El Niño effect, it might be considered too choppy. We
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Fig. 2.14. Locally weighted scatterplot smoothers (lowess) of the SOI series.

can obtain a smoother fit using the normal distribution for the weights,
instead of boxcar-type weights of (2.38).

Example 2.12 Kernel Smoothing
Kernel smoothing is a moving average smoother that uses a weight
function, or kernel, to average the observations. Figure 2.13 shows
kernel smoothing of the SOI series, where mt is now

mt =
n

Â
i=1

wi(t)xi, (2.39)

where
wi(t) = K

⇣

t�i
b

⌘ .

Ân
j=1 K

⇣

t�j
b

⌘

(2.40)

are the weights and K(·) is a kernel function. This estimator, which was
originally explored by Parzen (1962) and Rosenblatt (1956b), is often
called the Nadaraya–Watson estimator (Watson, 1966). In this example,
and typically, the normal kernel, K(z) = 1p

2p
exp(�z2/2), is used.

To implement this in R, use the ksmooth function where a
bandwidth can be chosen. The wider the bandwidth, b, the smoother
the result. In our case, we are smoothing over time, which is of the
form t/12 for the SOI time series. In Figure 2.13, we used the value of
b = 1 to correspond to approximately smoothing over about a year The
R code for this example is
plot(soi)
lines(ksmooth(time(soi), soi, "normal", bandwidth=1), lwd=2, col=4)

Example 2.13 Lowess
Another approach to smoothing a time plot is nearest neighbor
regression. The technique is based on k-nearest neighbors regression,
wherein one uses only the data {xt�k/2, . . . , xt, . . . , xt+k/2} to predict xt
via regression, and then sets mt = x̂t.

Lowess is a method of smoothing that is rather complex, but the
basic idea is close to nearest neighbor regression. Figure 2.14 shows
smoothing of SOI using the R function lowess (see Cleveland, 1979).
First, a certain proportion of nearest neighbors to xt are included in a
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Fig. 2.15. Smooth of mortality as a function of temperature using lowess.

weighting scheme; values closer to xt in time get more weight. Then, a
robust weighted regression is used to predict xt and obtain the
smoothed values mt. The larger the fraction of nearest neighbors
included, the smoother the fit will be. In Figure 2.14, one smoother
uses 5% of the data to obtain an estimate of the El Niño cycle of the
data. In addition, a (negative) trend in SOI would indicate the
long-term warming of the Pacific Ocean. To investigate this, we used a
lowess with the default smoother span of f=2/3 of the data. Figure 2.14
can be reproduced in R as follows.
plot(soi)
lines(lowess(soi, f=.05), lwd=2, col=4) # El Nino cycle
lines(lowess(soi), lty=2, lwd=2, col=2) # trend (using default span)

Example 2.14 Smoothing One Series as a Function of Another
In addition to smoothing time plots, smoothing techniques can be
applied to smoothing a time series as a function of another time series.
We already used this idea in Example 2.8 to visualize the nonlinearity
between Recruitment and SOI at various lags via lowess. In this
example, we smooth the scatterplot of two contemporaneously
measured time series, mortality as a function of temperature. In
Example 2.2, we discovered a nonlinear relationship between mortality
and temperature. Continuing along these lines, Figure 2.15 shows a
scatterplot of mortality, Mt, and temperature, Tt, along with Mt
smoothed as a function of Tt using lowess Note that mortality
increases at extreme temperatures, but in an asymmetric way;
mortality is higher at colder temperatures than at hotter temperatures.
The minimum mortality rate seems to occur at approximately 83� F.
Figure 2.15 can be reproduced in R as follows using the defaults.
plot(tempr, cmort, xlab="Temperature", ylab="Mortality")
lines(lowess(tempr, cmort))

Problems
2.1 (Structural Model) For the Johnson & Johnson data, say yt, shown
in Figure 1.1, let xt = log(yt). In this problem, we are going to fit a
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special type of structural model, xt = Tt + St + Nt where Tt is a trend
component, St is a seasonal component, and Nt is noise. In our case,
time t is in quarters (1960.00, 1960.25, . . . ) so one unit of time is a year.

(a) Fit the regression model

xt = bt
|{z}

trend

+ a1Q1(t) + a2Q2(t) + a3Q3(t) + a4Q4(t)
| {z }

seasonal

+ wt
|{z}

noise

where Qi(t) = 1 if time t corresponds to quarter i = 1, 2, 3, 4, and
zero otherwise. The Qi(t)’s are called indicator variables. We will
assume for now that wt is a Gaussian white noise sequence. Hint:
Detailed code is given in Appendix R, near the end of Section R.4.

(b) If the model is correct, what is the estimated average annual increase
in the logged earnings per share?

(c) If the model is correct, does the average logged earnings rate increase
or decrease from the third quarter to the fourth quarter? And, by
what percentage does it increase or decrease?

(d) What happens if you include an intercept term in the model in (a)?
Explain why there was a problem.

(e) Graph the data, xt, and superimpose the fitted values, say bxt, on the
graph. Examine the residuals, xt � bxt, and state your conclusions.
Does it appear that the model fits the data well (do the residuals look
white)?

2.2 For the mortality data examined in Example 2.2:

(a) Add another component to the regression in (2.21) that accounts for
the particulate count four weeks prior; that is, add Pt�4 to the
regression in (2.21). State your conclusion.

(b) Using AIC and BIC, is the model in (a) an improvement over the final
model in Example 2.2?

2.3 In this problem, we explore the difference between a random walk
and a trend stationary process.

(a) Generate four series that are random walk with drift, (1.4), of length
n = 100 with d = .01 and sw = 1. Call the data xt for t = 1, . . . , 100.
Fit the regression xt = bt + wt using least squares. Plot the data, the
true mean function (i.e., µt = .01 t) and the fitted line, x̂t = b̂ t, on the
same graph. Hint: The following R code may be useful.
par(mfrow=c(2,2), mar=c(2.5,2.5,0,0)+.5, mgp=c(1.6,.6,0)) # set up
for (i in 1:4){
x = ts(cumsum(rnorm(100,.01,1))) # data
regx = lm(x~0+time(x), na.action=NULL) # regression
plot(x, ylab='Random Walk w Drift') # plots
abline(a=0, b=.01, col=2, lty=2) # true mean (red - dashed)
abline(regx, col=4) # fitted line (blue - straight)

}

(b) Generate four series of length n = 100 that are linear trend plus noise,
say yt = .01 t + wt, where t and wt are as in part (a). Fit the regression
yt = bt + wt using least squares. Plot the data, the true mean function
(i.e., µt = .01 t) and the fitted line, ŷt = b̂ t, on the same graph.
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(c) Comment (what did you learn from this assignment).

2.4 Consider a process consisting of a linear trend with an additive noise
term consisting of independent random variables wt with zero means
and variances s2

w, that is,

xt = b0 + b1t + wt,

where b0, b1 are fixed constants.

(a) Prove xt is nonstationary.
(b) Prove that the first difference series rxt = xt � xt�1 is stationary by

finding its mean and autocovariance function.
(c) Repeat part (b) if wt is replaced by a general stationary process, say

yt, with mean function µy and autocovariance function gy(h). [Hint:
See (2.28).]

2.5 Show (2.27) is stationary.

2.6 The glacial varve record plotted in Figure 2.7 exhibits some
nonstationarity that can be improved by transforming to logarithms and
some additional nonstationarity that can be corrected by differencing the
logarithms.

(a) Argue that the glacial varves series, say xt, exhibits heteroscedasticity
by computing the sample variance over the first half and the second
half of the data. Argue that the transformation yt = log xt stabilizes
the variance over the series. Plot the histograms of xt and yt to see
whether the approximation to normality is improved by
transforming the data.

(b) Plot the series yt. Do any time intervals, of the order 100 years, exist
where one can observe behavior comparable to that observed in the
global temperature records in Figure 1.3?

(c) Examine the sample ACF of yt and comment.
(d) Compute the difference ut = yt � yt�1, examine its time plot and

sample ACF, and argue that differencing the logged varve data
produces a reasonably stationary series. Can you think of a practical
interpretation for ut? Hint: For |p| close to zero, log(1 + p) ⇡ p; let
p = (xt � xt�1)/xt�1.

2.7 Use the three different smoothing techniques described in
Example 2.11, Example 2.12, and Example 2.13, to estimate the trend in
the global temperature series displayed in Figure 1.3. Comment.



Chapter 3
ARIMA Models

3.1 Introduction

Classical regression is often insufficient for explaining all of the
interesting dynamics of a time series. For example, the ACF of the
residuals of the simple linear regression fit to the price of chicken data
(see Example 2.4) reveals additional structure in the data that regression
did not capture. Instead, the introduction of correlation as a
phenomenon that may be generated through lagged linear relations
leads to proposing the autoregressive (AR) and moving average (MA)
models. Often, these models are combined to form the autoregressive
moving average (ARMA) model. Adding nonstationary models to the
mix leads to the autoregressive integrated moving average (ARIMA)
model popularized in the landmark work by Box and Jenkins (1970).
Seasonal data, such as the data discussed in Example 1.1 and
Example 1.4 lead to seasonal autoregressive integrated moving average
(SARIMA) models. The Box–Jenkins method for identifying a plausible
models is given in this chapter along with techniques for parameter
estimation and forecasting.

3.2 Autoregressive Moving Average Models

Autoregressive models are based on the idea that the current value of
the series, xt, can be explained by p past values, xt�1, xt�2, . . . , xt�p. As a
typical case, recall Example 1.8 in which data were generated using the
model

xt = xt�1 � .90xt�2 + wt,

where wt is white Gaussian noise with s2
w = 1. We have now assumed

the current value is a particular linear function of past values. The
regularity that persists in Figure 1.8 gives an indication that forecasting
for such a model might be a distinct possibility, say, through some
version such as
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xn
n+1 = xn � .90xn�1,

where the quantity on the left-hand side denotes the forecast at the next
period n + 1 based on the observed data, x1, x2, . . . , xn. For example, the
lagged scatterplot matrix for the Southern Oscillation Index (SOI),
shown in Figure 2.8, gives a distinct indication that the values at lags 1,
2, and 12, are linearly associated with the current value. We will make
this notion more precise in our discussion of forecasting.

Definition 3.1 An autoregressive model of order p, abbreviated AR(p), is of
the form

xt = f1xt�1 + f2xt�2 + · · ·+ fpxt�p + wt, (3.1)

where xt is stationary, and f1, f2, . . . , fp are constants (fp 6= 0). Although it is
not necessary yet, we assume that wt is a Gaussian white noise series with mean
zero and variance s2

w, unless otherwise stated. The mean of xt in (3.1) is zero. If
the mean, µ, of xt is not zero, replace xt by xt � µ in (3.1),

xt � µ = f1(xt�1 � µ) + f2(xt�2 � µ) + · · ·+ fp(xt�p � µ) + wt,

or write
xt = a + f1xt�1 + f2xt�2 + · · ·+ fpxt�p + wt, (3.2)

where a = µ(1 � f1 � · · ·� fp).

We note that (3.2) is similar to the regression model of Section 2.1,
and hence the term auto (or self) regression. Some technical difficulties
develop from applying that model because the regressors, xt�1, . . . , xt�p,
are random components, whereas in regression, the regressors are
assumed to be fixed. A useful form follows by using the backshift
operator (2.30) to write the AR(p) model, (3.1), as

(1 � f1B � f2B2 � · · ·� fpBp)xt = wt, (3.3)

or even more concisely as

f(B)xt = wt. (3.4)

Example 3.1 The AR(1) Model
Consider the first-order model, AR(1), given by xt = fxt�1 + wt.
Provided that |f| < 1 we can represent an AR(1) model as a linear
process given by1

xt =
•

Â
j=0

fjwt�j. (3.5)

Representation (3.5) is called the causal stationary solution of the model.
The term causal refers to the fact that xt does not depend on the
future. In fact, by simple substitution,

1 Iterate backward, xt = fxt�1 + wt = f(fxt�2 + wt�1) + wt = f2xt�2 + fwt�1 + wt =
· · · = fkxt�k + Âk�1

j=0 fjwt�j. If |f| < 1 and supt E(x2
t ) < •, then

limk!• E
⇣

xt � Âk�1
j=0 fjwt�j

⌘2
= limk!• f2kE

�

x2
t�k
�

= 0.
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•

Â
j=0

fjwt�j

| {z }

xt

= f
⇣ •

Â
k=0

fkwt�1�k

| {z }

xt�1

⌘

+ wt.

Using (3.5), it is easy to see that the AR(1) process is stationary with
mean

E(xt) =
•

Â
j=0

fjE(wt�j) = 0,

and autocovariance function (h � 0),

g(h) = cov(xt+h, xt) = E

" 

•

Â
j=0

fjwt+h�j

! 

•

Â
k=0

fkwt�k

!#

= E
h⇣

wt+h + · · ·+ fhwt + fh+1wt�1 + · · ·
⌘⇣

wt + fwt�1 + · · ·
⌘i

= s2
w

•

Â
j=0

fh+jfj = s2
wfh

•

Â
j=0

f2j =
s2

wfh

1 � f2 , h � 0. (3.6)

Recall that g(h) = g(�h), so we will only exhibit the autocovariance
function for h � 0. From (3.6), the ACF of an AR(1) is

r(h) =
g(h)
g(0)

= fh, h � 0. (3.7)

Example 3.2 The Sample Path of an AR(1) Process
Figure 3.1 shows a time plot of two AR(1) processes, one with f = .9
and one with f = �.9; in both cases, s2

w = 1. In the first case,
r(h) = .9h, for h � 0, so observations close together in time are
positively correlated with each other. This result means that
observations at contiguous time points will tend to be close in value to
each other; this fact shows up in the top of Figure 3.1 as a very smooth
sample path for xt. Now, contrast this with the case in which f = �.9,
so that r(h) = (�.9)h, for h � 0. This result means that observations at
contiguous time points are negatively correlated but observations two
time points apart are positively correlated. This fact shows up in the
bottom of Figure 3.1, where, for example, if an observation, xt, is
positive, the next observation, xt+1, is typically negative, and the next
observation, xt+2, is typically positive. Thus, in this case, the sample
path is very choppy. The following R code can be used to obtain a
figure similar to Figure 3.1:
par(mfrow=c(2,1))
plot(arima.sim(list(order=c(1,0,0), ar=.9), n=100), ylab="x",

main=(expression(AR(1)~~~phi==+.9)))
plot(arima.sim(list(order=c(1,0,0), ar=-.9), n=100), ylab="x",

main=(expression(AR(1)~~~phi==-.9)))

As an alternative to the autoregressive representation in which the xt
on the left-hand side of the equation are assumed to be combined
linearly, the moving average model of order q, abbreviated as MA(q),
assumes the white noise wt on the right-hand side of the defining
equation are combined linearly to form the observed data.
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Fig. 3.1. Simulated AR(1) models: f = .9 (top); f = �.9 (bottom).

Definition 3.2 The moving average model of order q, or MA(q) model, is
defined to be

xt = wt + q1wt�1 + q2wt�2 + · · ·+ qqwt�q, (3.8)

where there are q lags in the moving average and q1, q2, . . . , qq (qq 6= 0) are
parameters.2 Although it is not necessary yet, we assume that wt is a Gaussian
white noise series with mean zero and variance s2

w, unless otherwise stated.

As in the AR(p) case, the MA(q) model may be written as

xt = (1 + q1B + q2B2 + · · ·+ qqBq)wt, (3.9)

or more concisely as
xt = q(B)wt, (3.10)

Unlike the autoregressive process, the moving average process is
stationary for any values of the parameters q1, . . . , qq.

Example 3.3 The MA(1) Process
Consider the MA(1) model xt = wt + qwt�1. Then, E(xt) = 0,

g(h) =

8

>

<

>

:

(1 + q2)s2
w h = 0,

qs2
w h = 1,

0 h > 1,

and the ACF is

r(h) =

8

<

:

q

(1+q2)
h = 1,

0 h > 1.

2 Some texts and software packages write the MA model with negative coefficients; that
is, xt = wt � q1wt�1 � q2wt�2 � · · ·� qqwt�q.
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Fig. 3.2. Simulated MA(1) models: q = .9 (top); q = �.9 (bottom).

Note |r(1)|  1/2 for all values of q (Problem 3.1). Also, xt is
correlated with xt�1, but not with xt�2, xt�3, . . . . Contrast this with the
case of the AR(1) model in which the correlation between xt and xt�k is
never zero. When q = .9, for example, xt and xt�1 are positively
correlated, and r(1) = .497. When q = �.9, xt and xt�1 are negatively
correlated, r(1) = �.497. Figure 3.2 shows a time plot of these two
processes with s2

w = 1. The series for which q = .9 is smoother than the
series for which q = �.9. A figure similar to Figure 3.2 can be created
in R as follows:
par(mfrow = c(2,1))
plot(arima.sim(list(order=c(0,0,1), ma=.9), n=100), ylab="x",

main=(expression(MA(1)~~~theta==+.5)))
plot(arima.sim(list(order=c(0,0,1), ma=-.9), n=100), ylab="x",

main=(expression(MA(1)~~~theta==-.5)))

We now proceed with the general development of mixed
autoregressive moving average (ARMA) models for stationary time
series.

Definition 3.3 A time series {xt; t = 0,±1,±2, . . .} is ARMA(p, q) if it is
stationary and

xt = f1xt�1 + · · ·+ fpxt�p + wt + q1wt�1 + · · ·+ qqwt�q, (3.11)

with fp 6= 0, qq 6= 0, and s2
w > 0. The parameters p and q are called the

autoregressive and the moving average orders, respectively. If xt has a nonzero
mean µ, we set a = µ(1 � f1 � · · ·� fp) and write the model as

xt = a + f1xt�1 + · · ·+ fpxt�p + wt + q1wt�1 + · · ·+ qqwt�q. (3.12)

Although it is not necessary yet, we assume that wt is a Gaussian white noise
series with mean zero and variance s2

w, unless otherwise stated.
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The ARMA model may be seen as a regression of the present
outcome (xt) on the past outcomes (xt�1, . . . , xt�p), with correlated
errors. That is,

xt = b0 + b1xt�1 + · · ·+ bpxt�p + et,

where et = wt + q1wt�1 + · · ·+ qqwt�q, although we call the regression
parameters f instead of b.

As previously noted, when q = 0, the model is called an
autoregressive model of order p, AR(p), and when p = 0, the model is
called a moving average model of order q, MA(q). Using (3.3) and (3.9),
the ARMA(p, q) model in (3.11) may be written in concise form as

f(B)xt = q(B)wt. (3.13)

The concise form of an ARMA model points to a potential problem in
that we can unnecessarily complicate the model by multiplying both
sides by another operator, say

h(B)f(B)xt = h(B)q(B)wt ,

without changing the dynamics. Consider the following example.

Example 3.4 Parameter Redundancy
Consider a white noise process xt = wt. Equivalently, we can write this
as .5xt�1 = .5wt�1 by shifting back one unit of time and multiplying by
.5. Now, subtract the two representations to obtain

xt � .5xt�1 = wt � .5wt�1,

or
xt = .5xt�1 � .5wt�1 + wt, (3.14)

which looks like an ARMA(1, 1) model. Of course, xt is still white
noise; nothing has changed in this regard [i.e., xt = wt is the solution
to (3.14)], but we have hidden the fact that xt is white noise because of
the parameter redundancy or over-parameterization. Write the
parameter redundant model in operator form,

(1 � .5B)xt = (1 � .5B)wt.

Apply the operator f(B)�1 = (1 � .5B)�1 to both sides to obtain

xt = (1 � .5B)�1(1 � .5B)xt = (1 � .5B)�1(1 � .5B)wt = wt,

which is the original model.

Example 3.4 points out the need to be careful when fitting ARMA
models to data. For example, if a process is truly white noise, it is
possible to fit a significant ARMA(k, k) model to the data. That is, it is
possible to obtain a seemingly complicated dynamic description of
simple white noise. Consider the following example.
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Example 3.5 Parameter Redundancy (cont)
Although we have not yet discussed estimation, we present the
following demonstration of the problem. We generated 150 iid normals
and then fit an ARMA(1, 1) to the data. Note that f̂ = �.96 and
q̂ = .95, and both are significant. Below is the R code (note that the
estimate called “intercept” is really the estimate of the mean).
set.seed(8675309) # Jenny, I got your number
x = rnorm(150, mean=5) # generate iid N(5,1)s
arima(x, order=c(1,0,1)) # estimation
Coefficients:

ar1 ma1 intercept<= misnomer
-0.9595 0.9527 5.0462

s.e. 0.1688 0.1750 0.0727

Thus, forgetting the mean estimate, the fitted model looks like

(1 + .96B)xt = (1 + .95B)wt ,

which we should recognize as an over-parametrized model.

Henceforth, we will require an ARMA model to have no common
factors, so that it is reduced to its simplest form. In addition, for the
purposes of estimation and forecasting, we will require an ARMA model
to be causal (or non-anticipative) and invertible as defined below.

Definition 3.4 Causality and Invertibility
The causal form of the model is given by

xt = f(B)�1q(B)wt = y(B)wt =
•

Â
j=0

yjwt�j, (3.15)

where y(B) = Â•
j=0 yjBj (y0 = 1). Note that the parameters yj may be

obtained by matching coefficients of B in f(B)y(B) = q(B).
The invertible form of the model is given by

wt = q(B)�1f(B)xt = p(B)xt =
•

Â
j=0

pjxt�j. (3.16)

where p(B) = Â•
j=0 pjBj (p0 = 1), assuming the representations are

well-defined. Likewise, the parameters pj may be obtained by matching
coefficients of B in f(B) = p(B)q(B).

We note that it is not always possible to solve these relationships and
some restrictions apply, as follows.

Property 3.1 Causality and Invertibility (existence)
Let

f(z) = 1 � f1z � · · ·� fpzp and q(z) = 1 + q1z + · · ·+ qqzq

be the AR and MA polynomials obtained by replacing the backshift operator B
in (3.3) and (3.9) by a complex number z.
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An ARMA(p, q) model is causal if and only if f(z) 6= 0 for |z|  1.
The coefficients of the linear process given in (3.15) can be determined by
solving (y0 = 1)

y(z) =
•

Â
j=0

yjzj =
q(z)
f(z)

, |z|  1.⇤

An ARMA(p, q) model is invertible if and only if q(z) 6= 0 for |z|  1.
The coefficients pj of p(B) given in (3.16) can be determined by solving
(p0 = 1)

p(z) =
•

Â
j=0

pjzj =
f(z)
q(z)

, |z|  1.†

We demonstrate the property in the following example.

Example 3.6 Parameter Redundancy, Causality, Invertibility
Consider the process

xt = .4xt�1 + .45xt�2 + wt + wt�1 + .25wt�2,

or, in operator form,

(1 � .4B � .45B2)xt = (1 + B + .25B2)wt.

At first, xt appears to be an ARMA(2, 2) process. But notice that

f(B) = 1 � .4B � .45B2 = (1 + .5B)(1 � .9B)

and
q(B) = (1 + B + .25B2) = (1 + .5B)2

have a common factor that can be canceled. After cancellation, the
operators are f(B) = (1 � .9B) and q(B) = (1 + .5B), so the model is
an ARMA(1, 1) model, (1 � .9B)xt = (1 + .5B)wt, or

xt = .9xt�1 + .5wt�1 + wt. (3.17)

The model is causal because f(z) = (1 � .9z) = 0 when z = 10/9,
which is outside the unit circle. The model is also invertible because
the root of q(z) = (1 + .5z) is z = �2, which is outside the unit circle.

To write the model as a linear process, we can obtain the y-weights
using Property 3.1, f(z)y(z) = q(z), or

(1 � .9z)(1 + y1z + y2z2 + · · ·+ yjzj + · · · ) = 1 + .5z.

Rearranging, we get

1 + (y1 � .9)z + (y2 � .9y1)z2 + · · ·+ (yj � .9yj�1)zj + · · · = 1 + .5z.

* f(z) can’t be zero in here. . . you wouldn’t want to divide by zero, would you?
† q(z) can’t be zero in here.
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Fig. 3.3. Causal region for an AR(2) in terms of the parameters.

The coefficients of z on the left and right sides must be the same, so we
get y1 � .9 = .5 or y1 = 1.4, and yj � .9yj�1 = 0 for j > 1. Thus,
yj = 1.4(.9)j�1 for j � 1 and (3.17) can be written as

xt = wt + 1.4 Â•
j=1 .9j�1wt�j.

The values of yj may be calculated in R as follows:
ARMAtoMA(ar = .9, ma = .5, 10) # first 10 psi-weights
[1] 1.40 1.26 1.13 1.02 0.92 0.83 0.74 0.67 0.60 0.54

The invertible representation using Property 3.1 is obtained by
matching coefficients in q(z)p(z) = f(z),

(1 + .5z)(1 + p1z + p2z2 + p3z3 + · · · ) = 1 � .9z.

In this case, the p-weights are given by pj = (�1)j 1.4 (.5)j�1, for j � 1,
and hence, we can also write (3.17) as

xt = 1.4 Â•
j=1(�.5)j�1xt�j + wt.

The values of pj may be calculated in R as follows by reversing the
roles of wt and xt; i.e., write the model as wt = �.5wt�1 + xt � .9xt�1:
ARMAtoMA(ar = -.5, ma = -.9, 10) # first 10 pi-weights
[1] -1.400 .700 -.350 .175 -.087 .044 -.022 .011 -.006 .003

Example 3.7 Causal Conditions for an AR(2) Process
For an AR(1) model, (1 � fB)xt = wt, to be causal, we must have
f(z) 6= 0 for |z|  1. If we solve f(z) = 1 � fz = 0, we find that the
root (or zero) occurs at z0 = 1/f, so that |z0| > 1 only if |f| < 1.

For example, the AR(2) model, (1 � f1B � f2B2)xt = wt, is causal
when the two roots of f(z) = 1 � f1z � f2z2 lie outside of the unit
circle. That is, if z1 and z2 are the roots, then |z1| > 1 and |z2| > 1.
Using the quadratic formula, this requirement can be written as

�

�

�

�

�

�

f1 ±
q

f2
1 + 4f2

�2f2

�

�

�

�

�

�

> 1.
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The roots of f(z) may be real and distinct, real and equal, or a complex
conjugate pair. In terms of the coefficients, the equivalent condition is

f1 + f2 < 1, f2 � f1 < 1, and |f2| < 1. (3.18)

This causality condition specifies a triangular region in the parameter
space; see Figure 3.3.

3.3 Autocorrelation and Partial Autocorrelation

We begin by exhibiting the ACF of an MA(q) process.

Example 3.8 ACF of an MA(q)
The model is xt = q(B)wt, where q(B) = 1 + q1B + · · ·+ qqBq. Because
xt is a finite linear combination of white noise terms, the process is
stationary with mean

E(xt) =
q

Â
j=0

qjE(wt�j) = 0,

where we have written q0 = 1, and with autocovariance function

g(h) = cov (xt+h, xt) = cov
⇣

q

Â
j=0

qjwt+h�j,
q

Â
k=0

qkwt�k

⌘

=

(

s2
w Âq�h

j=0 qjqj+h, 0  h  q
0 h > q.

(3.19)

Recall that g(h) = g(�h), so we will only display the values for h � 0.
The cutting off of g(h) after q lags is the signature of the MA(q) model.
Dividing (3.19) by g(0) yields the ACF of an MA(q):

r(h) =

8

>

>

<

>

>

:

Âq�h
j=0 qjqj+h

1 + q2
1 + · · ·+ q2

q
1  h  q

0 h > q.

(3.20)

Example 3.9 ACF of an AR(p) and ARMA(p, q)
For an AR(p) or ARMA(p, q) model, f(B)xt = q(B)wt, write it as

xt = f(B)�1q(B)wt = y(B)wt,

or

xt =
•

Â
j=0

yjwt�j. (3.21)

It follows immediately that E(xt) = 0. Also, the autocovariance
function of xt can be written as
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g(h) = cov(xt+h, xt) = s2
w

•

Â
j=0

yjyj+h, h � 0, (3.22)

so that the ACF is given by

r(h) =
Â•

j=0 yjyj+h

Â•
j=0 y2

j
, h � 0. (3.23)

Unlike the MA(q), the ACF of an AR(p) or an ARMA(p, q) does not
cut off at any lag, so using the ACF to help identify the order of an AR
or ARMA is difficult. Also, (3.23) is not appealing in that it provides
little information about the appearance of the ACF of various models.

Example 3.10 The ACF of an AR(2) Process
Suppose xt = f1xt�1 + f2xt�2 + wt is a causal AR(2) process. Multiply
each side of the model by xt�h for h > 0, and take expectation:

E(xtxt�h) = f1E(xt�1xt�h) + f2E(xt�2xt�h) + E(wtxt�h).

The result is

g(h) = f1g(h � 1) + f2g(h � 2), h = 1, 2, . . . . (3.24)

In (3.24), we used the fact that E(xt) = 0 and for h > 0, E(wt xt�h) = 0
because, by causality, xt�h does not depend on future errors. Divide
(3.24) through by g(0) to obtain a recursion for the ACF:

r(h)� f1r(h � 1)� f2r(h � 2) = 0, h = 1, 2, . . . . (3.25)

The initial conditions are r(0) = 1 and r(�1) = f1/(1 � f2), which is
obtained by evaluating (3.25) for h = 1 and noting that r(1) = r(�1).

Equations such as (3.25) are called difference equations, and the
solutions are fairly simple expressions. First, the polynomial associated
with (3.25) is

f(z) = 1 � f1z � f2z2,

where the power of z is the power of the backshift, B; i.e., (3.25) is
(1 � f1B � f2B2)r(h) = 0. In general, z is a complex number. Let z1
and z2 be the roots (or zeros) of the associated polynomial, i.e.,
f(z1) = f(z2) = 0. For a causal model, the roots are outside the unit
circle: |z1| > 1 and |z2| > 1. Now, consider the solutions:
(i) When z1 and z2 are distinct, then

r(h) = c1z�h
1 + c2z�h

2 ,

so r(h) ! 0 exponentially fast as h ! •. The constants c1 and c2
are obtained by solving for them using the initial conditions given
above. For example, when h = 0, we have 1 = c1 + c2, and so on.

(ii) When z1 = z2 (= z0) are equal (and hence real), then

r(h) = z�h
0 (c1 + c2h),

so r(h) ! 0 exponentially fast as h ! •.
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In case (i) with complex roots, z2 = z̄1 are a complex conjugate pair,
and c2 = c̄1 [because r(h) is real], and

r(h) = c1z�h
1 + c̄1z̄�h

1 .

Write c1 and z1 in polar coordinates, for example, z1 = |z1|eiq , where q
is the angle whose tangent is the ratio of the imaginary part and the
real part of z1 (sometimes called arg(z1); the range of q is [�p, p]).
Then, using the fact that eia + e�ia = 2 cos(a), the solution has the form

r(h) = a|z1|�h cos(hq + b),

where a and b are determined by the initial conditions. Again, r(h)
dampens to zero exponentially fast as h ! •, but it does so in a
sinusoidal fashion. The implication of this result is shown in
Example 3.11.

Example 3.11 An AR(2) with Complex Roots
Figure 3.4 shows n = 144 observations from the AR(2) model

xt = 1.5xt�1 � .75xt�2 + wt,

with s2
w = 1, and with complex roots chosen so the process exhibits

pseudo-cyclic behavior at the rate of one cycle every 12 time points.
The autoregressive polynomial for this model is
f(z) = 1 � 1.5z + .75z2. The roots of f(z) are 1 ± i/

p
3, and

q = tan�1(1/
p

3) = 2p/12 radians per unit time. To convert the angle
to cycles per unit time, divide by 2p to get 1/12 cycles per unit time.
The ACF for this model is shown in Figure 3.5. To calculate the roots of
the polynomial and solve for arg:
z = c(1,-1.5,.75) # coefficients of the polynomial
(a = polyroot(z)[1]) # print one root: 1+0.57735i = 1 + i/sqrt(3)
arg = Arg(a)/(2*pi) # arg in cycles/pt
1/arg # = 12, the pseudo period

To reproduce Figure 3.4:
set.seed(8675309)
ar2 = arima.sim(list(order=c(2,0,0), ar=c(1.5,-.75)), n = 144)
plot(ar2, axes=FALSE, xlab="Time")
axis(2); axis(1, at=seq(0,144,by=12)); box()
abline(v=seq(0,144,by=12), lty=2)

To calculate and display the ACF for this model:
ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 50)
plot(ACF, type="h", xlab="lag")
abline(h=0)

In general, the behavior of the ACF of an AR(p) or an ARMA(p, q)
when p � 2 will be similar to the AR(2) case. When p = 1, the behavior
is like the AR(1) case.
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Fig. 3.4. Simulated AR(2) model, n = 144 with f1 = 1.5 and f2 = �.75.

Example 3.12 The ACF of an ARMA(1, 1)
Consider the ARMA(1, 1) process xt = fxt�1 + qwt�1 + wt, where
|f| < 1. Using the theory of difference equations, we can show that the
ACF is given by

r(h) =
(1 + qf)(f + q)

1 + 2qf + q2 fh�1, h � 1. (3.26)

Notice that the general pattern of r(h) in (3.26) is not different from
that of an AR(1) given in (3.7). Hence, it is unlikely that we will be able
to tell the difference between an ARMA(1,1) and an AR(1) based solely
on an ACF estimated from a sample. This consideration will lead us to
the partial autocorrelation function.

The Partial Autocorrelation Function (PACF)

In (3.20), we saw that for MA(q) models, the ACF will be zero for lags
greater than q. Moreover, because qq 6= 0, the ACF will not be zero at lag
q. Thus, the ACF provides a considerable amount of information about
the order of the dependence when the process is a moving average
process.

If the process, however, is ARMA or AR, the ACF alone tells us little
about the orders of dependence. Hence, it is worthwhile pursuing a
function that will behave like the ACF of MA models, but for AR
models, namely, the partial autocorrelation function (PACF).

Recall that if X, Y, and Z are random variables, then the partial
correlation between X and Y given Z is obtained by regressing X on Z to
obtain the predictor X̂, regressing Y on Z to obtain Ŷ, and then
calculating

rXY|Z = corr{X � X̂, Y � Ŷ}.

The idea is that rXY|Z measures the correlation between X and Y with
the linear effect of Z removed (or partialled out). If the variables are
multivariate normal, then this definition coincides with
rXY|Z = corr(X, Y | Z).

To motivate the idea of partial autocorrelation, consider a causal
AR(1) model, xt = fxt�1 + wt. Then,
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gx(2) = cov(xt, xt�2) = cov(fxt�1 + wt, xt�2)

= cov(f2xt�2 + fwt�1 + wt, xt�2) = f2gx(0).

This result follows from causality because xt�2 involves {wt�2, wt�3, . . .},
which are all uncorrelated with wt and wt�1. The correlation between xt
and xt�2 is not zero, as it would be for an MA(1), because xt is
dependent on xt�2 through xt�1. Suppose we break this chain of
dependence by removing (or partialling out) the effect of xt�1. That is,
we consider the correlation between xt � fxt�1 and xt�2 � fxt�1,
because it is the correlation between xt and xt�2 with the linear
dependence of each on xt�1 removed. In this way, we have broken the
dependence chain between xt and xt�2. In fact,

cov(xt � fxt�1, xt�2 � fxt�1) = cov(wt, xt�2 � fxt�1) = 0.

Hence, the tool we need is partial autocorrelation, which is the
correlation between xs and xt with the linear effect of everything “in the
middle” removed.

Definition 3.5 The partial autocorrelation function (PACF) of a stationary
process, xt, denoted fhh, for h = 1, 2, . . . , is

f11 = corr(x1, x0) = r(1) (3.27)

and
fhh = corr(xh � x̂h, x0 � x̂0), h � 2, (3.28)

where x̂h is the regression of xh on {x1, x2, . . . , xh�1} and x̂0 is the regression
of x0 on {x1, x2, . . . , xh�1}.

Thus, due to the stationarity, the PACF, fhh, is the correlation
between xt+h and xt with the linear dependence of everything between
them, namely {xt+1, . . . , xt+h�1}, on each, removed.

It is not necessary to actually run regressions to compute the PACF
because they values can be computed recursively based on what is
known as the Durbin–Levinson algorithm due to Levinson (1947) and
Durbin (1960).

Example 3.13 The PACF of an AR(p)
The model can be written as

xt+h =
p

Â
j=1

fjxt+h�j + wt+h,

where the roots of f(z) are outside the unit circle. When h > p, the
regression of xt+h on {xt+1, . . . , xt+h�1}, is

x̂t+h =
p

Â
j=1

fjxt+h�j.

Although we have not proved this result, it should be obvious that it is
so. Thus, when h > p,
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Fig. 3.5. The ACF and PACF of an AR(2) model with f1 = 1.5 and f2 = �.75.

fhh = corr(xt+h � x̂t+h, xt � x̂t) = corr(wt+h, xt � x̂t) = 0,

because, by causality, xt � x̂t depends only on {wt+h�1, wt+h�2, . . .}.
When h  p, fpp is not zero, and f11, . . . , fp�1,p�1 are not necessarily
zero. We will see later that, in fact, fpp = fp. Figure 3.5 shows the ACF
and the PACF of the AR(2) model presented in Example 3.11. To
reproduce Figure 3.5 in R, use the following commands:
ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24)[-1]
PACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=TRUE)
par(mfrow=c(1,2))
plot(ACF, type="h", xlab="lag", ylim=c(-.8,1))
abline(h=0)
plot(PACF, type="h", xlab="lag", ylim=c(-.8,1))
abline(h=0)

We also have the following large sample result for the PACF, which
may be compared to the similar result for the ACF given in Property 1.2.

Property 3.2 Large Sample Distribution of the PACF
If the time series is a causal AR(p) process and the sample size n is large,

then
p

n f̂hh is approximately N(0, 1), for h > p. This result also holds for
p = 0, wherein the process is white noise.

Example 3.14 The PACF of an MA(q)
For an MA(q), we can write xt = �Â•

j=1 pjxt�j + wt. Moreover, no
finite representation exists. From this result, it should be apparent that
the PACF will never cut off, as in the case of an AR(p). For an MA(1),
xt = wt + qwt�1, with |q| < 1, it can be shown that

fhh = � (�q)h(1 � q2)

1 � q2(h+1) , h � 1.

We do not have to compute the PACF by performing numerous
regressions first. The computations are done via a recursive formula
called the Durbin–Levinson algorithm.

The PACF for MA models behaves much like the ACF for AR
models. Also, the PACF for AR models behaves much like the ACF for
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Table 3.1. Behavior of the ACF and PACF for ARMA Models

AR(p) MA(q) ARMA(p, q)

ACF Tails off Cuts off Tails off
after lag q

PACF Cuts off Tails off Tails off
after lag p
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Fig. 3.6. ACF and PACF of the Recruitment series. Note that the lag axes are in terms of season (12
months in this case).

MA models. Because an invertible ARMA model has an infinite AR
representation, the PACF will not cut off. We may summarize these
results in Table 3.1.

Example 3.15 Preliminary Analysis of the Recruitment Series
We consider the problem of modeling the Recruitment series shown in
Figure 1.5. There are 453 months of observed recruitment ranging over
the years 1950-1987. The ACF and the PACF given in Figure 3.6 are
consistent with the behavior of an AR(2). The ACF has cycles
corresponding roughly to a 12-month period, and the PACF has large
values for h = 1, 2 and then is essentially zero for higher order lags.
Based on Table 3.1, these results suggest that a second-order (p = 2)
autoregressive model might provide a good fit. Although we will
discuss estimation in detail in Section 3.4, we ran a regression (see
Section 2.1) using the data triplets
{(x; z1, z2) : (x3; x2, x1), (x4; x3, x2), . . . , (x453; x452, x451)} to fit the model

xt = f0 + f1xt�1 + f2xt�2 + wt

for t = 3, 4, . . . , 453. The values of the estimates were f̂0 = 6.74(1.11),
f̂1 = 1.35(.04), f̂2 = �.46(.04), and ŝ2

w = 89.72, where the estimated
standard errors are in parentheses.

The following R code can be used for this analysis. We use the
script acf2 from astsa to print and plot the ACF and PACF.
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acf2(rec, 48) # will produce values and a graphic
(regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE))
regr$asy.se.coef # standard errors of the estimates

3.4 Estimation

Throughout this section, we assume we have n observations, x1, . . . , xn,
from a causal and invertible Gaussian ARMA(p, q) process in which,
initially, the order parameters, p and q, are known. Our goal is to
estimate the parameters, f1, . . . , fp, q1, . . . , qq, and s2

w. We will discuss
the problem of determining p and q later in this section.

We begin with method of moments estimators. The idea behind these
estimators is that of equating population moments to sample moments
and then solving for the parameters in terms of the sample moments. We
immediately see that, if E(xt) = µ, then the method of moments
estimator of µ is the sample average, x̄. Thus, while discussing method
of moments, we will assume µ = 0. Although the method of moments
can produce good estimators, they can sometimes lead to suboptimal
estimators. We first consider the case in which the method leads to
optimal (efficient) estimators, that is, AR(p) models.

When the process is AR(p),

xt = f1xt�1 + · · ·+ fpxt�p + wt,

similar to Example 3.10, we have the following result:

Definition 3.6 The Yule–Walker equations are given by

r(h) = f1r(h � 1) + · · ·+ fpr(h � p), h = 1, 2, . . . , p, (3.29)

s2
w = g(0) [1 � f1r(1)� · · ·� fpr(p)]. (3.30)

The estimators obtained by replacing g(0) with its estimate, ĝ(0) and
r(h) with its estimate, r̂(h), are called the Yule–Walker estimators. For
AR(p) models, if the sample size is large, the Yule–Walker estimators are
approximately normally distributed, and ŝ2

w is close to the true value of
s2

w.

Example 3.16 Yule–Walker Estimation for an AR(2) Process
The data shown in Figure 3.4 were n = 144 simulated observations
from the AR(2) model xt = 1.5xt�1 � .75xt�2 + wt, where wt ⇠ iid
N(0, 1). Using the same simulated data, we have
ar.yw(ar2, order=2)
Coefficients:

1 2
1.4471 -0.7160
sigma^2 estimated as 1.561
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Example 3.17 Yule–Walker Estimation of the Recruitment Series
In Example 3.15 we fit an AR(2) model to the recruitment series using
regression. Below are the results of fitting the same model using
Yule-Walker estimation in R, which are nearly identical to the values in
Example 3.15.
rec.yw = ar.yw(rec, order=2)
rec.yw$x.mean # mean estimate
[1] 62.26278
rec.yw$ar # parameter estimates
[1] 1.3315874 -0.4445447
sqrt(diag(rec.yw$asy.var.coef)) # their standard errors
[1] 0.04222637 0.04222637
rec.yw$var.pred # error variance estimate
[1] 94.79912

In the case of AR(p) models, the Yule–Walker estimators are optimal
estimators, but this is not true for MA(q) or ARMA(p, q) models. AR(p)
models are linear models, and the Yule–Walker estimators are essentially
least squares estimators. MA or ARMA models are nonlinear models, so
this technique does not give optimal estimators.

Example 3.18 Method of Moments Estimation for an MA(1)
Consider the MA(1) model, xt = wt + qwt�1, where |q| < 1. The model
can then be written as

xt = �
•

Â
j=1

(�q)jxt�j + wt,

which is nonlinear in q. The first two population autocovariances are
g(0) = s2

w(1 + q2) and g(1) = s2
wq, so the estimate of q is found by

solving:

r̂(1) =
ĝ(1)
ĝ(0)

=
q̂

1 + q̂2
.

Two solutions exist, so we would pick the invertible one. If |r̂(1)|  1
2 ,

the solutions are real, otherwise, a real solution does not exist. Even
though |r(1)| < 1

2 for an invertible MA(1), it may happen that
|r̂(1)| � 1

2 because it is an estimator. For example, the following
simulation in R produces a value of r̂(1) = .507 when the true value is
r(1) = .9/(1 + .92) = .497.
set.seed(2)
ma1 = arima.sim(list(order = c(0,0,1), ma = 0.9), n = 50)
acf(ma1, plot=FALSE)[1] # = .507 (lag 1 sample ACF)

The preferred method of estimation is maximum likelihood
estimation (MLE), which determines the values of the parameters that
are most likely to have produced the observations. MLE is discussed in
Section 3.6. For ARMA models, this is closely related to least squares.

3.4.1 Least Squares Estimation

We now discuss least squares for ARMA(p, q) models via
Gauss–Newton. Write the model parameters as
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b = (f1, . . . , fp, q1, . . . , qq)0, and for the ease of discussion, we will put
µ = 0. Now, write the model in terms of the errors

wt(b) = xt �
p

Â
j=1

fjxt�j �
q

Â
k=1

qkwt�k(b), (3.31)

emphasizing the dependence of the errors on the parameters (recall that
wt = Â•

j=0 pjxt�j by invertibilty, and the pj are complicated functions of
b).

For conditional least squares, we approximate the residual sum of
squares by conditioning on x1, . . . , xp (if p > 0) and
wp = wp�1 = wp�2 = · · · = w1�q = 0 (if q > 0), in which case, given b,
we may evaluate (3.31) for t = p + 1, p + 2, . . . , n. Using this conditioning
argument, the conditional error sum of squares is

Sc(b) =
n

Â
t=p+1

w2
t (b). (3.32)

Minimizing Sc(b) with respect to b yields the conditional least squares
estimates.

If q = 0, the problem is linear regression and no iterative technique is
needed to minimize Sc(f1, . . . , fp). For example, for an AR(1),
xt = fxt�1 + wt, the conditional sum of squares is

Sc(f) =
n

Â
t=2

w2
t (f) =

n

Â
t=2

(xt � fxt�1)
2.

Note that we have to start at t = 2 because x0 is not observed. The
conditional least squares estimate of f follows from simple linear
regression wherein,

f̂ =
Ân

t=2 xtxt�1

Ân
t=2 x2

t�1
,

which is nearly r̂(1).
If q > 0, the problem becomes nonlinear regression and we will have

to rely on numerical optimization. Gauss–Newton uses an iterative
method for solving the problem of minimizing (3.32). We demonstrate
the method for an MA(1).

Example 3.19 Gauss–Newton for an MA(1)
Consider an MA(1) process, xt = wt + qwt�1. Write the truncated
errors as

wt(q) = xt � qwt�1(q), t = 1, . . . , n, (3.33)

where we condition on w0(q) = 0. Our goal is to find the value of q
that minimizes Sc(q) = Ân

t=1 w2
t (q), which is a nonlinear function of q.

Let q(0) be an initial estimate of q. For example, we could use
method of moments. The first-order Taylor expansion3 of wt(q) at q(0)
is

3 Newton’s method and Taylor expansion (links to WikiBooks K-12 calculus book).

http://en.wikibooks.org/wiki/Calculus/Newton's_Method
http://en.wikibooks.org/wiki/Calculus/Taylor_series
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wt(q) ⇡ wt(q(0))�
⇣

q � q(0)

⌘

zt(q(0)), (3.34)

where

zt(q(0)) = �∂wt(q)
∂q

�

�

�

�

q=q(0)

.

Taking derivatives in (3.33),

∂wt(q)
∂q

= �wt�1(q)� q
∂wt�1(q)

∂q
, t = 1, . . . , n, (3.35)

where ∂w0(q)/∂q = 0. Using the notation of (3.34), we can also write
(3.35) as

zt(q) = wt�1(q)� qzt�1(q), t = 1, . . . , n, (3.36)

where z0(q) = 0. This implies that the derivative sequence is an AR
process, which we may easily compute given a value of q.

The linear approximation of Sc(q) is found by replacing wt(q) by its
linear approximation in (3.34),

Q(q) =
n

Â
t=1

h

wt(q(0))
| {z }

yt

�
�

q � q(0)
�

| {z }

b

zt(q(0))
| {z }

zt

i2
(3.37)

and this is the quantity that we will minimize. The problem is now
simple linear regression (“yt = bzt + et”), so that

\(q � q(0)) = Ân
t=1 zt(q(0))wt(q(0))

�

Ân
t=1 z2

t (q(0)),

or
q̂ = q(0) + Ân

t=1 zt(q(0))wt(q(0))
�

Ân
t=1 z2

t (q(0)).

Consequently, the Gauss–Newton procedure in this case is, on iteration
j + 1, set

q(j+1) = q(j) +
Ân

t=1 zt(q(j))wt(q(j))

Ân
t=1 z2

t (q(j))
, j = 0, 1, 2, . . . , (3.38)

where the values in (3.38) are calculated recursively using (3.33) and
(3.36). The calculations are stopped when |q(j+1) � q(j)|, or
|Q(q(j+1))� Q(q(j))|, are smaller than some preset amount.

Example 3.20 Fitting the Glacial Varve Series
Consider the glacial varve series, for n = 634 years, analyzed in
Example 2.7 and in Problem 2.6, where it was argued that a first-order
moving average model might fit the logarithmically transformed and
differenced varve series, say,

r log(xt) = log(xt)� log(xt�1) = log
✓

xt
xt�1

◆

,

which can be interpreted as being approximately the percentage
change in the thickness.



76 3 ARIMA Models

0 5 10 15 20 25 30 35

−0
.4

−0
.1

0.
2

LAG

AC
F

0 5 10 15 20 25 30 35

−0
.4

−0
.1

0.
2

LAG

PA
C
F

Fig. 3.7. ACF and PACF of transformed glacial varves.

The sample ACF and PACF, shown in Figure 3.7, confirm the
tendency of r log(xt) to behave as a first-order moving average
process as the ACF has only a significant peak at lag one and the PACF
decreases exponentially. Using Table 3.1, this sample behavior fits that
of the MA(1) very well.

Since r̂(1) = �.397, our initial estimate is q(0) = �.495 using
Example 3.18. The results of eleven iterations of the Gauss–Newton
procedure, (3.38), starting with q(0) are given in Table 3.2. The final
estimate is q̂ = q(11) = �.773; interim values and the corresponding
value of the conditional sum of squares, Sc(q) given in (3.32), are also
displayed in the table. The final estimate of the error variance is
ŝ2

w = 148.98/632 = .236 with 632 degrees of freedom (one is lost in
differencing). The value of the sum of the squared derivatives at
convergence is Ân

t=1 z2
t (q(11)) = 369.736, and consequently, the

estimated standard error of q̂ is
p

.236/369.741 = .025;4 this leads to a
t-value of �.773/.025 = �30.92 with 632 degrees of freedom.

Figure 3.8 displays the conditional sum of squares, Sc(q) as a
function of q, as well as indicating the values of each step of the
Gauss–Newton algorithm. Note that the Gauss–Newton procedure
takes large steps toward the minimum initially, and then takes very
small steps as it gets close to the minimizing value. When there is only
one parameter, as in this case, it would be easy to evaluate Sc(q) on a
grid of points, and then choose the appropriate value of q from the
grid search. It would be difficult, however, to perform grid searches
when there are many parameters.

The following code was used in this example.
x = diff(log(varve)) # data
r = acf(x, lag=1, plot=FALSE)$acf[-1] # acf(1)
c(0) -> w -> z # initialize
c() -> Sc -> Sz -> Szw -> SS -> para

4 To estimate the standard error, we are using the standard regression results from (2.6) as
an approximation
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Fig. 3.8. Conditional sum of squares versus values of the moving average parameter for the glacial
varve example, Example 3.20. Vertical lines indicate the values of the parameter obtained via Gauss–
Newton; see Table 3.2 for the actual values.

num = length(x)
## Estimation
para[1] = (1-sqrt(1-4*(r^2)))/(2*r) # MME
niter = 12
for (p in 1:niter){
for (i in 2:num){ w[i] = x[i] - para[p]*w[i-1]

z[i] = w[i-1]- para[p]*z[i-1] }
Sc[p] = sum(w^2)
Sz[p] = sum(z^2)
Szw[p] = sum(z*w)
para[p+1] = para[p] + Szw[p]/Sz[p] }

## Results
round(cbind(iteration=0:(niter-1), thetahat=para[1:niter], Sc, Sz), 3)
## Plot cond SS
th = seq(-.3,-.94,-.01)
for (p in 1:length(th)){
for (i in 2:num){ w[i] = x[i]-th[p]*w[i-1] }
SS[p] = sum(w^2) }

plot(th, SS, type="l", ylab=expression(S[c](theta)),
xlab=expression(theta))

abline(v=para[1:12], lty=2) # add results to plot
points(para[1:12], Sc[1:12], pch=16)

In the general case of causal and invertible ARMA(p, q) models,
maximum likelihood estimation and nonlinear least squares estimation
(and Yule–Walker estimation in the case of AR models) all lead to
optimal estimators.

Example 3.21 Some Specific Asymptotic Distributions 5

AR(1):
f̂ ⇠ AN

h

f, n�1(1 � f2)
i

. (3.39)

AR(2):
✓

f̂1
f̂2

◆

⇠ AN
✓

f1
f2

◆

, n�1
✓

1 � f2
2 � f1(1 + f2)

sym 1 � f2
2

◆�

. (3.40)

5 Xn ⇠ AN(µn, s2
n) if Pr{(Xn � µn)/sn  z} ! Pr{Z  z} as n ! •, where Z ⇠ N(0, 1).
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Table 3.2. Gauss–Newton Results for Example 3.20

j q(j) Sc(q(j)) Ân
t=1 z2

t (q(j))

0 �0.495 158.739 171.240
1 �0.668 150.747 235.266
2 �0.733 149.264 300.562
3 �0.756 149.031 336.823
4 �0.766 148.990 354.173
5 �0.769 148.982 362.167
6 �0.771 148.980 365.801
7 �0.772 148.980 367.446
8 �0.772 148.980 368.188
9 �0.772 148.980 368.522

10 �0.773 148.980 368.673
11 �0.773 148.980 368.741

MA(1):
q̂ ⇠ AN

h

q, n�1(1 � q2)
i

. (3.41)

MA(2):
✓

q̂1
q̂2

◆

⇠ AN
✓

q1
q2

◆

, n�1
✓

1 � q2
2 q1(1 + q2)

sym 1 � q2
2

◆�

. (3.42)

ARMA(1,1):
✓

f̂
q̂

◆

⇠ AN

"

✓

f
q

◆

, n�1


(1 � f2)�1 (1 + fq)�1

sym (1 � q2)�1

��1#

. (3.43)

Example 3.22 Overfitting Caveat
The asymptotic behavior of the parameter estimators gives us an
additional insight into the problem of fitting ARMA models to data.
For example, suppose a time series follows an AR(1) process and we
decide to fit an AR(2) to the data. Do any problems occur in doing
this? More generally, why not simply fit large-order AR models to
make sure that we capture the dynamics of the process? After all, if the
process is truly an AR(1), the other autoregressive parameters will not
be significant. The answer is that if we overfit, we obtain less efficient,
or less precise parameter estimates. For example, if we fit an AR(1) to
an AR(1) process, for large n, var(f̂1) ⇡ n�1(1 � f2

1). But, if we fit an
AR(2) to the AR(1) process, for large n, var(f̂1) ⇡ n�1(1 � f2

2) = n�1

because f2 = 0. Thus, the variance of f1 has been inflated, making the
estimator less precise.

We do want to mention, however, that overfitting can be used as a
diagnostic tool. For example, if we fit an AR(2) model to the data and
are satisfied with that model, then adding one more parameter and
fitting an AR(3) should lead to approximately the same model as in the
AR(2) fit. We will discuss model diagnostics in more detail in
Section 3.8.



3.5 Forecasting 79

3.5 Forecasting

In forecasting, the goal is to predict future values of a time series, xn+m,
m = 1, 2, . . ., based on the data, x1, . . . , xn, collected to the present.
Throughout this section, we will assume that the model parameters are
known. When the parameters are unknown, we replace them with their
estimates.

To understand how to forecast an ARMA process, it is instructive to
investigate forecasting an AR(1),

xt = fxt�1 + wt .

First, consider one-step-ahead prediction, that is, given data x1, . . . , xn,
we wish to forecast the value of the time series at the next time point,
xn+1. We will call the forecast xn

n+1. In general, the notation xn
t refers to

what we can expect xt to be given the data x1, . . . , xn. Since

xn+1 = fxn + wn+1 ,

we should have
xn

n+1 = fxn
n + wn

n+1 .

But since we know xn (it is one of our observations), xn
n = xn, and since

wn+1 is a future error, the best we can do is put wn
n+1 = E(wn+1) = 0.

Consequently, the one-step-ahead forecast is

xn
n+1 = fxn . (3.44)

The one-step-ahead mean squared prediction error (MSPE) is given by

Pn
n+1 = E[xn+1 � xn

n+1]
2 = E[xn+1 � fxn]

2 = Ew2
n+1 = s2

w.

The two-step-ahead forecast is obtained similarly. Since, by the
model,

xn+2 = fxn+1 + wn+2 ,

we should have
xn

n+2 = fxn
n+1 + wn

n+2 .

Again, wn+2 is a future error, so wn
n+2 = 0. Also, we already know

xn
n+1 = fxn, so the forecast is

xn
n+2 = fxn

n+1 = f2xn . (3.45)

The two-step-ahead mean squared prediction error (MSPE) is given by

Pn
n+2 = E[xn+2 � xn

n+2]
2 = E[fxn+1 + wn+2 � f2xn]

2

= E[wn+2 + f(xn+1 � fxn)]
2 = E[wn+2 + fwn+1]

2 = s2
w(1 + f2).

Generalizing these results, it is easy to see that the m-step-ahead
forecast is.

xn
n+m = fmxn m = 1, 2, . . . . (3.46)
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Also, the MSPE will is

Pn
n+m = E[xn+m � xn

n+m]
2 = s2

w(1 + f2 + · · ·+ f2(m�1)) . (3.47)

Note that since |f| < 1, we will have fm ! 0 fast as m ! •. Thus the
forecasts in (3.46) will soon go to zero (or the mean) and become useless.
In addition, the MSPE will converge to s2

w Â•
j=0 f2j = s2

w/(1 � f2), which
is the variance of the process xt; recall (3.6).

Forecasting an AR(p) model is basically the same as forecasting an
AR(1) provided the sample size n is larger than the order p, which it is
most of the time. Since MA(q) and ARMA(p, q) are AR(•), the same
basic techniques can be used. Because ARMA models are invertible; i.e.,
wt = xt + Â•

j=1 pjxt�j, we may write

xn+m = �
•

Â
j=1

pjxn+m�j + wn+m.

If we had the infinite history {xn, xn�1, . . . , x1, x0, x�1, . . .}, of the data
available, we would predict xn+m by

xn
n+m = �

•

Â
j=1

pjxn
n+m�j

successively for m = 1, 2, . . . . In this case, xn
t = xt for t = n, n � 1, . . . . We

only have the actual data {xn, xn�1, . . . , x1} available, but a practical
solution is to truncate the forecasts as

xn
n+m = �

n+m�1

Â
j=1

pjxn
n+m�j,

with xn
t = xt for 1  t  n. For ARMA models in general, as long as n is

large, the approximation works well because the p-weights are going to
zero exponentially fast. For large n, it can be shown that the mean
squared prediction error for ARMA(p, q) models is approximately

Pn
n+m = s2

w

m�1

Â
j=0

y2
j . (3.48)

Example 3.23 Forecasting the Recruitment Series
In Example 3.15 we fit an AR(2) model to the Recruitment series using
OLS. Here, we use MLE:
sarima(rec,2,0,0) # fit model
Coefficients:

ar1 ar2 xmean
1.3512 -0.4612 61.8585

s.e. 0.0416 0.0417 4.0039
sigma^2 estimated as 89.33
61.8585*(1-1.3512+.4612) # get constant
[1] 6.804435
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Fig. 3.9. Twenty-four month forecasts for the Recruitment series. The actual data shown are from
about January 1980 to September 1987, and then the forecasts plus and minus one standard error are
displayed.

The results are nearly the same as using OLS. Using the parameter
estimates as the actual parameter values, the forecasts and root MSPEs
can be calculated in a similar fashion to the introduction to this section.

Figure 3.9 shows the result of forecasting the Recruitment series
over a 24-month horizon, m = 1, 2, . . . , 24, obtained in R as
sarima.for(rec, 24, 2, 0, 0)

Note how the forecast levels off to the mean quickly and the prediction
intervals are wide and become constant. That is, because of the short
memory, the forecasts settle to the mean, µx, of the process, and the
MSPE becomes gx(0) = var(xt).

3.6 Maximum Likelihood Estimation **

For a normal ARMA(p, q) model, the optimal way to estimate the
parameters is to use either maximum likelihood estimation, or
unconditional least squares estimation. Without going into general
details, we describe the technique for an AR(1) model.

Example 3.24 Estimation for an AR(1)
Let

xt = µ + f(xt�1 � µ) + wt (3.49)

where |f| < 1 and wt ⇠ iid N(0, s2
w). Given data x1, x2, . . . , xn, we seek

the likelihood

L(µ, f, s2
w) = f

⇣

x1, x2, . . . , xn
�

� µ, f, s2
w

⌘

.

In the case of an AR(1), we may write the likelihood as

L(µ, f, s2
w) = f (x1) f (x2

�

� x1) · · · f (xn
�

� xn�1),

** This section may be skipped without harming any living things.
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where we have dropped the parameters in the densities, f (·), to ease
the notation. Because, for t > 1, xt

�

� xt�1 ⇠ N
�

µ + f(xt�1 � µ), s2
w
�

,
we have

f (xt
�

� xt�1) = fw[(xt � µ)� f(xt�1 � µ)],

where fw(·) is the density of wt, that is, the normal density with mean
zero and variance s2

w. We may then write the likelihood as

L(µ, f, sw) = f (x1)
n

’
t=2

fw [(xt � µ)� f(xt�1 � µ)] .

To find f (x1), we can use the causal representation

x1 = µ +
•

Â
j=0

fjw1�j

to see that x1 is normal, with mean µ and variance s2
w/(1 � f2).

Finally, for an AR(1), the likelihood is

L(µ, f, s2
w) = (2ps2

w)
�n/2(1 � f2)1/2 exp



�S(µ, f)
2s2

w

�

, (3.50)

where

S(µ, f) = (1 � f2)(x1 � µ)2 +
n

Â
t=2

[(xt � µ)� f(xt�1 � µ)]2 . (3.51)

Typically, S(µ, f) is called the unconditional sum of squares. We could
have also considered the estimation of µ and f using unconditional
least squares, that is, estimation by minimizing S(µ, f).

Taking the partial derivative of the log of (3.50) with respect to s2
w

and setting the result equal to zero, we see that for any given values of
µ and f in the parameter space, s2

w = n�1S(µ, f) maximizes the
likelihood. Thus, the maximum likelihood estimate of s2

w is

ŝ2
w = n�1S(µ̂, f̂), (3.52)

where µ̂ and f̂ are the MLEs of µ and f, respectively. If we replace n in
(3.52) by n � 2, we would obtain the unconditional least squares
estimate of s2

w.
If, in (3.50), we take logs, replace s2

w by ŝ2
w, and ignore constants, µ̂

and f̂ are the values that minimize the criterion function

l(µ, f) = log
h

n�1S(µ, f)
i

� n�1 log(1 � f2); (3.53)

that is, l(µ, f) µ �2 log L(µ, f, ŝ2
w).6 Because (3.51) and (3.53) are

complicated functions of the parameters, the minimization of l(µ, f) or
S(µ, f) is accomplished numerically. In the case of AR models, we have
the advantage that, conditional on initial values, they are linear

6 The criterion function is sometimes called the profile or concentrated likelihood.
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models. That is, we can drop the term in the likelihood that causes the
nonlinearity. Conditioning on x1, the conditional likelihood becomes

L(µ, f, s2
w
�

� x1) =
n

’
t=2

fw [(xt � µ)� f(xt�1 � µ)]

= (2ps2
w)

�(n�1)/2 exp


�Sc(µ, f)
2s2

w

�

, (3.54)

where the conditional sum of squares is

Sc(µ, f) =
n

Â
t=2

[(xt � µ)� f(xt�1 � µ)]2 . (3.55)

The conditional MLE of s2
w is

ŝ2
w = Sc(µ̂, f̂)/(n � 1), (3.56)

and µ̂ and f̂ are the values that minimize the conditional sum of
squares, Sc(µ, f). Letting a = µ(1 � f), the conditional sum of squares
can be written as

Sc(µ, f) =
n

Â
t=2

[xt � (a + fxt�1)]
2 . (3.57)

The problem is now the linear regression problem stated in §2.2.
Following the results from least squares estimation, we have
â = x̄(2) � f̂x̄(1), where x̄(1) = (n � 1)�1 Ân�1

t=1 xt, and
x̄(2) = (n � 1)�1 Ân

t=2 xt, and the conditional estimates are then

µ̂ =
x̄(2) � f̂x̄(1)

1 � f̂
(3.58)

f̂ =
Ân

t=2(xt � x̄(2))(xt�1 � x̄(1))
Ân

t=2(xt�1 � x̄(1))2 . (3.59)

From (3.58) and (3.59), we see that µ̂ ⇡ x̄ and f̂ ⇡ r̂(1). That is, the
Yule–Walker estimators and the conditional least squares estimators
are approximately the same. The only difference is the inclusion or
exclusion of terms involving the endpoints, x1 and xn. We can also
adjust the estimate of s2

w in (3.56) to be equivalent to the least squares
estimator, that is, divide Sc(µ̂, f̂) by (n � 3) instead of (n � 1) in (3.56).

For general AR(p) models, maximum likelihood estimation,
unconditional least squares, and conditional least squares follow
analogously to the AR(1) example. For ARMA models in general, the
densities f (xt | x1, . . . , xt�1) that form the likelihood are obtained using
the forecasting methods discussed in the previous section; details are in
more advanced texts.
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3.7 Integrated Models

In previous chapters, we saw that if xt is a random walk, xt = xt�1 + wt,
then by differencing xt, we find that rxt = wt is stationary. In many
situations, time series can be thought of as being composed of two
components, a nonstationary trend component and a zero-mean
stationary component. For example, in Section 2.1 we considered the
model

xt = µt + yt, (3.60)

where µt = b0 + b1t and yt is stationary. Differencing such a process will
lead to a stationary process:

rxt = xt � xt�1 = b1 + yt � yt�1 = b1 +ryt.

Another model that leads to first differencing is the case in which µt in
(3.60) is stochastic and slowly varying according to a random walk. That
is,

µt = µt�1 + vt

where vt is stationary. In this case,

rxt = vt +ryt,

is stationary. If µt in (3.60) is quadratic, µt = b0 + b1t + b2t2, then the
differenced series r2yt is stationary. Stochastic trend models can also
lead to higher order differencing. For example, suppose

µt = µt�1 + vt and vt = vt�1 + et,

where et is stationary. Then, rxt = vt +ryt is not stationary, but

r2xt = et +r2yt

is stationary.
The integrated ARMA, or ARIMA, model is a broadening of the class

of ARMA models to include differencing. The basic idea is that if
differencing the data at some order d produces an ARMA process, then
the original process is said to be ARIMA.

Definition 3.7 A process xt is said to be ARIMA(p, d, q) if

rdxt = (1 � B)dxt

is ARMA(p, q). In general, we will write the model as

f(B)(1 � B)dxt = q(B)wt. (3.61)

If E(rdxt) = µ, we write the model as

f(B)(1 � B)dxt = d + q(B)wt,

where d = µ(1 � f1 � · · ·� fp).
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It should be clear that, since yt = rdxt is ARMA, we can use
Section 3.5 methods to obtain forecasts of yt, which in turn lead to
forecasts for xt. For example, if d = 1, given forecasts yn

n+m for
m = 1, 2, . . ., we have yn

n+m = xn
n+m � xn

n+m�1, so that

xn
n+m = yn

n+m + xn
n+m�1

with initial condition xn
n+1 = yn

n+1 + xn (noting xn
n = xn).

It is a little more difficult to obtain the prediction errors Pn
n+m, but for

large n, the approximation used in Section 3.5, equation (3.48), works
well. That is, the mean-squared prediction error can be approximated by

Pn
n+m = s2

w

m�1

Â
j=0

y⇤2
j , (3.62)

where y⇤
j is the coefficient of zj in y⇤(z) = q(z)/f(z)(1 � z)d.

To better understand forecasting integrated models, we examine the
properties of some simple cases.

Example 3.25 Random Walk with Drift
To fix ideas, we begin by considering the random walk with drift
model first presented in Example 1.9, that is,

xt = d + xt�1 + wt,

for t = 1, 2, . . ., and x0 = 0. Technically, the model is not ARIMA, but
we could include it trivially as an ARIMA(0, 1, 0) model. Given data
x1, . . . , xn, the one-step-ahead forecast is given by

xn
n+1 = d + xn

n + wn
n+1 = d + xn .

The two-step-ahead forecast is given by xn
n+2 = d + xn

n+1 = 2d + xn,
and consequently, the m-step-ahead forecast, for m = 1, 2, . . ., is

xn
n+m = m d + xn, (3.63)

To obtain the forecast errors, it is convenient to recall equation (1.4),
i.e., xn = n d + Ân

j=1 wj, in which case we may write

xn+m = (n + m) d +
n+m

Â
j=1

wj = m d + xn +
n+m

Â
j=n+1

wj.

From this it follows that the m-step-ahead prediction error is given by

Pn
n+m = E(xn+m � xn

n+m)
2 = E

⇣ n+m

Â
j=n+1

wj

⌘2
= m s2

w. (3.64)

Unlike the stationary case, as the forecast horizon grows, the
prediction errors, (3.64), increase without bound and the forecasts
follow a straight line with slope d emanating from xn.
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Example 3.26 IMA(1, 1) and EWMA
The ARIMA(0,1,1), or IMA(1,1) model is of interest because many
economic time series can be successfully modeled this way. The model
leads to a frequently used forecasting method called exponentially
weighted moving averages (EWMA). We will write the model as

xt = xt�1 + wt � lwt�1, (3.65)

with |l| < 1, for t = 1, 2, . . . , and x0 = 0, because this model
formulation is easier to work with here, and it leads to the standard
representation for EWMA. We could have included a drift term in
(3.65), as was done in the previous example, but for the sake of
simplicity, we leave it out of the discussion. If we write

yt = wt � lwt�1,

we may write (3.65) as xt = xt�1 + yt. Because |l| < 1, yt has an
invertible representation, yt + Â•

j=1 ljyt�j = wt, and substituting
yt = xt � xt�1, we may write

xt =
•

Â
j=1

(1 � l)lj�1xt�j + wt. (3.66)

as an approximation for large t (put xt = 0 for t  0). Verification of
(3.66) is left to the reader (Problem 3.11). Using the approximation
(3.66), we have that the approximate one-step-ahead predictor is

xn
n+1 = (1 � l)xn + lxn�1

n , (3.67)

because xn�1
n = Â•

j=1(1 � l)lj�1xn�j and wn
n+1 = 0. From (3.67), we

see that the new forecast is a linear combination of the old forecast and
the new observation. The mean-square prediction error can be
approximated using (3.62) by noting that
y⇤(z) = (1 � lz)/(1 � z) = 1 + (1 � l)Â•

j=1 zj for |z| < 1;
consequently, for large n, (3.62) leads to

Pn
n+m ⇡ s2

w[1 + (m � 1)(1 � l)2].

In EWMA, the parameter 1 � l is often called the smoothing
parameter and is restricted to be between zero and one. Larger values
of l lead to smoother forecasts. This method of forecasting is popular
because it is easy to use; we need only retain the previous forecast
value and the current observation to forecast the next time period. In
the following, we show how to generate 100 observations from an
IMA(1,1) model with l = �q = .8 and then calculate and display the
fitted EWMA superimposed on the data. This is accomplished using
the Holt-Winters command in R (see the help file ?HoltWinters for
details). This and related techniques are generally called exponential
smoothing; the ideas were made popular in the late 1950s and are still
used today by old men who smell bad because they are simple and
easy to use. To reproduce Figure 3.10, use the following.
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Fig. 3.10. Output for Example 3.26: Simulated data with an EWMA superimposed.

set.seed(666)
x = arima.sim(list(order = c(0,1,1), ma = -0.8), n = 100)
(x.ima = HoltWinters(x, beta=FALSE, gamma=FALSE)) # a below is 1 � l
Smoothing parameter: alpha: 0.1663072

plot(x.ima, main='EWMA')

3.8 Building ARIMA Models

There are a few basic steps to fitting ARIMA models to time series data.
These steps involve

• plotting the data,
• possibly transforming the data,
• identifying the dependence orders of the model,
• parameter estimation,
• diagnostics, and
• model choice.

First, as with any data analysis, we should construct a time plot of the
data, and inspect the graph for any anomalies. If, for example, the
variability in the data grows with time, it will be necessary to transform
the data to stabilize the variance. In such cases, the Box–Cox class of
power transformations, equation (2.35), could be employed. Also, the
particular application might suggest an appropriate transformation. For
example, we have seen numerous examples where the data behave as
xt = (1 + pt)xt�1, where pt is a small percentage change from period
t � 1 to t, which may be negative. If pt is a relatively stable process, then
r log(xt) ⇡ pt will be relatively stable. Frequently, r log(xt) is called the
return or growth rate. This general idea was used in Example 3.20, and
we will use it again in Example 3.27.

After suitably transforming the data, the next step is to identify
preliminary values of the autoregressive order, p, the order of
differencing, d, and the moving average order, q. A time plot of the data
will typically suggest whether any differencing is needed. If differencing
is called for, then difference the data once, d = 1, and inspect the time
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Fig. 3.11. Top: Quarterly U.S. GNP from 1947(1) to 2002(3). Bottom: Sample ACF of the GNP
data. Lag is in terms of years.

plot of rxt. If additional differencing is necessary, then try differencing
again and inspect a time plot of r2xt. Be careful not to overdifference
because this may introduce dependence where none exists. For example,
xt = wt is serially uncorrelated, but rxt = wt � wt�1 is MA(1). In
addition to time plots, the sample ACF can help in indicating whether
differencing is needed. Because the polynomial f(z)(1 � z)d has a unit
root, the sample ACF, r̂(h), will not decay to zero fast as h increases.
Thus, a slow decay in r̂(h) is an indication that differencing may be
needed.

When preliminary values of d have been settled, the next step is to
look at the sample ACF and PACF of rdxt for whatever values of d have
been chosen. Using Table 3.1 as a guide, preliminary values of p and q
are chosen. Note that it cannot be the case that both the ACF and PACF
cut off. Because we are dealing with estimates, it will not always be clear
whether the sample ACF or PACF is tailing off or cutting off. Also, two
models that are seemingly different can actually be very similar. With
this in mind, we should not worry about being so precise at this stage of
the model fitting. At this point, a few preliminary values of p, d, and q
should be at hand, and we can start estimating the parameters.

Example 3.27 Analysis of GNP Data
In this example, we consider the analysis of quarterly U.S. GNP from
1947(1) to 2002(3), n = 223 observations. The data are real U.S. gross
national product in billions of chained 1996 dollars and have been
seasonally adjusted. The data were obtained from the Federal Reserve
Bank of St. Louis (http://research.stlouisfed.org/). Figure 3.11 shows
a plot of the data, say, yt. Because strong trend tends to obscure other
effects, it is difficult to see any other variability in data except for
periodic large dips in the economy. When reports of GNP and similar
economic indicators are given, it is often in growth rate (percent
change) rather than in actual (or adjusted) values that is of interest.

http://research.stlouisfed.org/
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Fig. 3.12. U.S. GNP quarterly growth rate. The horizontal line displays the average growth of the
process, which is close to 1%.

The growth rate, say, xt = r log(yt), is plotted in Figure 3.12, and it
appears to be a stable process.

The sample ACF and PACF of the quarterly growth rate are plotted
in Figure 3.13. Inspecting the sample ACF and PACF, we might feel
that the ACF is cutting off at lag 2 and the PACF is tailing off. This
would suggest the GNP growth rate follows an MA(2) process, or log
GNP follows an ARIMA(0, 1, 2) model. Rather than focus on one
model, we will also suggest that it appears that the ACF is tailing off
and the PACF is cutting off at lag 1. This suggests an AR(1) model for
the growth rate, or ARIMA(1, 1, 0) for log GNP. As a preliminary
analysis, we will fit both models.

Using MLE to fit the MA(2) model for the growth rate, xt, the
estimated model is

x̂t = .008(.001) + .303(.065)ŵt�1 + .204(.064)ŵt�2 + ŵt, (3.68)

where ŝw = .0094 is based on 219 degrees of freedom. The values in
parentheses are the corresponding estimated standard errors. All of the
regression coefficients are significant, including the constant. We make a
special note of this because, as a default, some computer packages do not fit a
constant in a differenced model. That is, these packages assume, by
default, that there is no drift. In this example, not including a constant
leads to the wrong conclusions about the nature of the U.S. economy.
Not including a constant assumes the average quarterly growth rate is
zero, whereas the U.S. GNP average quarterly growth rate is about 1%
(which can be seen easily in Figure 3.12). We leave it to the reader to
investigate what happens when the constant is not included.

The estimated AR(1) model is

x̂t = .008(.001) (1 � .347) + .347(.063)xt�1 + ŵt, (3.69)

where ŝw = .0095 on 220 degrees of freedom; note that the constant in
(3.69) is .008 (1 � .347) = .005.

We will discuss diagnostics next, but assuming both of these
models fit well, how are we to reconcile the apparent differences of the
estimated models (3.68) and (3.69)? In fact, the fitted models are nearly
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Fig. 3.13. Sample ACF and PACF of the GNP quarterly growth rate. Lag is in years.

the same. To show this, consider an AR(1) model of the form in (3.69)
without a constant term; that is,

xt = .35xt�1 + wt,

and write it in its causal form, xt = Â•
j=0 yjwt�j, where we recall

yj = .35j. Thus, y0 = 1, y1 = .350, y2 = .123, y3 = .043, y4 = .015, y5 =
.005, y6 = .002, y7 = .001, y8 = 0, y9 = 0, y10 = 0, and so forth. Thus,

xt ⇡ .35wt�1 + .12wt�2 + wt,

which is similar to the fitted MA(2) model in (3.68).
The analysis can be performed in R as follows; partial output is

shown.
plot(gnp)
acf2(gnp, 50)
gnpgr = diff(log(gnp)) # growth rate
plot(gnpgr)
acf2(gnpgr, 24)
sarima(gnpgr, 1, 0, 0) # AR(1)
$ttable

Estimate SE t.value p.value
ar1 0.3467 0.0627 5.5255 0
xmean 0.0083 0.0010 8.5398 0

sarima(gnpgr, 0, 0, 2) # MA(2)
$ttable

Estimate SE t.value p.value
ma1 0.3028 0.0654 4.6272 0.0000
ma2 0.2035 0.0644 3.1594 0.0018
xmean 0.0083 0.0010 8.7178 0.0000

ARMAtoMA(ar=.35, ma=0, 10) # prints psi-weights

The next step in model fitting is diagnostics. This investigation
includes the analysis of the residuals as well as model comparisons.
Again, the first step involves a time plot of the innovations (or residuals),
xt � x̂t�1

t , or of the standardized innovations
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et =
⇣

xt � x̂t�1
t

⌘

�

p
P̂t�1

t , (3.70)

where x̂t�1
t is the one-step-ahead prediction of xt based on the fitted

model and P̂t�1
t is the estimated one-step-ahead error variance. If the

model fits well, the standardized residuals should behave as an iid
sequence with mean zero and variance one. The time plot should be
inspected for any obvious departures from this assumption. Unless the
time series is Gaussian, it is not enough that the residuals are
uncorrelated. It is possible in the non-Gaussian case to have an
uncorrelated process for which contiguous values are highly dependent.

Investigation of marginal normality can be accomplished visually by
looking at a histogram of the residuals. In addition to this, a normal
probability plot or a Q-Q plot can help in identifying departures from
normality. See Johnson and Wichern (1992, Chapter 4) for details of this
test as well as additional tests for multivariate normality.

There are several tests of randomness, for example the runs test, that
could be applied to the residuals. We could also inspect the sample
autocorrelations of the residuals, say, r̂e(h), for any patterns or large
values. Recall that, for a white noise sequence, the sample
autocorrelations are approximately independently and normally
distributed with zero means and variances 1/n. Hence, a good check on
the correlation structure of the residuals is to plot r̂e(h) versus h along
with the error bounds of ±2/

p
n. The residuals from a model fit,

however, will not quite have the properties of a white noise sequence
and the variance of r̂e(h) can be much less than 1/n. Details can be
found in Box and Pierce (1970) and McLeod (1978). This part of the
diagnostics can be viewed as a visual inspection of r̂e(h) with the main
concern being the detection of obvious departures from the
independence assumption.

In addition to plotting r̂e(h), we can perform a general test of
whiteness that takes into consideration the magnitudes of r̂e(h) as a
group. The Ljung–Box–Pierce Q-statistic given by

Q = n(n + 2)
H

Â
h=1

r̂2
e (h)

n � h
(3.71)

can be used to perform such a test. The value H in (3.71) is chosen
somewhat arbitrarily, typically, H = 20. Under the null hypothesis of
model adequacy, asymptotically (n ! •), Q ⇠ c2

H�p�q. Thus, we would
reject the null hypothesis at level a if the value of Q exceeds the
(1 � a)-quantile of the c2

H�p�q distribution. Details can be found in Box
and Pierce (1970), Ljung and Box (1978), and Davies et al. (1977). The
basic idea is that if wt is white noise, then by Property 1.2, nr̂2

w(h), for
h = 1, . . . , H, are asymptotically independent c2

1 random variables. This
means that n ÂH

h=1 r̂2
w(h) is approximately a c2

H random variable.
Because the test involves the ACF of residuals from a model fit, there is a
loss of p + q degrees of freedom; the other values in (3.71) are used to
adjust the statistic to better match the asymptotic chi-squared
distribution.
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Fig. 3.14. Diagnostics of the residuals from MA(2) fit on GNP growth rate.

Example 3.28 Diagnostics for GNP Growth Rate Example
We will focus on the MA(2) fit from Example 3.27; the analysis of the
AR(1) residuals is similar. Figure 3.14 displays a plot of the
standardized residuals, the ACF of the residuals, a boxplot of the
standardized residuals, and the p-values associated with the
Q-statistic, (3.71), at lags H = 3 through H = 20 (with corresponding
degrees of freedom H � 2).

Inspection of the time plot of the standardized residuals in
Figure 3.14 shows no obvious patterns. Notice that there may be
outliers, however, with a few values exceeding 3 standard deviations in
magnitude. The ACF of the standardized residuals shows no apparent
departure from the model assumptions, and the Q-statistic is never
significant at the lags shown. The normal Q-Q plot of the residuals
suggests that the assumption of normality is appropriate. The
diagnostics shown in Figure 3.14 are a by-product of the sarima
command from the previous example.

Example 3.29 Diagnostics for the Glacial Varve Series
In Example 3.20, we fit an ARIMA(0, 1, 1) model to the logarithms of
the glacial varve data and there appears to be a small amount of
autocorrelation left in the residuals and the Q-tests are all significant;
see Figure 3.15.
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Fig. 3.15. Q-statistic p-values for the ARIMA(0, 1, 1) fit (top) and the ARIMA(1, 1, 1) fit (bottom)
to the logged varve data.

To adjust for this problem, we fit an ARIMA(1, 1, 1) to the logged
varve data and obtained the estimates

f̂ = .23(.05), q̂ = �.89(.03), ŝ2
w = .23.

Hence the AR term is significant. The Q-statistic p-values for this
model are also displayed in Figure 3.15, and it appears this model fits
the data well.

As previously stated, the diagnostics are byproducts of the
individual sarima runs. We note that we did not fit a constant in either
model because there is no apparent drift in the differenced, logged
varve series. This fact can be verified by noting the constant is not
significant when the command no.constant=TRUE is removed in the
code:
sarima(log(varve), 0, 1, 1, no.constant=TRUE) # ARIMA(0,1,1)
sarima(log(varve), 1, 1, 1, no.constant=TRUE) # ARIMA(1,1,1)

In Example 3.27, we have two competing models, an AR(1) and an
MA(2) on the GNP growth rate, that each appear to fit the data well. In
addition, we might also consider that an AR(2) or an MA(3) might do
better for forecasting. Perhaps combining both models, that is, fitting an
ARMA(1, 2) to the GNP growth rate, would be the best. As previously
mentioned, we have to be concerned with overfitting the model; it is not
always the case that more is better. Overfitting leads to less-precise
estimators, and adding more parameters may fit the data better but may
also lead to bad forecasts. This result is illustrated in the following
example.

Example 3.30 A Problem with Overfitting
Figure 3.16 shows the U.S. population by official census, every ten
years from 1910 to 1990, as points. If we use these nine observations to
predict the future population, we can use an eight-degree polynomial
so the fit to the nine observations is perfect. The model in this case is

xt = b0 + b1t + b2t2 + · · ·+ b8t8 + wt.
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Fig. 3.16. A perfect fit and a terrible forecast.

The fitted line, which is plotted in the figure, passes through the nine
observations. The model predicted that the population of the United
States will be close to zero in the year 2000, and will cross zero
sometime in the year 2002! I see dead people.

The final step of model fitting is model choice or model selection.
That is, we must decide which model we will retain for forecasting. The
most popular techniques, AIC, AICc, and BIC, were described in
Section 2.1 in the context of regression models.

Example 3.31 Model Choice for the U.S. GNP Series
To follow up on Example 3.28, recall that two models, an AR(1) and an
MA(2), fit the GNP growth rate well. To choose the final model, we
compare the AIC, the AICc, and the BIC for both models. These values
are a byproduct of the sarima runs displayed at the end of
Example 3.27, but for convenience, we display them again here (recall
the growth rate data are in gnpgr):
sarima(gnpgr, 1, 0, 0) # AR(1)
$AIC: -8.294403 $AICc: -8.284898 $BIC: -9.263748

sarima(gnpgr, 0, 0, 2) # MA(2)
$AIC: -8.297693 $AICc: -8.287854 $BIC: -9.251711

The AIC and AICc both prefer the MA(2) fit, whereas the BIC
prefers the simpler AR(1) model. It is often the case that the BIC will
select a model of smaller order than the AIC or AICc. In this case, it is
reasonable to retain the AR(1) because pure autoregressive models are
easier to work.

3.9 Regression with Autocorrelated Errors
In Section 2.1, we covered the classical regression model with
uncorrelated errors wt. In this section, we discuss the modifications that
might be considered when the errors are correlated. That is, consider the
regression model

yt = b1zt1 + · · ·+ brztr + xt =
r

Â
j=1

b jztj + xt (3.72)
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where xt is a process with some covariance function gx(s, t). In ordinary
least squares, the assumption is that xt is white Gaussian noise, in which
case gx(s, t) = 0 for s 6= t and gx(t, t) = s2, independent of t. If this is
not the case, then weighted least squares should be used.

In the time series case, it is often possible to assume a stationary
covariance structure for the error process xt that corresponds to a linear
process and try to find an ARMA representation for xt. For example, if
we have a pure AR(p) error, then

f(B)xt = wt,

and f(B) = 1 � f1B � · · ·� fpBp is the linear transformation that, when
applied to the error process, produces the white noise wt. Multiplying
the regression equation through by the transformation f(B) yields,

f(B)yt
| {z }

y⇤t

=
r

Â
j=1

b j f(B)ztj
| {z }

z⇤tj

+ f(B)xt
| {z }

wt

,

and we are back to the linear regression model where the observations
have been transformed so that y⇤t = f(B)yt is the dependent variable,
z⇤tj = f(B)ztj for j = 1, . . . , r, are the independent variables, but the bs
are the same as in the original model. For example, if p = 1, then
y⇤t = yt � fyt�1 and z⇤tj = ztj � fzt�1,j.

In the AR case, we may set up the least squares problem as
minimizing the error sum of squares

S(f, b) =
n

Â
t=1

w2
t =

n

Â
t=1

h

f(B)yt �
r

Â
j=1

b jf(B)ztj

i2

with respect to all the parameters, f = {f1, . . . , fp} and
b = {b1, . . . , br}. Of course, this is done using numerical methods.

If the error process is ARMA(p, q), i.e., f(B)xt = q(B)wt, then in the
above discussion, we transform by p(B)xt = wt, where, recalling (3.16),
p(B) = q(B)�1f(B). In this case the error sum of squares also depends
on q = {q1, . . . , qq}:

S(f, q, b) =
n

Â
t=1

w2
t =

n

Â
t=1

h

p(B)yt �
r

Â
j=1

b jp(B)ztj

i2

At this point, the main problem is that we do not typically know the
behavior of the noise xt prior to the analysis. An easy way to tackle this
problem was first presented in Cochrane and Orcutt (1949), and with the
advent of cheap computing is modernized below:

(i) First, run an ordinary regression of yt on zt1, . . . , ztr (acting as if the
errors are uncorrelated). Retain the residuals, x̂t = yt � Âr

j=1 b̂ jztj.
(ii) Identify ARMA model(s) for the residuals x̂t.

(iii) Run weighted least squares (or MLE) on the regression model with
autocorrelated errors using the model specified in step (ii).

(iv) Inspect the residuals ŵt for whiteness, and adjust the model if
necessary.
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Fig. 3.17. Sample ACF and PACF of the mortality residuals indicating an AR(2) process.

Example 3.32 Mortality, Temperature and Pollution
We consider the analyses presented in Example 2.2, relating mean
adjusted temperature Tt, and particulate levels Pt to cardiovascular
mortality Mt. We consider the regression model

Mt = b0 + b1t + b2Tt + b3T2
t + b4Pt + xt, (3.73)

where, for now, we assume that xt is white noise. The sample ACF and
PACF of the residuals from the ordinary least squares fit of (3.73) are
shown in Figure 3.17, and the results suggest an AR(2) model for the
residuals. The next step is to fit the model (3.73) where xt is AR(2),

xt = f1xt�1 + f2xt�2 + wt

and wt is white noise. The model can be fit using the arima function as
follows (partial output shown).
trend = time(cmort); temp = tempr - mean(tempr); temp2 = temp^2
fit = lm(cmort~trend + temp + temp2 + part, na.action=NULL)
acf2(resid(fit), 52) # implies AR2
sarima(cmort, 2,0,0, xreg=cbind(trend, temp, temp2, part) )
Coefficients:

ar1 ar2 intercept trend temp temp2 part
0.3848 0.4326 80.2116 -1.5165 -0.0190 0.0154 0.1545

s.e. 0.0436 0.0400 1.8072 0.4226 0.0495 0.0020 0.0272
sigma^2 estimated as 26.01: loglikelihood = -1549.04, aic = 3114.07

The residual analysis output from sarima (not shown) shows no
obvious departure of the residuals from whiteness.

3.10 Seasonal ARIMA Models

In this section, we introduce several modifications made to the ARIMA
model to account for seasonal and nonstationary behavior. Often, the
dependence on the past tends to occur most strongly at multiples of
some underlying seasonal lag s. For example, with monthly economic
data, there is a strong yearly component occurring at lags that are
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Fig. 3.18. Data generated from a seasonal (s = 12) AR(1), and the true ACF and PACF of the model
xt = .9xt�12 + wt.

multiples of s = 12, because of the strong connections of all activity to
the calendar year. Data taken quarterly will exhibit the yearly repetitive
period at s = 4 quarters. Natural phenomena such as temperature also
have strong components corresponding to seasons. Hence, the natural
variability of many physical, biological, and economic processes tends to
match with seasonal fluctuations. Because of this, it is appropriate to
introduce autoregressive and moving average polynomials that identify
with the seasonal lags. The resulting pure seasonal autoregressive
moving average model, say, ARMA(P, Q)s, then takes the form

FP(Bs)xt = QQ(Bs)wt, (3.74)

where the operators

FP(Bs) = 1 � F1Bs � F2B2s � · · ·� FPBPs (3.75)

and
QQ(Bs) = 1 + Q1Bs + Q2B2s + · · ·+ QQBQs (3.76)

are the seasonal autoregressive operator and the seasonal moving
average operator of orders P and Q, respectively, with seasonal period s.

Analogous to the properties of nonseasonal ARMA models, the pure
seasonal ARMA(P, Q)s is causal only when the roots of FP(zs) lie
outside the unit circle, and it is invertible only when the roots of QQ(zs)
lie outside the unit circle.

Example 3.33 A Seasonal AR Series
A first-order seasonal autoregressive series that might run over months
could be written as

(1 � FB12)xt = wt

or
xt = Fxt�12 + wt.
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This model exhibits the series xt in terms of past lags at the multiple of
the yearly seasonal period s = 12 months. It is clear from the above
form that estimation and forecasting for such a process involves only
straightforward modifications of the unit lag case already treated. In
particular, the causal condition requires |F| < 1.

We simulated 3 years of data from the model with F = .9, and
exhibit the theoretical ACF and PACF of the model; see Figure 3.18.
set.seed(666)
phi = c(rep(0,11),.9)
sAR = arima.sim(list(order=c(12,0,0), ar=phi), n=37)
sAR = ts(sAR, freq=12)
layout(matrix(c(1,2, 1,3), nc=2))
par(mar=c(3,3,2,1), mgp=c(1.6,.6,0))
plot(sAR, axes=FALSE, main='seasonal AR(1)', xlab="year", type='c')
Months = c("J","F","M","A","M","J","J","A","S","O","N","D")
points(sAR, pch=Months, cex=1.25, font=4, col=1:4)
axis(1, 1:4)
abline(v=1:4, lty=2, col=gray(.6))
axis(2)
box()
ACF = ARMAacf(ar=phi, ma=0, 100)
PACF = ARMAacf(ar=phi, ma=0, 100, pacf=TRUE)
plot(ACF, type="h", xlab="lag", ylim=c(-.1,1))
abline(h=0)
plot(PACF, type="h", xlab="lag", ylim=c(-.1,1))
abline(h=0)

For the first-order seasonal (s = 12) MA model, xt = wt + Qwt�12, it
is easy to verify that

g(0) = (1 + Q2)s2

g(±12) = Qs2

g(h) = 0, otherwise.

Thus, the only nonzero correlation, aside from lag zero, is

r(±12) = Q/(1 + Q2).

For the first-order seasonal (s = 12) AR model, using the techniques
of the nonseasonal AR(1), we have

g(0) = s2/(1 � F2)
g(±12k) = s2Fk/(1 � F2) k = 1, 2, . . .

g(h) = 0, otherwise.

In this case, the only non-zero correlations are

r(±12k) = Fk, k = 0, 1, 2, . . . .

These results can be verified using the general result that

g(h) = Fg(h � 12) for h � 1 .

For example, when h = 1, g(1) = Fg(11), but when h = 11, we have
g(11) = Fg(1), which implies that g(1) = g(11) = 0. In addition to
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Table 3.3. Behavior of the ACF and PACF for Pure SARMA Models

AR(P)s MA(Q)s ARMA(P, Q)s

ACF* Tails off at lags ks, Cuts off after Tails off at
k = 1, 2, . . . , lag Qs lags ks

PACF* Cuts off after Tails off at lags ks Tails off at
lag Ps k = 1, 2, . . . , lags ks

*The values at nonseasonal lags h 6= ks, for k = 1, 2, . . ., are zero.

these results, the PACF have the analogous extensions from nonseasonal
to seasonal models. These results are demonstrated in Figure 3.18.

As an initial diagnostic criterion, we can use the properties for the
pure seasonal autoregressive and moving average series listed in
Table 3.3. These properties may be considered as generalizations of the
properties for nonseasonal models that were presented in Table 3.1.

In general, we can combine the seasonal and nonseasonal operators
into a multiplicative seasonal autoregressive moving average model,
denoted by ARMA(p, q)⇥ (P, Q)s, and write

FP(Bs)f(B)xt = QQ(Bs)q(B)wt (3.77)

as the overall model. Although the diagnostic properties in Table 3.3 are
not strictly true for the overall mixed model, the behavior of the ACF
and PACF tends to show rough patterns of the indicated form. In fact,
for mixed models, we tend to see a mixture of the facts listed in Table 3.1
and Table 3.3. In fitting such models, focusing on the seasonal
autoregressive and moving average components first generally leads to
more satisfactory results.

Example 3.34 A Mixed Seasonal Model
Consider an ARMA(0, 1)⇥ (1, 0)12 model

xt = Fxt�12 + wt + qwt�1,

where |F| < 1 and |q| < 1. Then, because xt�12, wt, and wt�1 are
uncorrelated, and xt is stationary, g(0) = F2g(0) + s2

w + q2s2
w, or

g(0) =
1 + q2

1 � F2 s2
w.

In addition, multiplying the model by xt�h, h > 0, and taking
expectations, we have g(1) = Fg(11) + qs2

w, and g(h) = Fg(h � 12),
for h � 2. Thus, the ACF for this model is

r(12h) = Fh h = 1, 2, . . .

r(12h � 1) = r(12h + 1) =
q

1 + q2 Fh h = 0, 1, 2, . . . ,

r(h) = 0, otherwise.

The ACF and PACF for this model, with F = .8 and q = �.5, are
shown in Figure 3.19. These type of correlation relationships, although
idealized here, are typically seen with seasonal data.

To reproduce Figure 3.19 in R, use the following commands:
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Fig. 3.19. ACF and PACF of the mixed seasonal ARMA model xt = .8xt�12 + wt � .5wt�1.

phi = c(rep(0,11),.8)
ACF = ARMAacf(ar=phi, ma=-.5, 50)[-1] # [-1] removes 0 lag
PACF = ARMAacf(ar=phi, ma=-.5, 50, pacf=TRUE)
par(mfrow=c(1,2))
plot(ACF, type="h", xlab="lag", ylim=c(-.4,.8)); abline(h=0)
plot(PACF, type="h", xlab="lag", ylim=c(-.4,.8)); abline(h=0)

The pattern in the ACF is typical of seasonal time series. Try this on
your own and compare it to Figure 3.19.
par(mfrow=c(3,1),mar=c(2,2,0,0)+1, mgp=c(1.6,.6,0))
plot(birth) # monthly number of births in US
plot( diff(log(birth)) ) # the growth rate
acf( diff(log(birth)), 61) # the sample ACF

Seasonal persistence occurs when the process is nearly periodic in
the season. For example, with average monthly temperatures over the
years, each January would be approximately the same, each February
would be approximately the same, and so on. In this case, we might
think of average monthly temperature xt as being modeled as

xt = St + wt,

where St is a seasonal component that varies a little from one year to the
next, according to a random walk,

St = St�12 + vt.

In this model, wt and vt are uncorrelated white noise processes.
For another example, consider the quarterly occupancy rate of

Hawaiian hotels shown in Figure 3.20. The seasonal component, shown
below the data, is extracted by removing the trend component from the
data. Note that the occupancy rate for the first and third quarters is
always up 2% to 4%, while the occupancy rate for the second and fourth
quarters is always down 2% to 4%.

The tendency of data to follow this type of behavior will be exhibited
in a sample ACF that is large and decays very slowly at lags h = 12k, for
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Fig. 3.20. Seasonal persistence: The quarterly occupancy rate of Hawaiian hotels and the extracted
seasonal component.

k = 1, 2, . . . . If we subtract the effect of successive years from each other,
we find that

(1 � B12)xt = xt � xt�12 = vt + wt � wt�12.

This model is a stationary MA(1)12, and its ACF will have a peak only at
lag 12. In general, seasonal differencing can be indicated when the ACF
decays slowly at multiples of some season s, but is negligible between
the periods. Then, a seasonal difference of order D is defined as

rD
s xt = (1 � Bs)Dxt, (3.78)

where D = 1, 2, . . ., takes positive integer values. Typically, D = 1 is
sufficient to obtain seasonal stationarity. Incorporating these ideas into a
general model leads to the following definition.

Definition 3.8 The multiplicative seasonal autoregressive integrated
moving average model, or SARIMA model is given by

FP(Bs)f(B)rD
s rdxt = d + QQ(Bs)q(B)wt, (3.79)

where wt is the usual Gaussian white noise process. The general model is
denoted as ARIMA(p, d, q)⇥ (P, D, Q)s. The ordinary autoregressive and
moving average components are represented by polynomials f(B) and q(B) of
orders p and q, respectively, and the seasonal autoregressive and moving
average components by FP(Bs) and QQ(Bs) of orders P and Q and ordinary
and seasonal difference components by rd = (1 � B)d and rD

s = (1 � Bs)D.

Example 3.35 An SARIMA Model
Consider the following model, which often provides a reasonable
representation for seasonal, nonstationary, economic time series. We
exhibit the equations for the model, denoted by
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ARIMA(0, 1, 1)⇥ (0, 1, 1)12 in the notation given above, where the
seasonal fluctuations occur every 12 months. Then, with d = 0, the
model (3.79) becomes

r12rxt = Q(B12)q(B)wt

or
(1 � B12)(1 � B)xt = (1 + QB12)(1 + qB)wt. (3.80)

Expanding both sides of (3.80) leads to the representation

(1 � B � B12 + B13)xt = (1 + qB + QB12 + QqB13)wt,

or in difference equation form

xt = xt�1 + xt�12 � xt�13 + wt + qwt�1 + Qwt�12 + Qqwt�13.

Note that the multiplicative nature of the model implies that the
coefficient of wt�13 is the product of the coefficients of wt�1 and wt�12
rather than a free parameter. The multiplicative model assumption
seems to work well with many seasonal time series data sets while
reducing the number of parameters that must be estimated.

Selecting the appropriate model for a given set of data from all of
those represented by the general form (3.79) is a daunting task, and we
usually think first in terms of finding difference operators that produce a
roughly stationary series and then in terms of finding a set of simple
autoregressive moving average or multiplicative seasonal ARMA to fit
the resulting residual series. Differencing operations are applied first,
and then the residuals are constructed from a series of reduced length.
Next, the ACF and the PACF of these residuals are evaluated. Peaks that
appear in these functions can often be eliminated by fitting an
autoregressive or moving average component in accordance with the
general properties of Table 3.1 and Table 3.3. In considering whether the
model is satisfactory, the diagnostic techniques discussed in Section 3.8
still apply.

Example 3.36 Air Passengers
We consider the R data set AirPassengers, which are the monthly totals
of international airline passengers, 1949 to 1960, taken from Box &
Jenkins (1970). Various plots of the data and transformed data are
shown in Figure 3.21 and were obtained as follows:
x = AirPassengers
lx = log(x); dlx = diff(lx); ddlx = diff(dlx, 12)
plot.ts(cbind(x,lx,dlx,ddlx), yax.flip=TRUE, main="")
# below of interest for showing seasonal RW (not shown here):
par(mfrow=c(2,1))
monthplot(dlx); monthplot(ddlx)

Note that x is the original series, which shows trend plus increasing
variance. The logged data are in lx, and the transformation stabilizes
the variance. The logged data are then differenced to remove trend,
and are stored in dlx. It is clear the there is still persistence in the
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Fig. 3.21. R data set AirPassengers, which are the monthly totals of international airline pas-
sengers x, and the transformed data: lx = log xt, dlx = r log xt, and ddlx = r12r log xt.

seasons (i.e., dlxt ⇡ dlxt�12), so that a twelfth-order difference is
applied and stored in ddlx. The transformed data appears to be
stationary and we are now ready to fit a model.

The sample ACF and PACF of ddlx (r12r log xt) are shown in
Figure 3.22. The R code is:
acf2(ddlx, 50)

Seasonal: It appears that at the seasons, the ACF is cutting off a lag 1s
(s = 12), whereas the PACF is tailing off at lags 1s, 2s, 3s, 4s, . . . . These
results implies an SMA(1), P = 0, Q = 1, in the season (s = 12).
Non-Seasonal: Inspecting the sample ACF and PACF at the lower lags, it
appears as though both are tailing off. This suggests an ARMA(1, 1)
within the seasons, p = q = 1.

Thus, we first try an ARIMA(1, 1, 1)⇥ (0, 1, 1)12 on the logged data:
sarima(lx, 1,1,1, 0,1,1,12)
Coefficients:

ar1 ma1 sma1
0.1960 -0.5784 -0.5643

s.e. 0.2475 0.2132 0.0747
sigma^2 estimated as 0.001341
$AIC -5.5726 $AICc -5.55671 $BIC -6.510729

However, the AR parameter is not significant, so we should try
dropping one parameter from the within seasons part. In this case, we
try both an ARIMA(0, 1, 1)⇥ (0, 1, 1)12 and an
ARIMA(1, 1, 0)⇥ (0, 1, 1)12 model:
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Fig. 3.22. Sample ACF and PACF of ddlx (r12r log xt).

sarima(lx, 0,1,1, 0,1,1,12)
Coefficients:

ma1 sma1
-0.4018 -0.5569

s.e. 0.0896 0.0731
sigma^2 estimated as 0.001348
$AIC -5.5813 $AICc -5.5663 $BIC -6.5401
sarima(lx, 1,1,0, 0,1,1,12)
Coefficients:

ar1 sma1
-0.3395 -0.5619

s.e. 0.0822 0.0748
sigma^2 estimated as 0.001367
$AIC -5.5671 $AICc -5.5520 $BIC -6.5258

All information criteria prefer the ARIMA(0, 1, 1)⇥ (0, 1, 1)12 model,
which is the model displayed in (3.80). The residual diagnostics are
shown in Figure 3.23, and except for one or two outliers, the model
seems to fit well.

Finally, we forecast the logged data out twelve months, and the
results are shown in Figure 3.24.
sarima.for(lx, 12, 0,1,1, 0,1,1,12)

Example 3.37 Regression with Lagged Variables (cont)
In Example 2.9 we fit the model

Rt = b0 + b1St�6 + b2Dt�6 + b3Dt�6 St�6 + wt,

where Rt is Recruitment, St is SOI, and Dt is a dummy variable that is
0 if St < 0 and 1 otherwise. However, residual analysis indicates that
the residuals are not white noise. The sample (P)ACF of the residuals
indicates that an AR(2) model might be appropriate, which is similar
to the results of Example 3.32. Additional analysis suggests that at
seasonal model might be needed, and after some investigation, we
settled on an SARIMA(2, 0, 0)⇥ (2, 0, 0)12 model for the residuals. Both
AIC and BIC confirm that this model is the the best. We only display
the results of the final model for this example, but the code to carry
out the complete analysis is listed below.
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Fig. 3.23. Residual analysis for the ARIMA(0, 1, 1)⇥ (0, 1, 1)12 fit to the logged air passengers data
set.

dummy = ifelse(soi<0, 0, 1)
fish = ts.intersect(rec, soiL6=lag(soi,-6), dL6=lag(dummy,-6),

dframe=TRUE)
summary(fit <- lm(rec ~soiL6*dL6, data=fish, na.action=NULL))
attach(fish)
plot(resid(fit))
acf2(resid(fit)) # indicates AR(2)
(fit1 = sarima(rec,2,0,0, xreg = cbind(soiL6, dL6, I(soiL6*dL6) )))
acf2(resid(fit1)) # indicates seasonal AR
intract = soiL6*dL6 # interaction term
# try seasonal AR order 1 and then 2, which appears to be best
(fit2 = sarima(rec, 2,0,0, 1,0,0,12, xreg = cbind(soiL6, dL6, intract) ))
(fit3 = sarima(rec, 2,0,0, 2,0,0,12, xreg = cbind(soiL6, dL6, intract) ))
Coefficients:

ar1 ar2 sar1 sar2 intercept soiL6 dL6 intract
1.3488 -0.4444 0.1141 0.1502 63.9457 8.4393 -2.2510 -8.3469

s.e. 0.0444 0.0449 0.0473 0.0503 6.0494 2.1639 0.9533 2.8512
sigma^2 estimated as 83.75: log likelihood = -1625.53, aic = 3269.07
$AIC $AICc $BIC
[1] 5.463671 [1] 5.469067 [1] 4.537095
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Fig. 3.24. Twelve month forecast using the ARIMA(0, 1, 1) ⇥ (0, 1, 1)12 model on the logged air
passenger data set.

Problems

3.1 For an MA(1), xt = wt + qwt�1, show that |rx(1)|  1/2 for any
number q. For which values of q does rx(1) attain its maximum and
minimum?

3.2 Let {wt; t = 0, 1, . . . } be a white noise process with variance s2
w and

let |f| < 1 be a constant. Consider the process x0 = w0, and

xt = fxt�1 + wt, t = 1, 2, . . . .

We might use this method to simulate an AR(1) process from simulated
white noise.

(a) Show that xt = Ât
j=0 fjwt�j for any t = 0, 1, . . . .

(b) Find the E(xt).
(c) Show that, for t = 0, 1, . . .,7

var(xt) =
s2

w
1 � f2 (1 � f2(t+1))

(d) Show that, for h � 0,8

cov(xt+h, xt) = fhvar(xt)

(e) Is xt stationary?
(f) Argue that, as t ! •, the process becomes stationary, so in a sense,

xt is “asymptotically stationary."
(g) Comment on how you could use these results to simulate n

observations of a stationary Gaussian AR(1) model from simulated
iid N(0,1) values.

(h) Now suppose x0 = w0/
p

1 � f2. Is this process stationary? Hint:
Show var(xt) is constant.

7 Âk
j=0 aj = (1 � ak+1)/(1 � a) for |a| 6= 1

8 Use footnote 1 to write xt+h in terms of xt and other stuff.
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3.3 Using Example 3.6 as a guide, identify the following models as
ARMA(p, q) models (watch out for parameter redundancy), and
determine whether they are causal and/or invertible. If the model is
causal, use R to find the first 10 y-weights, and if the model is invertible,
use R to find the first 10 p-weights.

(a) xt = .80xt�1 � .15xt�2 + wt � .30wt�1.
(b) xt = xt�1 � .50xt�2 + wt � wt�1.

3.4 For the AR(2) model given by xt = �.9xt�2 + wt, follow the R code in
Example 3.11 to find the roots of the autoregressive polynomial, find the
pseudo period of the process, and then plot the theoretical ACF, r(h).

3.5 (a) Compare the theoretical ACF and PACF of an ARMA(1, 1), an
ARMA(1, 0), and an ARMA(0, 1) series by plotting the ACFs and
PACFs of the three series for f = .6, q = .9. Comment on the
capability of the ACF and PACF to determine the order of the
models. Hint: See the code for Example 3.13.

(b) Use arima.sim to generate n = 100 observations from each of the
three models discussed in (a). Compute the sample ACFs and PACFs
for each model and compare it to the theoretical values. How do the
results compare with the general results given in Table 3.1?

(c) Repeat (b) but with n = 500. Comment.

3.6 Let ct be the cardiovascular mortality series (cmort) discussed in
Chapter 2, Example 2.2 and let xt = rct be the differenced data.

(a) Plot xt and compare it to the actual data plotted in Figure 2.2. Why
does differencing seem reasonable in this case?

(b) Calculate and plot the sample ACF and PACF of xt and using
Table 3.1, argue that an AR(1) is appropriate for xt.

(c) Fit an AR(1) to xt using maximum likelihood (basically unconditional
least squares) as in Section 3.6. The easiest way to do this is to use
sarima from astsa. Comment on the significance of the regression
parameter estimates of the model. What is the estimate of the white
noise variance?

(d) Examine the residuals and comment on whether or not you think the
residuals are white.

(e) Assuming the fitted model is the true model, find the forecasts over a
four-week horizon, xn

n+m, for m = 1, 2, 3, 4, and the corresponding
95% prediction intervals; n = 508 here. The easiest way to do this is
to use sarima.for from astsa.

(f) Show how the values obtained in part (e) were calculated.
(g) What is the one-step-ahead forecast of the actual value of

cardiovascular mortality; i.e., what is cn
n+1?

3.7 For an AR(1) model, determine the general form of the m-step-ahead
forecast xn

n+m and show

E[(xn+m � xn
n+m)

2] = s2
w

1 � f2m

1 � f2 .
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3.8 Repeat the following numerical exercise five times. Generate n = 100
iid N(0, 1) observations. Fit an ARMA(1, 1) model to the data. Compare
the parameter estimates in each case and explain the results.

3.9 Generate 10 realizations of length n = 200 each of an ARMA(1,1)
process with f = .9, q = .5 and s2 = 1. Find the MLEs of the three
parameters in each case and compare the estimators to the true values.

3.10 Using Example 3.19 as your guide, find the Gauss–Newton
procedure for estimating the autoregressive parameter, f, from the
AR(1) model, xt = fxt�1 + wt, given data x1, . . . , xn. Does this procedure
produce the unconditional or the conditional estimator? Hint: Write the
model as wt(f) = xt � fxt�1; your solution should work out to be a
non-recursive procedure.

3.11 Verify that the IMA(1,1) model given in (3.65) can be inverted and
written as (3.66).

3.12 For the logarithm of the glacial varve data, say, xt, presented in
Example 3.20, use the first 100 observations and calculate the EWMA,
xn

n+1, discussed in Example 3.26, for n = 1, . . . , 100, using l = .25, .50,
and .75, and plot the EWMAs and the data superimposed on each other.
Comment on the results.

3.13 Crude oil prices in dollars per barrel are in oil; see Appendix R for
more details. Fit an ARIMA(p, d, q) model to the growth rate performing
all necessary diagnostics. Comment.

3.14 Fit an ARIMA(p, d, q) model to the global temperature data gtemp2
in astsa performing all of the necessary diagnostics. After deciding on
an appropriate model, forecast (with limits) the next 10 years. Comment.

3.15 One of the series collected along with particulates, temperature, and
mortality described in Example 2.2 is the sulfur dioxide series, so2. Fit an
ARIMA(p, d, q) model to the data, performing all of the necessary
diagnostics. After deciding on an appropriate model, forecast the data
into the future four time periods ahead (about one month) and calculate
95% prediction intervals for each of the four forecasts. Comment.

3.16 Let St represent the monthly sales data in sales (n = 150), and let Lt
be the leading indicator in lead.

(a) Fit an ARIMA model to St, the monthly sales data. Discuss your
model fitting in a step-by-step fashion, presenting your (A) initial
examination of the data, (B) transformations, if necessary, (C) initial
identification of the dependence orders and degree of differencing,
(D) parameter estimation, (E) residual diagnostics and model choice.

(b) Use the CCF and lag plots between rSt and rLt to argue that a
regression of rSt on rLt�3 is reasonable. [Note: In lag2.plot(), the
first named series is the one that gets lagged.]
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(c) Fit the regression model rSt = b0 + b1rLt�3 + xt, where xt is an
ARMA process (explain how you decided on your model for xt).
Discuss your results. R help: If you have to work with various
transformations of series in x and y, first align the data:
dog = ts.intersect( lag(x,-11), diff(y,97) )
xnew = dog[,1] # dog has 2 columns, the first is lag(x,-11) ...
ynew = dog[,2] # ... and the second column is diff(y,97)
plot(dog) # now you can manipulate xnew and ynew simultaneously
lag2.plot(xnew, ynew, 5)

3.17 One of the remarkable technological developments in the computer
industry has been the ability to store information densely on a hard
drive. In addition, the cost of storage has steadily declined causing
problems of too much data as opposed to big data. The data set for this
assignment is cpg, which consists of the median annual retail price per
GB of hard drives, say ct, taken from a sample of manufacturers from
1980 to 2008.

(a) Plot ct and describe what you see.
(b) Argue that the curve ct versus t behaves like ct ⇡ aebt by fitting a

linear regression of log ct on t and then plotting the fitted line to
compare it to the logged data. Comment.

(c) Inspect the residuals of the linear regression fit and comment.
(d) Fit the regression again, but now using the fact that the errors are

autocorrelated. Comment.

3.18 Redo Problem 2.2 without assuming the error term is white noise.

3.19 Plot the theoretical ACF of the seasonal ARIMA(0, 1)⇥ (1, 0)12
model with F = .8 and q = .5 out to lag 50.

3.20 Fit a seasonal ARIMA model of your choice to the chicken price
data in chicken. Use the estimated model to forecast the next 12 months.

3.21 Fit a seasonal ARIMA model of your choice to the unemployment
data, unemp. Use the estimated model to forecast the next 12 months.

3.22 Fit a seasonal ARIMA model of your choice to the U.S. Live Birth
Series, birth. Use the estimated model to forecast the next 12 months.

3.23 Fit an appropriate seasonal ARIMA model to the log-transformed
Johnson and Johnson earnings series (jj) of Example 1.1. Use the
estimated model to forecast the next 4 quarters.



Chapter 4
Spectral Analysis and Filtering

4.1 Introduction

The cyclic behavior of data is the focus of this chapter. For example, in
the Johnson & Johnson data set in Figure 1.1, the predominant frequency
of oscillation is one cycle per year (4 quarters), or .25 cycles per
observation. The predominant frequency in the SOI and fish populations
series in Figure 1.5 is also one cycle per year, but this corresponds to 1
cycle every 12 months, or .083 cycles per observation. For simplicity, we
measure frequency, w, at cycles per time point and discuss the
implications of certain frequencies in terms of the problem context. Of
descriptive interest is the period of a time series, defined as the number
of points in a cycle, i.e., 1/w. Hence, the predominant period of the
Johnson & Johnson series is 1/.25 or 4 quarters per cycle, whereas the
predominant period of the SOI series is 12 months per cycle. As stated in
the Preface, complex numbers (a pdf) may be helpful for this chapter.

4.2 Periodicity and Cyclical Behavior

The general notion of periodicity can be made more precise by
introducing some terminology. In order to define the rate at which a
series oscillates, we first define a cycle as one complete period of a sine
or cosine function defined over a unit time interval. As in (1.5), we
consider the periodic process

xt = A cos(2pwt + f) (4.1)

for t = 0,±1,±2, . . ., where w is a frequency index, defined in cycles per
unit time with A determining the height or amplitude of the function and
f, called the phase, determining the start point of the cosine function. We
can introduce random variation in this time series by allowing the
amplitude and phase to vary randomly.

http://tutorial.math.lamar.edu/pdf/Complex/ComplexNumbers.pdf
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As discussed in Example 2.10, for purposes of data analysis, it is
easier to use a trigonometric identity1 and write (4.1) as

xt = U1 cos(2pwt) + U2 sin(2pwt), (4.2)

where U1 = A cos f and U2 = �A sin f are often taken to be normally
distributed random variables. In this case, the amplitude is
A =

p
(U2

1 + U2
2) and the phase is f = tan�1(�U2/U1). From these facts

we can show that if, and only if, in (4.1), A and f are independent
random variables, where A2 is chi-squared with 2 degrees of freedom,
and f is uniformly distributed on (�p, p), then U1 and U2 are
independent, standard normal random variables.

If we assume that U1 and U2 are uncorrelated random variables with
mean 0 and variance s2, then xt in (4.2) is stationary with mean
E(xt) = 0 and, writing ct = cos(2pwt) and st = sin(2pwt),
autocovariance function

g(h) = cov(xt+h, xt) = cov(U1ct+h + U2st+h, U1ct + U2st)

= cov(U1ct+h, U1ct) + cov(U1ct+h, U2st)

+ cov(U2st+h, U1ct) + cov(U2st+h, U2st)

= s2ct+hct + 0 + 0 + s2st+hst = s2 cos(2pwh),

(4.3)

using footnote 1 and noting that cov(U1, U2) = 0.
The random process in (4.2) is function of its frequency, w. For w = 1,

the series makes one cycle per time unit; for w = .50, the series makes a
cycle every two time units; for w = .25, every four units, and so on. In
general, for data that occur at discrete time points, we will need at least
two points to determine a cycle, so the highest frequency of interest is .5
cycles per point. This frequency is called the folding frequency and defines
the highest frequency that can be seen in discrete sampling. Higher
frequencies sampled this way will appear at lower frequencies, called
aliases; an example is the way a camera samples a rotating wheel on a
moving automobile in a movie, in which the wheel appears to be
rotating at a different rate. For example, movies are recorded at 24
frames per second. If the camera is filming a wheel that is rotating at the
rate of 24 cycles per second (or 24 Hertz), the wheel will appear to stand
still.

Consider a generalization of (4.2) that allows mixtures of periodic
series with multiple frequencies and amplitudes,

xt =
q

Â
k=1

[Uk1 cos(2pwkt) + Uk2 sin(2pwkt)] , (4.4)

where Uk1, Uk2, for k = 1, 2, . . . , q, are independent zero-mean random
variables with variances s2

k , and the wk are distinct frequencies. Notice
that (4.4) exhibits the process as a sum of independent components, with
variance s2

k for frequency wk. As in (4.3), it is easy to show (Problem 4.2)
that the autocovariance function of the process is

1 cos(a ± b) = cos(a) cos(b)⌥ sin(a) sin(b).
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Fig. 4.1. Periodic components and their sum as described in Example 4.1.

g(h) =
q

Â
k=1

s2
k cos(2pwkh), (4.5)

and we note the autocovariance function is the sum of periodic
components with weights proportional to the variances s2

k . Hence, xt is a
mean-zero stationary processes with variance

g(0) = var(xt) =
q

Â
k=1

s2
k , (4.6)

which exhibits the overall variance as a sum of variances of each of the
component parts.

Example 4.1 A Periodic Series
Figure 4.1 shows an example of the mixture (4.4) with q = 3
constructed in the following way. First, for t = 1, . . . , 100, we generated
three series

xt1 = 2 cos(2pt 6/100) + 3 sin(2pt 6/100)
xt2 = 4 cos(2pt 10/100) + 5 sin(2pt 10/100)
xt3 = 6 cos(2pt 40/100) + 7 sin(2pt 40/100)

These three series are displayed in Figure 4.1 along with the
corresponding frequencies and squared amplitudes. For example, the
squared amplitude of xt1 is A2 = 22 + 32 = 13. Hence, the maximum
and minimum values that xt1 will attain are ±

p
13 = ±3.61.

Finally, we constructed

xt = xt1 + xt2 + xt3

and this series is also displayed in Figure 4.1. We note that xt appears
to behave as some of the periodic series we have already seen. The
systematic sorting out of the essential frequency components in a time
series, including their relative contributions, constitutes one of the
main objectives of spectral analysis.

The R code to reproduce Figure 4.1 is
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x1 = 2*cos(2*pi*1:100*6/100) + 3*sin(2*pi*1:100*6/100)
x2 = 4*cos(2*pi*1:100*10/100) + 5*sin(2*pi*1:100*10/100)
x3 = 6*cos(2*pi*1:100*40/100) + 7*sin(2*pi*1:100*40/100)
x = x1 + x2 + x3
par(mfrow=c(2,2))
plot.ts(x1, ylim=c(-10,10), main=expression(omega==6/100~~~A^2==13))
plot.ts(x2, ylim=c(-10,10), main=expression(omega==10/100~~~A^2==41))
plot.ts(x3, ylim=c(-10,10), main=expression(omega==40/100~~~A^2==85))
plot.ts(x, ylim=c(-16,16), main="sum")

The model given in (4.4), along with its autocovariance given (4.5), is
a population construct. If the model is correct, our next step would be to
estimate the variances s2

k and frequencies wk that form the model (4.4).
In the next example, we consider the problem of estimation of these
quantities.

Example 4.2 Estimation and the Periodogram
For any time series sample x1, . . . , xn, where n is odd, we may write,
exactly

xt = a0 +
(n�1)/2

Â
j=1

⇥

aj cos(2pt j/n) + bj sin(2pt j/n)
⇤

, (4.7)

for t = 1, . . . , n and suitably chosen coefficients. If n is even, the
representation (4.7) can be modified by summing to (n/2 � 1) and
adding an additional component given by an/2 cos(2pt 1

2 ) = an/2(�1)t.
The crucial point here is that (4.7) is exact for any sample. Hence (4.4)
may be thought of as an approximation to (4.7), the idea being that
many of the coefficients in (4.7) may be close to zero.

Using the regression results from Chapter 2, the coefficients aj and
bj are of the form Ân

t=1 xtztj/ Ân
t=1 z2

tj, where ztj is either cos(2pt j/n)
or sin(2pt j/n). Using Problem 4.22, Ân

t=1 z2
tj = n/2 when j/n 6= 0, 1/2,

so the regression coefficients in (4.7) can be written as

aj =
2
n

n

Â
t=1

xt cos(2ptj/n) and bj =
2
n

n

Â
t=1

xt sin(2ptj/n).

We then define the scaled periodogram to be

P(j/n) = a2
j + b2

j , (4.8)

because it indicates which frequency components in (4.7) are large in
magnitude and which components are small. The scaled periodogram is
the estimate of s2

j corresponding to the sinusoid oscillating at a frequency of
wj = j/n, or j cycles in n time points. These particular frequencies are
called the Fourier or fundamental frequencies. Large values of P(j/n)
indicate which frequencies wj = j/n are predominant in the series,
whereas small values of P(j/n) may be associated with noise.

It is not necessary to run a large regression to obtain the values of
aj and bj because they can be computed quickly if n is a highly
composite integer. Although we will discuss it in more detail in
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Fig. 4.2. The scaled periodogram (4.11) of the data generated in Example 4.1.

Section 4.4, the discrete Fourier transform (DFT) is a complex-valued
weighted average of the data given by2

d(j/n) = n�1/2
n

Â
t=1

xt exp(�2pitj/n)

= n�1/2

 

n

Â
t=1

xt cos(2ptj/n)� i
n

Â
t=1

xt sin(2ptj/n)

!

,
(4.9)

for j = 0, 1, . . . , n � 1, where the frequencies j/n are called the Fourier
or fundamental frequencies. Because of a large number of
redundancies in the calculation, (4.9) may be computed quickly using
the fast Fourier transform (FFT). Note that

|d(j/n)|2 =
1
n

 

n

Â
t=1

xt cos(2ptj/n)

!2

+
1
n

 

n

Â
t=1

xt sin(2ptj/n)

!2

(4.10)
and it is this quantity that is called the periodogram. We may calculate
the scaled periodogram, (4.8), using the periodogram as

P(j/n) =
4
n
|d(j/n)|2. (4.11)

The scaled periodogram of the data, xt, simulated in Example 4.1 is
shown in Figure 4.2, and it clearly identifies the three components
xt1, xt2, and xt3 of xt. Note that

P(j/n) = P(1 � j/n), j = 0, 1, . . . , n � 1,

so there is a mirroring effect at the folding frequency of 1/2;
consequently, the periodogram is typically not plotted for frequencies
higher than the folding frequency. In addition, note that the heights of
the scaled periodogram shown in the figure are

P( 6
100 ) = P( 94

100 ) = 13, P( 10
100 ) = P( 90

100 ) = 41, P( 40
100 ) = P( 60

100 ) = 85,

2 Useful information: Euler’s formula: eia = cos(a) + i sin(a). Consequently, cos(a) =
eia+e�ia

2 , and sin(a) = eia�e�ia
2i . Also, 1

i = �i because �i ⇥ i = 1. If z = a + ib is complex,
then |z|2 = zz = (a + ib)(a � ib) = a2 + b2.
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Fig. 4.3. Star magnitudes and part of the corresponding periodogram.

and P(j/n) = 0 otherwise. These are exactly the values of the squared
amplitudes of the components generated in Example 4.1. This outcome
suggests that the periodogram may provide some insight into the
variance components, (4.6), of a real set of data.

Assuming the simulated data, x, were retained from the previous
example, the R code to reproduce Figure 4.2 is
P = abs(2*fft(x)/100)^2; Fr = 0:99/100
plot(Fr, P, type="o", xlab="frequency", ylab="periodogram")

Different packages scale the FFT differently, so it is a good idea to
consult the documentation. R computes it without the factor n�1/2 and
with an additional factor of e2piwj that can be ignored because we will
be interested in the squared modulus.

If we consider the data xt in Example 4.1 as a color (waveform) made
up of primary colors xt1, xt2, xt3 at various strengths (amplitudes), then
we might consider the periodogram as a prism that decomposes the
color xt into its primary colors (spectrum). Hence the term spectral
analysis.

The following is an example using actual data.

Example 4.3 Star Magnitude
The data in Figure 4.3 are the magnitude of a star taken at midnight
for 600 consecutive days. The data are taken from the classic text, The
Calculus of Observations, a Treatise on Numerical Mathematics, by E.T.
Whittaker and G. Robinson, (1923, Blackie & Son, Ltd.).

The periodogram for frequencies less than .08 is also displayed in
the figure; the periodogram for frequencies higher than .08 are
essentially zero. Note that the 29 day cycle and the 25 day cycle are the
most prominent periodic components of the data. The R code to
reproduce Figure 4.3 is
n = length(star)
par(mfrow=c(2,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
plot(star, ylab="star magnitude", xlab="day")
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Per = Mod(fft(star-mean(star)))^2/n
Freq = (1:n -1)/n
plot(Freq[1:50], Per[1:50], type='h', lwd=3, ylab="Periodogram",

xlab="Frequency")
u = which.max(Per[1:50]) # 22 freq=21/600=.035 cycles/day
uu = which.max(Per[1:50][-u]) # 25 freq=25/600=.041 cycles/day
1/Freq[22]; 1/Freq[26] # period = days/cycle
text(.05, 7000, "24 day cycle"); text(.027, 9000, "29 day cycle")
### another way to find the two peaks is to order on Per
y = cbind(1:50, Freq[1:50], Per[1:50]); y[order(y[,3]),]

The periodogram, which was introduced in Schuster (1898) and used
in Schuster (1906) for studying the periodicities in the sunspot series
(shown in Figure 4.20 in the Problems section) is a sample based
statistic. In Example 4.2 and Example 4.3, we discussed the fact that the
periodogram may be giving us an idea of the variance components
associated with each frequency, as presented in (4.6), of a time series.
These variance components, however, are population parameters. The
concepts of population parameters and sample statistics, as they relate to
spectral analysis of time series can be generalized to cover stationary
time series and that is the topic of the next section.

4.3 The Spectral Density

The idea that a time series is composed of periodic components,
appearing in proportion to their underlying variances, is fundamental in
the spectral representation. The result, called the Spectral Representation
Theorem, is quite technical, but the essence of the theorem is that (4.4) is
approximately true for any stationary time series.

The examples in the previous section are not generally realistic
because time series are rarely the superposition of a small number of
distinct sinusoids. An important situation we use repeatedly is the case
when the autocovariance function is absolutely summable, in which case
there is a spectral density.

Property 4.1 The Spectral Density
If the autocovariance function, g(h), of a stationary process satisfies

•

Â
h=�•

|g(h)| < •, (4.12)

then it has the representation

g(h) =
Z 1/2

�1/2
e2piwh f (w) dw h = 0,±1,±2, . . . , (4.13)

as the inverse transform of the spectral density, which has the representation

f (w) =
•

Â
h=�•

g(h)e�2piwh � 1/2  w  1/2. (4.14)
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The examples of the previous section were analogues of probability
mass functions, or discrete distributions. The pictures of the periodgram
in Figure 4.2 and Figure 4.3 are akin to histograms. The spectral density
is the analogue of the probability density function, or of continuous
distributions.

The fact that g(h) is non-negative definite ensures f (w) � 0 for all w.
It follows immediately from (4.14) that

f (w) = f (�w)

verifying the spectral density is an even function. Because of the
evenness, we will typically only plot f (w) for w � 0. In addition, putting
h = 0 in (4.13) yields

g(0) = var(xt) =
Z 1/2

�1/2
f (w) dw,

which expresses the total variance as the integrated spectral density over
all of the frequencies. We show later on, that a linear filter can isolate the
variance in certain frequency intervals or bands.

We note that the absolute summability condition, (4.12), is not
satisfied by (4.5), the example that we have used to introduce the idea of
a spectral representation. The condition, however, is satisfied for ARMA
models. It is illuminating to examine the spectral density for the series
that we have looked at in earlier discussions.

Example 4.4 White Noise Series
As a simple example, consider the theoretical power spectrum of a
sequence of uncorrelated random variables, wt, with variance s2

w. A
simulated set of data is displayed in the top of Figure 1.7. Because the
autocovariance function was computed in Example 1.14 as gw(h) = s2

w
for h = 0, and zero, otherwise, it follows from (4.14), that

fw(w) = s2
w

for �1/2  w  1/2. Hence the process contains equal power at all
frequencies. This property is seen in the realization, which seems to
contain all different frequencies in a roughly equal mix. In fact, the
name white noise comes from the analogy to white light, which
contains all frequencies in the color spectrum at the same level of
intensity. Figure 4.4 shows a plot of the white noise spectrum for
s2

w = 1.

If xt is ARMA, its spectral density can be obtained explicitly using
the fact that it is a linear process, i.e., xt = Â•

j=0 yjwt�j, where
Â•

j=0 |yj| < •. In the following property, we exhibit the form of the
spectral density of an ARMA model. The proof of the property follows
directly from the proof of a more general result, Property 4.5, by using
the additional fact that y(z) = q(z)/f(z). The result is analogous to the
fact that if X = aY, then var(X) = a2var(Y).
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Property 4.2 The Spectral Density of ARMA
If xt is ARMA(p, q), f(B)xt = q(B)wt, its spectral density is given by

fx(w) = s2
w|y(e�2piw)|2 = s2

w
|q(e�2piw)|2

|f(e�2piw)|2
(4.15)

where f(z) = 1 � Âp
k=1 fkzk, q(z) = 1 + Âq

k=1 qkzk, and y(z) = Â•
k=0 ykzk.

Example 4.5 Moving Average
As an example of a series that does not have an equal mix of
frequencies, we consider a moving average model. Specifically,
consider the MA(1) model given by

xt = wt + .5wt�1.

A sample realization is shown in the top of Figure 3.2 and we note that
the series has less of the higher or faster frequencies. The spectral
density will verify this observation.

The autocovariance function is displayed in Example 3.3, and for
this particular example, we have

g(0) = (1 + .52)s2
w = 1.25s2

w; g(±1) = .5s2
w; g(±h) = 0 for h > 1.

Substituting this directly into the definition given in (4.14), we have

f (w) =
•

Â
h=�•

g(h) e�2piwh = s2
w

h

1.25 + .5
⇣

e�2piw + e2piw
⌘i

= s2
w [1.25 + cos(2pw)] .

(4.16)

We can also compute the spectral density using Property 4.2, which
states that for an MA, f (w) = s2

w|q(e�2piw)|2. Because q(z) = 1 + .5z,
we have

|q(e�2piw)|2 = |1 + .5e�2piw |2 = (1 + .5e�2piw)(1 + .5e2piw)

= 1.25 + .5
⇣

e�2piw + e2piw
⌘

which leads to agreement with (4.16).
Plotting the spectrum for s2

w = 1, as in the middle of Figure 4.4,
shows the lower or slower frequencies have greater power than the
higher or faster frequencies.

Example 4.6 A Second-Order Autoregressive Series
We now consider the spectrum of an AR(2) series of the form

xt � f1xt�1 � f2xt�2 = wt,

for the special case f1 = 1 and f2 = �.9. Figure 1.8 shows a sample
realization of such a process for sw = 1. We note the data exhibit a
strong periodic component that makes a cycle about every six points.
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Fig. 4.4. Theoretical spectra of white noise (top), a first-order moving average (middle), and a second-
order autoregressive process (bottom).

To use Property 4.2, note that q(z) = 1, f(z) = 1 � z + .9z2 and

|f(e�2piw)|2 = (1 � e�2piw + .9e�4piw)(1 � e2piw + .9e4piw)

= 2.81 � 1.9(e2piw + e�2piw) + .9(e4piw + e�4piw)

= 2.81 � 3.8 cos(2pw) + 1.8 cos(4pw).

Using this result in (4.15), we have that the spectral density of xt is

fx(w) =
s2

w
2.81 � 3.8 cos(2pw) + 1.8 cos(4pw)

.

Setting sw = 1, the bottom of Figure 4.4 displays fx(w) and shows a
strong power component at about w = .16 cycles per point or a period
between six and seven cycles per point and very little power at other
frequencies. In this case, modifying the white noise series by applying
the second-order AR operator has concentrated the power or variance
of the resulting series in a very narrow frequency band.

To reproduce Figure 4.4, use the arma.spec script from astsa:
par(mfrow=c(3,1))
arma.spec(log="no", main="White Noise")
arma.spec(ma=.5, log="no", main="Moving Average")
arma.spec(ar=c(1,-.9), log="no", main="Autoregression")

The above examples motivate the use of the power spectrum for
describing the theoretical variance fluctuations of a stationary time
series. Indeed, the interpretation of the spectral density function as the
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variance of the time series over a given frequency band gives us the
intuitive explanation for its physical meaning. The plot of the function
f (w) over the frequency argument w can even be thought of as an
analysis of variance, in which the columns or block effects are the
frequencies, indexed by w.

4.4 Periodogram and Discrete Fourier Transform

We are now ready to tie together the periodogram, which is the
sample-based concept presented in Section 4.2, with the spectral density,
which is the population-based concept of Section 4.3.

Definition 4.1 Given data x1, . . . , xn, we define the discrete Fourier
transform (DFT) to be

d(wj) = n�1/2
n

Â
t=1

xte�2piwj t (4.17)

for j = 0, 1, . . . , n � 1, where the frequencies wj = j/n are called the Fourier
or fundamental frequencies.

If n is a highly composite integer (i.e., it has many factors), the DFT
can be computed by the fast Fourier transform (FFT) introduced in
Cooley and Tukey (1965). Sometimes it is helpful to exploit the inversion
result for DFTs which shows the linear transformation is one-to-one. For
the inverse DFT we have,

xt = n�1/2
n�1

Â
j=0

d(wj)e2piwj t (4.18)

for t = 1, . . . , n. The following example shows how to calculate the DFT
and its inverse in R for the data set {1, 2, 3, 4}; note that R writes a
complex number z = a + ib as a+bi.
(dft = fft(1:4)/sqrt(4))
[1] 5+0i -1+1i -1+0i -1-1i

(idft = fft(dft, inverse=TRUE)/sqrt(4))
[1] 1+0i 2+0i 3+0i 4+0i

(Re(idft)) # keep it real
[1] 1 2 3 4

We now define the periodogram as the squared modulus3 of the DFT.

Definition 4.2 Given data x1, . . . , xn, we define the periodogram to be

I(wj) =
�

�d(wj)
�

�

2 (4.19)

for j = 0, 1, 2, . . . , n � 1.

3 Recall that if z = a + ib, then z̄ = a � ib, and |z|2 = zz̄ = a2 + b2.
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Note that I(0) = nx̄2, where x̄ is the sample mean. Also, for j 6= 0,4

I(wj) =
n�1

Â
h=�(n�1)

bg(h)e�2piwjh. (4.20)

In view of (4.20), the periodogram, I(wj), is the sample version of
f (wj) given in (4.14). That is, we may think of the periodogram as the
“sample spectral density" of xt. Although (4.20) seems like a reasonable
estimate of f (w), recall from Example 4.2 that I(wj), for any j, is based
on only 2 pieces of information (degrees of freedom).

It is sometimes useful to work with the real and imaginary parts of
the DFT individually. To this end, we define the following transforms.

Definition 4.3 Given data x1, . . . , xn, we define the cosine transform

dc(wj) = n�1/2
n

Â
t=1

xt cos(2pwjt) (4.21)

and the sine transform

ds(wj) = n�1/2
n

Â
t=1

xt sin(2pwjt) (4.22)

where wj = j/n for j = 0, 1, . . . , n � 1.

Note that dc(wj) and ds(wj) are averages like the sample mean, but
with difference weights (the sample mean has weights 1

n for each
observation). Under appropriate conditions, there is central limit
theorem for these quantities. In non-technical terms, the result is similar
to the central limit theorem for sample means, that is,

dc(wj)
·⇠ N(0, 1

2 f (wj)) and ds(wj)
·⇠ N(0, 1

2 f (wj)) (4.23)

where ·⇠ means approximately distributed as for n large. Moreover, it can
be shown that for large n, dc(wj) ? ds(wj) ? dc(wk) ? ds(wk), as long as
wj 6= wk, where ? is read is independent of.

We note that d(wj) = dc(wj)� i ds(wj) and hence the periodogram is

I(wj) = d2
c (wj) + d2

s (wj), (4.24)

which for large n is the sum of the squares of two independent normal
random variables, which we know has a chi-squared (c2) distribution.
Thus, for large samples, I(wj)

·⇠ 1
2 f (wj)c

2
2, or equivalently,

2 I(wj)

f (wj)
·⇠ c2

2 , (4.25)

4 The DFTs of xt and of (xt � x̄) are the same except at the zero frequency. This follows
because Ân

t=1 exp(�2pit j
n ) = 0. Consequently,

�

�d(wj)
�

�

2
= n�1 Ân

t=1 Ân
s=1(xt � x̄)(xs � x̄)e�2piwj(t�s) =

n�1 Ân�1
h=�(n�1) Ân�|h|

t=1 (xt+|h| � x̄)(xt � x̄)e�2piwj h, which is (4.20).
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where c2
2 is the chi-squared distribution with 2 degrees of freedom.

Since the mean and variance of a c2
n are n and 2n, respectively, it follows

from (4.28a) that

E[I(wj)] ⇡ f (wj) and var[I(wj)] ⇡ f 2(wj). (4.26)

This is bad news because, while the periodgram is approximately
unbiased, its variance does not go to zero, and hence it is not consistent.
In fact, no matter how large n, the variance of the periodogram does not
change. Contrast this with the mean x̄ of a random sample of size n for
which E[x̄] = µ and var[x̄] = s2/n ! 0 as n ! •.

The technical result regarding the large sample distribution of the
periodogram under general conditions is given in the following result.

Property 4.3 Distribution of the Periodogram Ordinates
If

xt =
•

Â
j=�•

yjwt�j,
•

Â
j=�•

q

|j|
�

�yj
�

� < • (4.27)

where wt ⇠ iid(0, s2
w), then for any collection of K distinct frequencies

wk 2 (0, 1/2) with wk:n ! wk (where wk:n is a fundamental frequency) as
n ! •,

2I(wk:n)
f (wk)

d! iid c2
2 (4.28)

provided f (wk) > 0, for k = 1, . . . , K.

The distributional result (4.28) can be used to derive an approximate
confidence interval for the spectrum in the usual way. Let c2

n(a) denote
the lower a probability tail for the chi-squared distribution with n
degrees of freedom. Then, an approximate 100(1 � a)% confidence
interval for the spectral density function would be of the form

2 I(wj:n)

c2
2(1 � a/2)

 f (w) 
2 I(wj:n)

c2
2(a/2)

. (4.29)

The log transform is the variance stabilizing transformation. In this case,
the confidence intervals are of the form

⇥

log I(wj:n) + log 2 � log c2
2(1 � a/2),

log I(wj:n) + log 2 � log c2
2(a/2)

⇤

.
(4.30)

Often, nonstationary trends are present that should be eliminated
before computing the periodogram. Trends introduce extremely low
frequency components in the periodogram that tend to obscure the
appearance at higher frequencies. For this reason, it is usually
conventional to center the data prior to a spectral analysis using either
mean-adjusted data of the form xt � x̄ to eliminate the zero or d-c
component or to use detrended data of the form xt � bb1 � bb2t. Note that
higher order polynomial regressions in t or nonparametric smoothing
(linear filtering) could be used in cases where the trend is nonlinear.
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Fig. 4.5. Periodogram of SOI and Recruitment, n = 453 (n0 = 480), where the frequency axis is
labeled in multiples of D = 1/12. Note the common peaks at w = 1D = 1/12, or one cycle per
year (12 months), and some larger values near w = 1

4 D = 1/48, or one cycle every four years (48
months).

As previously indicated, it is often convenient to calculate the DFTs,
and hence the periodogram, using the fast Fourier transform algorithm.
The FFT utilizes a number of redundancies in the calculation of the DFT
when n is highly composite; that is, an integer with many factors of 2, 3,
or 5, the best case being when n = 2p is a factor of 2. Details may be
found in Cooley and Tukey (1965). To accommodate this property, we
can pad the centered (or detrended) data of length n to the next highly
composite integer n0 by adding zeros, i.e., setting
xc

n+1 = xc
n+2 = · · · = xc

n0 = 0, where xc
t denotes the centered data. This

means that the fundamental frequency ordinates will be wj = j/n0

instead of j/n. We illustrate by considering the periodogram of the SOI
and Recruitment series, as has been given in Figure 1.5

. Recall that they are monthly series and n = 453 months. To find n0

in R, use the command nextn(453) to see that n0 = 480 will be used in
the spectral analyses by default.

Example 4.7 Periodogram of SOI and Recruitment Series
Figure 4.5 shows the periodograms of each series, where the frequency
axis is labeled in multiples of D = 1/12. As previously indicated, the
centered data have been padded to a series of length 480. We notice a
narrow-band peak at the obvious yearly (12 month) cycle,
w = 1D = 1/12. In addition, there is considerable power in a wide
band at the lower frequencies that is centered around the four-year (48
month) cycle w = 1

4D = 1/48 representing a possible El Niño effect.
This wide band activity suggests that the possible El Niño cycle is
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irregular, but tends to be around four years on average. We will
continue to address this problem as we move to more sophisticated
analyses.

Noting c2
2(.025) = .05 and c2

2(.975) = 7.38, we can obtain
approximate 95% confidence intervals for the frequencies of interest.
For example, the periodogram of the SOI series is IS(1/12) = .97 at the
yearly cycle. An approximate 95% confidence interval for the spectrum
fS(1/12) is then

[2(.97)/7.38, 2(.97)/.05] = [.26, 38.4],

which is too wide to be of much use. We do notice, however, that the
lower value of .26 is higher than any other periodogram ordinate, so it
is safe to say that this value is significant. On the other hand, an
approximate 95% confidence interval for the spectrum at the four-year
cycle, fS(1/48), is

[2(.05)/7.38, 2(.05)/.05] = [.01, 2.12],

which again is extremely wide, and with which we are unable to
establish significance of the peak.

We now give the R commands to reproduce Figure 4.5. To calculate
and graph the periodogram, we used the mvspec script from astsa,
although R’s spec.pgram can be used. In the code, we set log="no"
because the script will plot the periodogram on a log10 scale by default.
Figure 4.5 displays a bandwidth, which we discuss in the next section.
par(mfrow=c(2,1))
soi.per = mvspec(soi, log="no"); abline(v=1/4, lty="dotted")
rec.per = mvspec(rec, log="no"); abline(v=1/4, lty="dotted")

The confidence intervals for the SOI series at the yearly cycle,
w = 1/12 = 40/480, and the possible El Niño cycle of four years
w = 1/48 = 10/480 can be computed in R as follows:
soi.per$spec[40] # 0.97223; soi pgram at freq 1/12 = 40/480
soi.per$spec[10] # 0.05372; soi pgram at freq 1/48 = 10/480
# conf intervals - returned value:
U = qchisq(.025,2) # 0.05063
L = qchisq(.975,2) # 7.37775
2*soi.per$spec[10]/L # 0.01456
2*soi.per$spec[10]/U # 2.12220
2*soi.per$spec[40]/L # 0.26355
2*soi.per$spec[40]/U # 38.40108

The example above makes it clear that the periodogram as an
estimator is susceptible to large uncertainties, and we need to find a way
to reduce the variance. This result follows if we think about the
periodogram, I(wj) as an estimator of the spectral density f (w) is the
sum of squares of only two random variables for any sample size. The
solution to this dilemma is smoothing. As an analogy to using the
periodogram to estimate the spectral density, consider the problem of
taking a random sample and then trying to estimate a probability
density based on a histogram with many cells. This approach is
demonstrated in Figure 4.6.
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Fig. 4.6. Left: Histogram of a sample of n = 200 standard normals with 100 cells and with the
standard normal density superimposed. The periodogram is to the spectral density as the histogram
is to the normal density. Right: Histogram of the same data with much wider cells.
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Fig. 4.7. A small section (near the peak) of the AR(2) spectrum shown in Figure 4.4 .

4.5 Nonparametric Spectral Estimation

To continue the discussion that ended the previous section, we introduce
a frequency band, B, of L ⌧ n contiguous fundamental frequencies,
centered around frequency wj = j/n, which is chosen close to a
frequency of interest, w. Let

B =
�

wj + k/n : k = 0,±1, . . . ,±m
 

, (4.31)

where
L = 2m + 1 (4.32)

is an odd number, chosen such that the spectral values in the interval B,

f (wj + k/n), k = �m, . . . , 0, . . . , m

are approximately equal to f (w). For example, to see a small section of
the AR(2) spectrum—near the peak—shown in Figure 4.4, use
arma.spec(ar=c(1,-.9), xlim=c(.15,.151), n.freq=100000)

which is displayed in Figure 4.7.
We now define an averaged (or smoothed) periodogram as the

average of the periodogram values, say,

f̄ (w) =
1
L

m

Â
k=�m

I(wj + k/n), (4.33)
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over the band B. Under the assumption that the spectral density is fairly
constant in the band B, and in view of (4.28) we can show that under
appropriate conditions, for large n, the periodograms in (4.33) are
approximately distributed as independent f (w)c2

2/2 random variables,
for 0 < w < 1/2, as long as we keep L fairly small relative to n. Thus,
under these conditions, L f̄ (w) is the sum of L approximately
independent f (w)c2

2/2 random variables. It follows that, for large n,

2L f̄ (w)
f (w)

·⇠ c2
2L. (4.34)

Now we have

E[ f̄ (w)] ⇡ f (w) and var[ f̄ (w)] ⇡ f 2(w)/L, (4.35)

which can be compared to (4.26). In this case, we have consistency if we
let L ! • as n ! •, but L must grow much slower than n, of course (in
fact, L/n ! 0 as n ! •).

In this scenario, where we smooth the periodogram by simple
averaging, the width of the frequency interval defined by (4.31),

B =
L
n

, (4.36)

is called the bandwidth. Note (4.36) implies the degrees of freedom can be
expressed as

2L = 2Bn, (4.37)

or twice the time-bandwidth product. The result (4.34) can be rearranged
to obtain an approximate 100(1 � a)% confidence interval of the form

2L f̄ (w)

c2
2L(1 � a/2)

 f (w)  2L f̄ (w)

c2
2L(a/2)

(4.38)

for the true spectrum, f (w).
As previously discussed, the visual impact of a spectral density plot

will be improved by plotting the logarithm of the spectrum, which is the
variance stabilizing transformation in this situation. This phenomenon
can occur when regions of the spectrum exist with peaks of interest
much smaller than some of the main power components. For the log
spectrum, we obtain an interval of the form

⇥

log f̄ (w) + log 2L � log c2
2L(1 � a/2),

log f̄ (w) + log 2L � log c2
2L(a/2)

⇤

. (4.39)

If zeros are appended before computing the spectral estimators, we
need to adjust the degrees of freedom and an approximation is to replace
2L by 2Ln/n0. Hence, we define the adjusted degrees of freedom as

d f =
2Ln
n0 (4.40)
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Fig. 4.8. The averaged periodogram of the SOI and Recruitment series n = 453, n0 = 480, L =
9, d f = 17, showing common peaks at the four year period, w = 1

4 D = 1/48 cycles/month, the
yearly period, w = 1D = 1/12 cycles/month and some of its harmonics w = kD for k = 2, 3.

and use it instead of 2L in the confidence intervals (4.38) and (4.39). For
example, (4.38) becomes

d f f̄ (w)

c2
d f (1 � a/2)

 f (w)  d f f̄ (w)

c2
d f (a/2)

. (4.41)

Before proceeding further, we pause to consider computing the
average periodograms for the SOI and Recruitment series, as shown in
Figure 4.8.

Example 4.8 Averaged Periodogram for SOI and Recruitment
Generally, it is a good idea to try several bandwidths that seem to be
compatible with the general overall shape of the spectrum, as
suggested by the periodogram. The SOI and Recruitment series
periodograms, previously computed in Figure 4.5, suggest the power
in the lower El Niño frequency needs smoothing to identify the
predominant overall period. Trying values of L leads to the choice
L = 9 as a reasonable value, and the result is displayed in Figure 4.8.

The smoothed spectra shown in Figure 4.8 provide a sensible
compromise between the noisy version, shown in Figure 4.5, and a
more heavily smoothed spectrum, which might lose some of the peaks.
An undesirable effect of averaging can be noticed at the yearly cycle,
w = 1D, where the narrow band peaks that appeared in the
periodograms in Figure 4.5 have been flattened and spread out to
nearby frequencies. We also notice, and have marked, the appearance
of harmonics of the yearly cycle, that is, frequencies of the form
w = kD for k = 1, 2, . . . . Harmonics typically occur when a periodic
component is present, but not in a sinusoidal fashion; see Example 4.9.
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Fig. 4.9. Figure 4.8 with the average periodogram ordinates plotted on a log10 scale. The display in
the upper right-hand corner represents a generic 95% confidence interval.

Figure 4.8 can be reproduced in R using the following commands.
The basic call is to the function mvspec, which is available in astsa;
alternately, use R’s spec.pgram. To compute averaged periodograms,
use the Daniell kernel, and specify m, where L = 2m + 1 (L = 9 and
m = 4 in this example). We will explain the kernel concept later in this
section, specifically just prior to Example 4.10.
par(mfrow=c(2,1))
(k = kernel("daniell", 4))
soi.ave = mvspec(soi, k, log="no")
abline(v=c(.25,1,2,3), lty=2)
# Repeat above lines using rec in place of soi on line 3
soi.ave$bandwidth # = 0.225
soi.ave$df # = 16.9875

The displayed bandwidth (.225) is adjusted for the fact that the
frequency scale of the plot is in terms of cycles per year instead of
cycles per month (the original unit of the data). Using (4.36), the
bandwidth in terms of months is 9/480 = .01875; the displayed value
is simply converted to years, .01875 cycles

month ⇥ 12 months
year = .225 cycles

year .
The adjusted degrees of freedom are d f = 2(9)(453)/480 ⇡ 17. We

can use this value for the 95% confidence intervals, with
c2

d f (.025) = 7.56 and c2
d f (.975) = 30.17. Substituting into (4.41) gives

the intervals in Table 4.1 for the two frequency bands identified as
having the maximum power. To examine the two peak power
possibilities, we may look at the 95% confidence intervals and see
whether the lower limits are substantially larger than adjacent baseline
spectral levels. For example, the El Niño frequency of 48 months has
lower limits that exceed the values the spectrum would have if there
were simply a smooth underlying spectral function without the peaks.
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Table 4.1. Confidence Intervals for the Spectra of the SOI and Recruitment Series

Series w Period Power Lower Upper

SOI 1/48 4 years .05 .03 .11
1/12 1 year .12 .07 .27

Recruits 1/48 4 years 6.59 3.71 14.82
⇥102 1/12 1 year 2.19 1.24 4.93

The relative distribution of power over frequencies is different, with
the SOI having less power at the lower frequency, relative to the
seasonal periods, and the recruit series having relatively more power at
the lower or El Niño frequency.

The entries in Table 4.1 for SOI can be obtained in R as follows:
df = soi.ave$df # df = 16.9875 (returned values)
U = qchisq(.025, df) # U = 7.555916
L = qchisq(.975, df) # L = 30.17425
soi.ave$spec[10] # 0.0495202
soi.ave$spec[40] # 0.1190800
# intervals
df*soi.ave$spec[10]/L # 0.0278789
df*soi.ave$spec[10]/U # 0.1113333
df*soi.ave$spec[40]/L # 0.0670396
df*soi.ave$spec[40]/U # 0.2677201
# repeat above commands with soi replaced by rec

Finally, Figure 4.9 shows the averaged periodograms in Figure 4.8
plotted on a log10 scale. This is the default plot in R, and these graphs
can be obtained by removing the statement log="no". Notice that the
default plot also shows a generic confidence interval of the form (4.39)
in the upper right-hand corner. To use it, imagine placing the tick mark
on the averaged periodogram ordinate of interest; the resulting bar
then constitutes an approximate 95% confidence interval for the
spectrum at that frequency. We note that displaying the estimates on a
log scale tends to emphasize the harmonic components.

Example 4.9 Harmonics
In the previous example, we saw that the spectra of the annual signals
displayed minor peaks at the harmonics. That is, there was a a large
peak at w = 1D = 1/12 cycles/month (the one-year cycle) and minor
peaks at its harmonics w = kD for k = 2, 3, . . . (two-, three-, and so on,
cycles per year). This will often be the case because most signals are
not perfect sinusoids (or perfectly cyclic). In this case, the harmonics
are needed to capture the non-sinusoidal behavior of the signal. As an
example, consider the signal formed in Figure 4.10 from a
(fundamental) sinusoid oscillating at two cycles per unit time along
with the second through sixth harmonics at decreasing amplitudes. In
particular, the signal was formed as

xt = sin(2p2t) + .5 sin(2p4t) + .4 sin(2p6t)
+ .3 sin(2p8t) + .2 sin(2p10t) + .1 sin(2p12t) (4.42)
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Fig. 4.10. A signal (thick solid line) formed by a fundamental sinusoid (thin solid line) oscillating at
two cycles per unit time and its harmonics as specified in (4.42).

for 0  t  1. Notice that the signal is non-sinusoidal in appearance
and rises quickly then falls slowly. The code for Figure 4.10 is:
t = seq(0, 1, by=1/200)
amps = c(1, .5, .4, .3, .2, .1)
x = matrix(0, 201, 6)
for (j in 1:6) x[,j] = amps[j]*sin(2*pi*t*2*j)
x = ts(cbind(x, rowSums(x)), start=0, deltat=1/200)
ts.plot(x, lty=c(1:6, 1), lwd=c(rep(1,6), 2), ylab="Sinusoids")
names = c("Fundamental","2nd Harmonic","3rd Harmonic","4th Harmonic", "5th

Harmonic", "6th Harmonic", "Formed Signal")
legend("topright", names, lty=c(1:6, 1), lwd=c(rep(1,6), 2) )

Example 4.8 points out the necessity for having some relatively
systematic procedure for deciding whether peaks are significant. The
question of deciding whether a single peak is significant usually rests on
establishing what we might think of as a baseline level for the spectrum,
defined rather loosely as the shape that one would expect to see if no
spectral peaks were present. This profile can usually be guessed by
looking at the overall shape of the spectrum that includes the peaks;
usually, a kind of baseline level will be apparent, with the peaks seeming
to emerge from this baseline level. If the lower confidence limit for the
spectral value is still greater than the baseline level at some
predetermined level of significance, we may claim that frequency value
as a statistically significant peak. To be consistent with our stated
indifference to the upper limits, we might use a one-sided confidence
interval.

Care must be taken when we make a decision about the bandwidth B
over which the spectrum will be essentially constant. Taking too broad a
band will tend to smooth out valid peaks in the data when the constant
variance assumption is not met over the band. Taking too narrow a band
will lead to confidence intervals so wide that peaks are no longer
statistically significant. Thus, we note that there is a conflict here between
variance properties or bandwidth stability, which can be improved by
increasing B and resolution, which can be improved by decreasing B. A
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common approach is to try a number of different bandwidths and to
look qualitatively at the spectral estimators for each case.

To address the problem of resolution, it should be evident that the
flattening of the peaks in Figure 4.8 and Figure 4.9 was due to the fact
that simple averaging was used in computing f̄ (w) defined in (4.33).
There is no particular reason to use simple averaging, and we might
improve the estimator by employing a weighted average, say

bf (w) =
m

Â
k=�m

hk I(wj + k/n), (4.43)

using the same definitions as in (4.33) but where the weights hk > 0
satisfy

m

Â
k=�m

hk = 1.

In particular, it seems reasonable that the resolution of the estimator will
improve if we use weights that decrease as distance from the center
weight h0 increases; we will return to this idea shortly. To obtain the
averaged periodogram, f̄ (w), in (4.43), set hk = L�1, for all k, where
L = 2m + 1. The asymptotic theory established for f̄ (w) still holds for
bf (w) provided that the weights satisfy the additional condition that if
m ! • as n ! • but m/n ! 0, then

m

Â
k=�m

h2
k ! 0.

Under these conditions, for n large, we have

E[ bf (w)] ⇡ f (w) and var[ bf (w)] ⇡ f 2(w)
m

Â
k=�m

h2
k (4.44)

which can be compared to (4.35); as before, we have that bf (w) is
consistent. We have already seen this result in the case of f̄ (w), where
the weights are constant, hk = L�1, in which case Âm

k=�m h2
k = L�1. The

distributional properties of (4.43) are more difficult now because bf (w) is
a weighted linear combination of asymptotically independent c2

random variables. An approximation that seems to work well is to
replace L by

�

Âm
k=�m h2

k
��1. That is, define

Lh =

 

m

Â
k=�m

h2
k

!�1

(4.45)

and use the approximation

2Lh bf (w)
f (w)

·⇠ c2
2Lh

. (4.46)

In analogy to (4.36), we will define the bandwidth in this case to be
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Fig. 4.11. Modified Daniell kernel weights used in Example 4.10

B =
Lh
n

. (4.47)

Using the approximation (4.46) we obtain an approximate 100(1 � a)%
confidence interval of the form

2Lh bf (w)

c2
2Lh

(1 � a/2)
 f (w)  2Lh bf (w)

c2
2Lh

(a/2)
(4.48)

for the true spectrum, f (w). If the data are padded to n0, then replace
2Lh in (4.48) with d f = 2Lhn/n0 as in (4.40).

An easy way to generate the weights in R is by repeated use of the
Daniell kernel. For example, with m = 1 and L = 2m + 1 = 3, the Daniell
kernel has weights {hk} = { 1

3 , 1
3 , 1

3}; applying this kernel to a sequence
of numbers, {ut}, produces

but = 1
3 ut�1 +

1
3 ut + 1

3 ut+1.

We can apply the same kernel again to the but,

b

but = 1
3 but�1 +

1
3 but + 1

3 but+1,

which simplifies to

b

but = 1
9 ut�2 +

2
9 ut�1 +

3
9 ut + 2

9 ut+1 +
1
9 ut+2.

The modified Daniell kernel puts half weights at the end points, so with
m = 1 the weights are {hk} = { 1

4 , 2
4 , 1

4} and

but = 1
4 ut�1 +

1
2 ut + 1

4 ut+1.

Applying the same kernel again to but yields

b

but = 1
16 ut�2 +

4
16 ut�1 +

6
16 ut + 4

16 ut+1 +
1
16 ut+2.

These coefficients can be obtained in R by issuing the kernel command.
For example, kernel("modified.daniell", c(1,1)) would produce the
coefficients of the last example.
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Example 4.10 Smoothed Periodogram for SOI and Recruitment
In this example, we estimate the spectra of the SOI and Recruitment
series using the smoothed periodogram estimate in (4.43). We used a
modified Daniell kernel twice, with m = 3 both times. This yields
Lh = 1/ Â h2

k = 9.232, which is close to the value of L = 9 used in
Example 4.8. In this case, the bandwidth is B = 9.232/480 = .019 and
the modified degrees of freedom is d f = 2Lh453/480 = 17.43. The
weights, hk, can be obtained and graphed in R as follows; see
Figure 4.11.
kernel("modified.daniell", c(3,3)) # for a list
plot(kernel("modified.daniell", c(3,3))) # for a plot

The resulting spectral estimates can be viewed in Figure 4.12 and we
notice that the estimates more appealing than those in Figure 4.8.
Figure 4.12 was generated in R as follows:
k = kernel("modified.daniell", c(3,3))
soi.smo = mvspec(soi, k, taper=.1, log="no") # a taper is used
abline(v=c(1/4,1), lty="dotted")
## Repeat above lines with rec replacing soi in line 3
df = soi.smo$df # df = 17.42618
soi.smo$bandwidth # Bw = 0.2308103 = 12*9.232/480

Reissuing the mvspec commands with log="no" removed will result in a
figure similar to Figure 4.9; see Figure 4.12. Finally, we mention that
the modified Daniell kernel is used by default. For example, an easier
way to obtain soi.smo is to issue the command:
soi.smo = mvspec(soi, taper=.1, spans=c(7,7))

Notice that spans is a vector of odd integers, given in terms of
L = 2m + 1 instead of m. These values give the widths of the modified
Daniell smoother to be used to smooth the periodogram.

Tapering

We are now ready to briefly introduce the concept of tapering; a more
detailed discussion may be found in Bloomfield (2000, §9.5). Suppose xt
is a mean-zero, stationary process with spectral density fx(w). If we
replace the original series by the tapered series

yt = htxt, (4.49)

for t = 1, 2, . . . , n, use the modified DFT

dy(wj) = n�1/2
n

Â
t=1

htxte�2piwj t, (4.50)

and let Iy(wj) = |dy(wj)|2, we will obtain

E[Iy(wj)] =
Z 1/2

�1/2
Wn(wj � w) fx(w) dw. (4.51)

The value Wn(w) is called a spectral window because, in view of (4.51),
it is determining which part of the spectral density fx(w) is being “seen”
by the estimator Iy(wj) on average. In the case that ht = 1 for all t,
Iy(wj) = Ix(wj) is simply the periodogram of the data and the window is
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Fig. 4.12. Smoothed (tapered) spectral estimates of the SOI and Recruitment series; see Example 4.10
for details.

Wn(w) =
sin2(npw)

n sin2(pw)
(4.52)

with Wn(0) = n, which is known as the Fejér or modified Bartlett kernel.
If we consider the averaged periodogram in (4.33), namely

f̄x(w) =
1
L

m

Â
k=�m

Ix(wj + k/n),

the window, Wn(w), in (4.51) will take the form

Wn(w) =
1

nL

m

Â
k=�m

sin2[np(w + k/n)]
sin2[p(w + k/n)]

. (4.53)

Tapers generally have a shape that enhances the center of the data
relative to the extremities, such as a cosine bell of the form

ht = .5


1 + cos
✓

2p(t � t)
n

◆�

, (4.54)

where t = (n + 1)/2, favored by Blackman and Tukey (1959). In
Figure 4.13, we have plotted the shapes of two windows, Wn(w), for
n = 480 and L = 9, when (i) ht ⌘ 1, in which case, (4.53) applies, and (ii)
ht is the cosine taper in (4.54). In both cases the predicted bandwidth
should be Bw = 9/480 = .01875 cycles per point, which corresponds to
the “width" of the windows shown in Figure 4.13. Both windows
produce an integrated average spectrum over this band but the
untapered window in the top panels shows considerable ripples over the
band and outside the band. The ripples outside the band are called
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Fig. 4.13. Averaged Fejér window (top row) and the corresponding cosine taper window (bottom
row) for L = 9, n = 480. The extra tic marks on the horizontal axis of the left-hand plots exhibit the
predicted bandwidth, Bw = 9/480 = .01875.

sidelobes and tend to introduce frequencies from outside the interval
that may contaminate the desired spectral estimate within the band. For
example, a large dynamic range for the values in the spectrum
introduces spectra in contiguous frequency intervals several orders of
magnitude greater than the value in the interval of interest. This effect is
sometimes called leakage. Figure 4.13 emphasizes the suppression of the
sidelobes in the Fejér kernel when a cosine taper is used.

Example 4.11 The Effect of Tapering the SOI Series
In this example, we examine the effect of tapering on the estimate of
the spectrum of the SOI series. The results for the Recruitment series
are similar. Figure 4.14 shows two spectral estimates plotted on a log
scale. The degree of smoothing here is the same as in Example 4.10.
The dashed line in Figure 4.14 shows the estimate without any
tapering and hence it is the same as the estimated spectrum displayed
in the top of Figure 4.12. The solid line shows the result with full
tapering. Notice that the tapered spectrum does a better job in
separating the yearly cycle (w = 1) and the El Niño cycle (w = 1/4).

The following R session was used to generate Figure 4.14. We note
that, by default, mvspec does not taper. For full tapering, we use the
argument taper=.5 to instruct mvspec to taper 50% of each end of the
data; any value between 0 and .5 is acceptable.
s0 = mvspec(soi, spans=c(7,7), plot=FALSE) # no taper
s50 = mvspec(soi, spans=c(7,7), taper=.5, plot=FALSE) # full taper
plot(s0$freq, s0$spec, log="y", type="l", lty=2, ylab="spectrum",

xlab="frequency") # dashed line
lines(s50$freq, s50$spec) # solid line



136 4 Spectral Analysis and Filtering

0 1 2 3 4 5 6

0.
00
2

0.
01
0

0.
05
0

frequency

sp
ec
tru
m

leakage

1/4

−0.4 −0.2 0.0 0.2 0.4

Fig. 4.14. Smoothed spectral estimates of the SOI without tapering (dashed line) and with full taper-
ing (solid line); see Example 4.11. The insert shows a full cosine bell taper, (4.54), with horizontal
axis (t � t̄)/n, for t = 1, . . . , n.

4.6 Parametric Spectral Estimation

The methods of Section 4.5 lead to estimators generally referred to as
nonparametric spectra because no assumption is made about the
parametric form of the spectral density. In Property 4.2, we exhibited the
spectrum of an ARMA process and we might consider basing a spectral
estimator on this function, substituting the parameter estimates from an
ARMA(p, q) fit on the data into the formula for the spectral density
fx(w) given in (4.15). Such an estimator is called a parametric spectral
estimator. For convenience, a parametric spectral estimator is obtained
by fitting an AR(p) to the data, where the order p is determined by one
of the model selection criteria, such as AIC, AICc, and BIC, defined in
(2.15)-(2.17). Parametric autoregressive spectral estimators will often
have superior resolution in problems when several closely spaced
narrow spectral peaks are present and are preferred by engineers for a
broad variety of problems (see Kay, 1988). The development of
autoregressive spectral estimators has been summarized by
Parzen (1983).

If bf1, bf2, . . . , bfp and bs2
w are the estimates from an AR(p) fit to xt, then

based on Property 4.2, a parametric spectral estimate of fx(w) is attained
by substituting these estimates into (4.15), that is,

bfx(w) =
bs2

w

|bf(e�2piw)|2
, (4.55)

where
bf(z) = 1 � bf1z � bf2z2 � · · ·� bfpzp. (4.56)

An interesting fact about rational spectra of the form (4.15) is that
any spectral density can be approximated, arbitrarily close, by the
spectrum of an AR process.

Property 4.4 AR Spectral Approximation
Let g(w) be the spectral density of a stationary process, xt. Then, given

e > 0, there is an AR(p) representation
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Fig. 4.15. Model selection criteria AIC and BIC as a function of order p for autoregressive models
fitted to the SOI series.

xt =
p

Â
k=1

fkxt�k + wt

where wt is white noise with variance s2
w, such that

| fx(w)� g(w)| < e for all w 2 [�1/2, 1/2].

Moreover, p is finite and the roots of f(z) = 1 � Âp
k=1 fkzk are outside the unit

circle.

One drawback, however, is that the property does not tell us how
large p must be before the approximation is reasonable; in some
situations p may be extremely large. Property 4.4 also holds for MA and
for ARMA processes in general, and a proof of the result may be found
in Fuller (1996, Ch 4). We demonstrate the technique in the following
example.

Example 4.12 Autoregressive Spectral Estimator for SOI
Consider obtaining results comparable to the nonparametric estimators
shown in Figure 4.8 for the SOI series. Fitting successively higher order
AR(p) models for p = 1, 2, . . . , 30 yields a minimum BIC and a
minimum AIC at p = 15, as shown in Figure 4.15. We can see from
Figure 4.15 that BIC is very definite about which model it chooses; that
is, the minimum BIC is very distinct. On the other hand, it is not clear
what is going to happen with AIC; that is, the minimum is not so clear,
and there is some concern that AIC will start decreasing after p = 30.
Minimum AICc selects the p = 15 model, but suffers from the same
uncertainty as AIC. The spectrum is shown in Figure 4.16, and we note
the strong peaks near the four year and one year cycles as in the
nonparametric estimates obtained in Section 4.5. In addition, the
harmonics of the yearly period are evident in the estimated spectrum.

To perform a similar analysis in R, the command spec.ar can be
used to fit the best model via AIC and plot the resulting spectrum. A
quick way to obtain the AIC values is to run the ar command as
follows.
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Fig. 4.16. Autoregressive spectral estimator for the SOI series using the AR(15) model selected by
AIC, AICc, and BIC.

spaic = spec.ar(soi, log="no") # min AIC spec
abline(v=frequency(soi)*1/52, lty="dotted") # El Nino Cycle
(soi.ar = ar(soi, order.max=30)) # estimates and AICs
dev.new()
plot(1:30, soi.ar$aic[-1], type="o") # plot AICs

R works only with the AIC in this case. To generate Figure 4.15 we
used the following code to obtain AIC, AICc, and BIC. Because AIC
and AICc are nearly identical in this example, we only graphed AIC
and BIC+1; we added 1 to the BIC to reduce white space in the graphic.
n = length(soi)
c() -> AIC -> AICc -> BIC
for (k in 1:30){
sigma2 = ar(soi, order=k, aic=FALSE)$var.pred
BIC[k] = log(sigma2) + (k*log(n)/n)
AICc[k] = log(sigma2) + ((n+k)/(n-k-2))
AIC[k] = log(sigma2) + ((n+2*k)/n)
}
IC = cbind(AIC, BIC+1)
ts.plot(IC, type="o", xlab="p", ylab="AIC / BIC")

4.7 Linear Filters

Some of the examples of the previous sections have hinted at the
possibility the distribution of power or variance in a time series can be
modified by making a linear transformation. In this section, we explore
that notion further by defining a linear filter and showing how it can be
used to extract signals from a time series. The linear filter modifies the
spectral characteristics of a time series in a predictable way, and the
systematic development of methods for taking advantage of the special
properties of linear filters is an important topic in time series analysis.

A linear filter uses a set of specified coefficients aj, for
j = 0,±1,±2, . . ., to transform an input series, xt, producing an output
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series, yt, of the form

yt =
•

Â
j=�•

ajxt�j,
•

Â
j=�•

|aj| < •. (4.57)

The form (4.57) is also called a convolution in some statistical contexts.
The coefficients, collectively called the impulse response function, are
required to satisfy absolute summability so yt in (4.57) exists as a limit in
mean square and the infinite Fourier transform

Ayx(w) =
•

Â
j=�•

aj e�2piwj , (4.58)

called the frequency response function, is well defined. We have already
encountered several linear filters, for example, the simple three-point
moving average in Example 1.7, which can be put into the form of (4.57)
by letting a�1 = a0 = a1 = 1/3 and taking at = 0 for |j| � 2.

The importance of the linear filter stems from its ability to enhance
certain parts of the spectrum of the input series. We now state the
following result.

Property 4.5 Output Spectrum of a Filtered Stationary Series
Assuming existence of spectra, the spectrum of the filtered output yt in

(4.57) is related to the spectrum of the input xt by

fyy(w) = |Ayx(w)|2 fxx(w), (4.59)

where the frequency response function Ayx(w) is defined in (4.58).

The result (4.59) enables us to calculate the exact effect on the
spectrum of any given filtering operation. This important property
shows the spectrum of the input series is changed by filtering and the
effect of the change can be characterized as a frequency-by-frequency
multiplication by the squared magnitude of the frequency response
function. Again, an obvious analogy to a property of the variance in
classical statistics holds, namely, if x is a random variable with variance
s2

x , then y = ax will have variance s2
y = a2s2

x , so the variance of the
linearly transformed random variable is changed by multiplication by a2

in much the same way as the linearly filtered spectrum is changed in
(4.59).

Finally, we mention that Property 4.2, which was used to get the
spectrum of an ARMA process, is just a special case of Property 4.5
where in (4.57), xt = wt is white noise, in which case fxx(w) = s2

w, and
aj = yj, in which case

Ayx(w) = y(e�2piw) = q(e�2piw)
�

f(e�2piw).
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Fig. 4.17. SOI series (top) compared with the differenced SOI (middle) and a centered 12-month
moving average (bottom).

Example 4.13 First Difference and Moving Average Filters
We illustrate the effect of filtering with two common examples, the first
difference filter

yt = rxt = xt � xt�1

and the symmetric moving average filter

yt = 1
24
�

xt�6 + xt+6
�

+ 1
12

5

Â
r=�5

xt�r,

which is a modified Daniell kernel with m = 6. The results of filtering
the SOI series using the two filters are shown in the middle and
bottom panels of Figure 4.17. Notice that the effect of differencing is to
roughen the series because it tends to retain the higher or faster
frequencies. The centered moving average smoothes the series because
it retains the lower frequencies and tends to attenuate the higher
frequencies. In general, differencing is an example of a high-pass filter
because it retains or passes the higher frequencies, whereas the moving
average is a low-pass filter because it passes the lower or slower
frequencies.

Notice that the slower periods are enhanced in the symmetric
moving average and the seasonal or yearly frequencies are attenuated.
The filtered series makes about 9 cycles in the length of the data (about
one cycle every 52 months) and the moving average filter tends to
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Fig. 4.18. Squared frequency response functions of the first difference (top) and twelve-month moving
average (bottom) filters.

enhance or extract the signal that is associated with El Niño. Moreover,
by the low-pass filtering of the data, we get a better sense of the El
Niño effect and its irregularity.

Now, having done the filtering, it is essential to determine the exact
way in which the filters change the input spectrum. We shall use (4.58)
and (4.59) for this purpose. The first difference filter can be written in
the form (4.57) by letting a0 = 1, a1 = �1, and ar = 0 otherwise. This
implies that

Ayx(w) = 1 � e�2piw,

and the squared frequency response becomes

|Ayx(w)|2 = (1 � e�2piw)(1 � e2piw) = 2[1 � cos(2pw)]. (4.60)

The top panel of Figure 4.18 shows that the first difference filter will
attenuate the lower frequencies and enhance the higher frequencies
because the multiplier of the spectrum, |Ayx(w)|2, is large for the
higher frequencies and small for the lower frequencies. Generally, the
slow rise of this kind of filter does not particularly recommend it as a
procedure for retaining only the high frequencies.

For the centered 12-month moving average, we can take
a�6 = a6 = 1/24, ak = 1/12 for �5  k  5 and ak = 0 elsewhere.
Substituting and recognizing the cosine terms gives

Ayx(w) = 1
12

h

1 + cos(12pw) + 2
5

Â
k=1

cos(2pwk)
i

. (4.61)

Plotting the squared frequency response of this function as in
Figure 4.18 shows that we can expect this filter to cut most of the
frequency content above .05 cycles per point. This corresponds to
eliminating periods shorter than T = 1/.05 = 20 points. In particular,
this drives down the yearly components with periods of T = 12
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months and enhances the El Niño frequency, which is somewhat lower.
The filter is not completely efficient at attenuating high frequencies;
some power contributions are left at higher frequencies, as shown in
the function |Ayx(w)|2 and in the spectrum of the moving average
shown in Figure 4.4.

The following R session shows how to filter the data, perform the
spectral analysis of a filtered series, and plot the squared frequency
response curves of the difference and moving average filters.
par(mfrow=c(3,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
plot(soi) # plot data
plot(diff(soi)) # plot first difference
k = kernel("modified.daniell", 6) # filter weights
plot(soif <- kernapply(soi, k)) # plot 12 month filter
dev.new()
spectrum(soif, spans=9, log="no") # spectral analysis (not shown)
abline(v=12/52, lty="dashed")
dev.new()
##-- frequency responses --##
par(mfrow=c(2,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
w = seq(0, .5, by=.01)
FRdiff = abs(1-exp(2i*pi*w))^2
plot(w, FRdiff, type='l', xlab='frequency')
u = cos(2*pi*w)+cos(4*pi*w)+cos(6*pi*w)+cos(8*pi*w)+cos(10*pi*w)
FRma = ((1 + cos(12*pi*w) + 2*u)/12)^2
plot(w, FRma, type='l', xlab='frequency')

4.8 Multiple Series and Cross-Spectra

The notion of analyzing frequency fluctuations using classical statistical
ideas extends to the case in which there are several jointly stationary
series, for example, xt and yt. In this case, we can introduce the idea of a
correlation indexed by frequency, called the coherence. The
autocovariance function

gxy(h) = E[(xt+h � µx)(yt � µy)]

has a spectral representation given by

gxy(h) =
Z 1/2

�1/2
fxy(w)e2piwh dw h = 0,±1,±2, ..., (4.62)

where the cross-spectrum is defined as the Fourier transform

fxy(w) =
•

Â
h=�•

gxy(h) e�2piwh � 1/2  w  1/2, (4.63)

assuming that the cross-covariance function is absolutely summable, as
was the case for the autocovariance. The cross-spectrum is generally a
complex-valued function, and it is often written as5

5 For this section, it will be useful to recall the facts e�ia = cos(a) � i sin(a) and if z =
a + ib, then z = a � ib.
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fxy(w) = cxy(w)� iqxy(w), (4.64)

where

cxy(w) =
•

Â
h=�•

gxy(h) cos(2pwh) (4.65)

and

qxy(w) =
•

Â
h=�•

gxy(h) sin(2pwh) (4.66)

are defined as the cospectrum and quadspectrum, respectively. Because
of the relationship gyx(h) = gxy(�h), it follows, by substituting into
(4.63) and rearranging, that

fyx(w) = fxy(w). (4.67)

This result, in turn, implies that the cospectrum and quadspectrum
satisfy

cyx(w) = cxy(w) (4.68)

and
qyx(w) = �qxy(w). (4.69)

An important example of the application of the cross-spectrum is to
the problem of predicting an output series yt from some input series xt
through a linear filter relation such as the three-point moving average
considered below. A measure of the strength of such a relation is the
squared coherence function, defined as

r2
y·x(w) =

| fyx(w)|2

fxx(w) fyy(w)
, (4.70)

where fxx(w) and fyy(w) are the individual spectra of the xt and yt
series, respectively. Although we consider a more general form of this
that applies to multiple inputs later, it is instructive to display the single
input case as (4.70) to emphasize the analogy with conventional squared
correlation, which takes the form

r2
yx =

s2
yx

s2
x s2

y
,

for random variables with variances s2
x and s2

y and covariance syx = sxy.
This motivates the interpretation of squared coherence and the squared
correlation between two time series at frequency w.

Example 4.14 Three-Point Moving Average
As a simple example, we compute the cross-spectrum between xt and
the three-point moving average yt = (xt�1 + xt + xt+1)/3, where xt is a
stationary input process with spectral density fxx(w). First,
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gxy(h) = cov(xt+h, yt) = 1
3 cov(xt+h, xt�1 + xt + xt+1)

=
1
3
�

gxx(h + 1) + gxx(h) + gxx(h � 1)
�

=
1
3

Z 1/2

�1/2

⇣

e2piw + 1 + e�2piw
⌘

e2piwh fxx(w) dw

=
1
3

Z 1/2

�1/2
[1 + 2 cos(2pw)] fxx(w)e2piwh dw,

where we have use (4.13). Using the uniqueness of the Fourier
transform, we argue from the spectral representation (4.62) that

fxy(w) = 1
3 [1 + 2 cos(2pw)] fxx(w)

so that the cross-spectrum is real in this case. From Example 4.5, the
spectral density of yt is

fyy(w) = 1
9 [3 + 4 cos(2pw) + 2 cos(4pw)] fxx(w)

= 1
9 [1 + 2 cos(2pw)]2 fxx(w),

using the identity cos(2a) = 2 cos2(a)� 1 in the last step. Substituting
into (4.70) yields the squared coherence between xt and yt as unity
over all frequencies. This is a characteristic inherited by more general
linear filters. However, if some noise is added to the three-point
moving average, the coherence is not unity; these kinds of models will
be considered in detail later.

Property 4.6 Spectral Representation of a Vector Process
If the elements of the p ⇥ p autocovariance function matrix

G(h) = E[(xt+h � µ)(xt � µ)0]

of a p-dimensional stationary time series, xt = (xt1, xt2, . . . , xtp)0, has elements
satisfying

•

Â
h=�•

|gjk(h)| < • (4.71)

for all j, k = 1, . . . , p, then G(h) has the representation

G(h) =
Z 1/2

�1/2
e2piwh f (w) dw h = 0,±1,±2, ..., (4.72)

as the inverse transform of the spectral density matrix, f (w) = { f jk(w)}, for
j, k = 1, . . . , p, with elements equal to the cross-spectral components. The
matrix f (w) has the representation

f (w) =
•

Â
h=�•

G(h)e�2piwh � 1/2  w  1/2. (4.73)



4.8 Multiple Series and Cross-Spectra 145

Example 4.15 Spectral Matrix of a Bivariate Process
Consider a jointly stationary bivariate process (xt, yt). We arrange the
autocovariances in the matrix

G(h) =
✓

gxx(h) gxy(h)
gyx(h) gyy(h)

◆

.

The spectral matrix would be given by

f (w) =

✓

fxx(w) fxy(w)
fyx(w) fyy(w)

◆

,

where the Fourier transform (4.72) and (4.73) relate the autocovariance
and spectral matrices.

The extension of spectral estimation to vector series is fairly obvious.
For the vector series xt = (xt1, xt2, . . . , xtp)0, we may use the vector of
DFTs, say d(wj) = (d1(wj), d2(wj), . . . , dp(wj))

0, and estimate the spectral
matrix by

f̄ (w) = L�1
m

Â
k=�m

I(wj + k/n) (4.74)

where now
I(wj) = d(wj) d⇤(wj) (4.75)

is a p ⇥ p complex matrix.6
Again, the series may be tapered before the DFT is taken in (4.74)

and we can use weighted estimation,

bf (w) =
m

Â
k=�m

hk I(wj + k/n) (4.76)

where {hk} are weights as defined in (4.43). The estimate of squared
coherence between two series, yt and xt is

br2
y·x(w) =

| bfyx(w)|2
bfxx(w) bfyy(w)

. (4.77)

If the spectral estimates in (4.77) are obtained using equal weights, we
will write r̄2

y·x(w) for the estimate.
Under general conditions, if r2

y·x(w) > 0 then

|bry·x(w)| ⇠ AN
⇣

|ry·x(w)|,
�

1 � r2
y·x(w)

�2�2Lh

⌘

(4.78)

where Lh is defined in (4.45); the details of this result may be found in
Brockwell and Davis (1991, Ch 11). We may use (4.78) to obtain
approximate confidence intervals for the squared coherency r2

y·x(w).

6 If Z is a complex matrix, then Z⇤ = Z0 denotes the conjugate transpose operation. That is,
Z⇤ is the result of replacing each element of Z by its complex conjugate and transposing
the resulting matrix.
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Fig. 4.19. Squared coherency between the SOI and Recruitment series; L = 19, n = 453, n0 = 480,
and a = .001. The horizontal line is C.001.

We can test the hypothesis that r2
y·x(w) = 0 if we use r̄2

y·x(w) for the
estimate with L > 1,7 that is,

r̄2
y·x(w) =

| f̄yx(w)|2

f̄xx(w) f̄yy(w)
. (4.79)

In this case, under the null hypothesis, the statistic

F =
r̄2

y·x(w)

(1 � r̄2
y·x(w))

(L � 1) (4.80)

has an approximate F-distribution with 2 and 2L � 2 degrees of freedom.
When the series have been extended to length n0, we replace 2L � 2 by
d f � 2, where d f is defined in (4.40). Solving (4.80) for a particular
significance level a leads to

Ca =
F2,2L�2(a)

L � 1 + F2,2L�2(a)
(4.81)

as the approximate value that must be exceeded for the original squared
coherence to be able to reject r2

y·x(w) = 0 at an a priori specified
frequency.

Example 4.16 Coherence Between SOI and Recruitment
Figure 4.19 shows the squared coherence between the SOI and
Recruitment series over a wider band than was used for the spectrum.
In this case, we used L = 19, d f = 2(19)(453/480) ⇡ 36 and
F2,d f�2(.001) ⇡ 8.53 at the significance level a = .001. Hence, we may
reject the hypothesis of no coherence for values of r̄2

y·x(w) that exceed
C.001 = .32. We emphasize that this method is crude because, in
addition to the fact that the F-statistic is approximate, we are
examining the squared coherence across all frequencies with the
Bonferroni inequality in mind. Figure 4.19 also exhibits confidence

7 If L = 1 then r̄2
y·x(w) ⌘ 1.
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bands as part of the R plotting routine. We emphasize that these bands
are only valid for w where r2

y·x(w) > 0.
In this case, the seasonal frequency and the El Niño frequencies

ranging between about 3 and 7 year periods are strongly coherent.
Other frequencies are also strongly coherent, although the strong
coherence is less impressive because the underlying power spectrum at
these higher frequencies is fairly small. Finally, we note that the
coherence is persistent at the seasonal harmonic frequencies.

This example may be reproduced using the following R commands.
sr = mvspec(cbind(soi,rec), kernel('daniell',9), plot=FALSE)
(sr$df)
[1] 35.8625
(f = qf(.999, 2, sr$df-2) )
[1] 8.529792
(C = f/(18+f) )
[1] 0.3215175
plot(sr, plot.type = "coh", ci.lty = 2)
abline(h = C)

Problems
4.1 Repeat the simulations and analyses in Example 4.1 and Example 4.2
with the following changes:

(a) Change the sample size to n = 128 and generate and plot the same
series as in Example 4.1:

xt1 = 2 cos(2p .06 t) + 3 sin(2p .06 t),
xt2 = 4 cos(2p .10 t) + 5 sin(2p .10 t),
xt3 = 6 cos(2p .40 t) + 7 sin(2p .40 t),
xt = xt1 + xt2 + xt3.

What is the major difference between these series and the series
generated in Example 4.1? (Hint: The answer is fundamental. But if
your answer is the series are longer, you may be punished severely.)

(b) As in Example 4.2, compute and plot the periodogram of the series,
xt, generated in (a) and comment.

(c) Repeat the analyses of (a) and (b) but with n = 100 (as in
Example 4.1), and adding noise to xt; that is

xt = xt1 + xt2 + xt3 + wt

where wt ⇠ iid N(0, sw = 5). That is, you should simulate and plot
the data, and then plot the periodogram of xt and comment.

4.2 Verify (4.5).

4.3 Consider an MA(1) process

xt = wt + qwt�1,

where q is a parameter.
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(a) Derive a formula for the power spectrum of xt, expressed in terms of
q and w.

(b) Use arma.spec() to plot the spectral density of xt for q > 0 and for
q < 0 (just select arbitrary values).

(c) How should we interpret the spectra exhibited in part (b)?

4.4 Consider a first-order autoregressive model

xt = fxt�1 + wt,

where f, for |f| < 1, is a parameter and the wt are independent random
variables with mean zero and variance s2

w.

(a) Show that the power spectrum of xt is given by

fx(w) =
s2

w
1 + f2 � 2f cos(2pw)

.

(b) Verify the autocovariance function of this process is

gx(h) =
s2

w f|h|

1 � f2 ,

h = 0,±1,±2, . . ., by showing that the inverse transform of gx(h) is
the spectrum derived in part (a).

4.5 In applications, we will often observe series containing a signal that
has been delayed by some unknown time D, i.e.,

xt = st + Ast�D + nt,

where st and nt are stationary and independent with zero means and
spectral densities fs(w) and fn(w), respectively. The delayed signal is
multiplied by some unknown constant A. Find the autocovariance
function of xt and use it to show

fx(w) = [1 + A2 + 2A cos(2pwD)] fs(w) + fn(w).

4.6 Figure 4.20 shows the biyearly smoothed (12-month moving average)
number of sunspots from June 1749 to December 1978 with n = 459
points that were taken twice per year; the data are contained in sunspotz.
With Example 4.7 as a guide, perform a periodogram analysis
identifying the predominant periods and obtaining confidence intervals
for the identified periods. Interpret your findings.

4.7 The levels of salt concentration known to have occurred over rows,
corresponding to the average temperature levels for the soil science are
in salt and saltemp. Plot the series and then identify the dominant
frequencies by performing separate spectral analyses on the two series.
Include confidence intervals for the dominant frequencies and interpret
your findings.
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Fig. 4.20. Smoothed 12-month sunspot numbers (sunspotz) sampled twice per year.

4.8 Let the observed series xt be composed of a periodic signal and noise
so it can be written as

xt = b1 cos(2pwkt) + b2 sin(2pwkt) + wt,

where wt is a white noise process with variance s2
w. The frequency

wk 6= 0, 1
2 is assumed to be known and of the form k/n. Given data

x1, . . . , xn, suppose we consider estimating b1, b2 and s2
w by least

squares.

(a) Use simple regression formulas to show that for a fixed wk, the least
squares regression coefficients are

bb1 = 2n�1/2dc(wk) and bb2 = 2n�1/2ds(wk),

where the cosine and sine transforms (4.21) and (4.22) appear on the
right-hand side. Hint: See Problem 4.22.

(b) Prove that the error sum of squares can be written as

SSE =
n

Â
t=1

x2
t � 2Ix(wk)

so that the value of wk that minimizes squared error is the same as
the value that maximizes the periodogram Ix(wk) estimator (4.19).

(c) Show that the sum of squares for the regression is given by

SSR = 2Ix(wk).

(d) Under the Gaussian assumption and fixed wk, show that the F-test of
no regression leads to an F-statistic that is a monotone function of
Ix(wk).

4.9 Analyze the chicken price data (chicken) using a nonparametric
spectral estimation procedure. Aside from the obvious annual cycle
discovered in Example 2.5, what other interesting cycles are revealed?

4.10 Repeat Problem 4.6 using a nonparametric spectral estimation
procedure. In addition to discussing your findings in detail, comment on
your choice of a spectral estimate with regard to smoothing and
tapering.
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4.11 Repeat Problem 4.7 using a nonparametric spectral estimation
procedure. In addition to discussing your findings in detail, comment on
your choice of a spectral estimate with regard to smoothing and
tapering.

4.12 Often, the periodicities in the sunspot series are investigated by
fitting an autoregressive spectrum of sufficiently high order. The main
periodicity is often stated to be in the neighborhood of 11 years. Fit an
autoregressive spectral estimator to the sunspot data using a model
selection method of your choice. Compare the result with a conventional
nonparametric spectral estimator found in Problem 4.6.

4.13 Analyze the chicken price data (chicken) using a parametric spectral
estimation procedure. Compare the results to Problem 4.9.

4.14 Fit an autoregressive spectral estimator to the Recruitment series
and compare it to the results of Example 4.10.

4.15 The periodic behavior of a time series induced by echoes can also be
observed in the spectrum of the series; this fact can be seen from the
results stated in Problem 4.5(a). Using the notation of that problem,
suppose we observe xt = st + Ast�D + nt, which implies the spectra
satisfy fx(w) = [1 + A2 + 2A cos(2pwD)] fs(w) + fn(w). If the noise is
negligible ( fn(w) ⇡ 0) then log fx(w) is approximately the sum of a
periodic component, log[1 + A2 + 2A cos(2pwD)], and log fs(w). Bogart
et al. (1962) proposed treating the detrended log spectrum as a pseudo
time series and calculating its spectrum, or cepstrum, which should show
a peak at a quefrency corresponding to 1/D. The cepstrum can be plotted
as a function of quefrency, from which the delaty D can be estimated.

For the speech series presented in speech, estimate the pitch period
using cepstral analysis as follows.

(a) Calculate and display the log-periodogram of the data. Is the
periodogram periodic, as predicted?

(b) Perform a cepstral (spectral) analysis on the detrended logged
periodogram, and use the results to estimate the delay D.

4.16 Consider two time series

xt = wt � wt�1,

yt = 1
2 (wt + wt�1),

formed from the white noise series wt with variance s2
w = 1.

(a) Are xt and yt jointly stationary? Recall the cross-covariance function
must also be a function only of the lag h and cannot depend on time.

(b) Compute the spectra fy(w) and fx(w), and comment on the
difference between the two results.

(c) Suppose sample spectral estimators f̄y(.10) are computed for the
series using L = 3. Find a and b such that
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P
⇢

a  f̄y(.10)  b
�

= .90.

This expression gives two points that will contain 90% of the sample
spectral values. Put 5% of the area in each tail.

4.17 Analyze the coherency between the temperature and salt data
discussed in Problem 4.7. Discuss your findings.

4.18 Consider two processes

xt = wt and yt = fxt�D + vt

where wt and vt are independent white noise processes with common
variance s2, f is a constant, and D is a fixed integer delay.

(a) Compute the coherency between xt and yt.
(b) Simulate n = 1024 normal observations from xt and yt for f = .9,

s2 = 1, and D = 0. Then estimate and plot the coherency between
the simulated series for the following values of L and comment:
(i) L = 1, (ii) L = 3, (iii) L = 41, and (iv) L = 101.

4.19 For the processes in Problem 4.18:

(a) Compute the phase between xt and yt.
(b) Simulate n = 1024 observations from xt and yt for f = .9, s2 = 1, and

D = 1. Then estimate and plot the phase between the simulated
series for the following values of L and comment:
(i) L = 1, (ii) L = 3, (iii) L = 41, and (iv) L = 101.

4.20 Consider the bivariate time series records containing monthly U.S.
production as measured by the Federal Reserve Board Production Index
(prodn) and monthly unemployment (unemp) that are included with astsa.

(a) Compute the spectrum and the log spectrum for each series, and
identify statistically significant peaks. Explain what might be
generating the peaks. Compute the coherence, and explain what is
meant when a high coherence is observed at a particular frequency.

(b) What would be the effect of applying the filter

ut = xt � xt�1 followed by vt = ut � ut�12

to the series given above? Plot the predicted frequency responses of
the simple difference filter and of the seasonal difference of the first
difference.

(c) Apply the filters successively to one of the two series and plot the
output. Examine the output after taking a first difference and
comment on whether stationarity is a reasonable assumption. Why or
why not? Plot after taking the seasonal difference of the first
difference. What can be noticed about the output that is consistent
with what you have predicted from the frequency response? Verify
by computing the spectrum of the output after filtering.
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4.21 Let xt = cos(2pwt), and consider the output yt = Â•
k=�• akxt�k,

where Âk |ak| < •. Show yt = |A(w)| cos(2pwt + f(w)), where |A(w)|
and f(w) are the amplitude and phase of the filter, respectively.
Interpret the result in terms of the relationship between the input series,
xt, and the output series, yt.

4.22 * This is here for useful information. Verify that for any positive
integer n and j, k = 0, 1, . . . , [[n/2]], where [[·]] denotes the greatest integer
function:

(a) Except for j = 0 or j = n/2,

n

Â
t=1

cos2(2ptj/n) =
n

Â
t=1

sin2(2ptj/n) = n/2.

(b) When j = 0 or j = n/2,

n

Â
t=1

cos2(2ptj/n) = n but
n

Â
t=1

sin2(2ptj/n) = 0.

(c) For j 6= k,

n

Â
t=1

cos(2ptj/n) cos(2ptk/n) =
n

Â
t=1

sin(2ptj/n) sin(2ptk/n) = 0.

(d) Also, for any j and k,

n

Â
t=1

cos(2ptj/n) sin(2ptk/n) = 0.

* Note, Ân
t=1 zt = z 1�zn

1�z for z 6= 1, and we’ll do (a):
Ân

t=1 cos2(2pt j/n) = 1
4 Ân

t=1
�

e2pit j/n + e�2pit j/n��e2pit j/n + e�2pit j/n�

= 1
4 Ân

t=1
�

e4pit j/n + 1 + 1 + e�4pit j/n� = n
2 .



Chapter 5
Some Additional Topics **

In this chapter, we present special or advanced topics in the time
domain. This chapter consists of sections of independent topics that may
be read in any order. The sections depend on a basic knowledge of
ARMA models, forecasting and estimation, which is the material
covered in Chapter 3.

5.1 GARCH Models

Various problems such as option pricing in finance have motivated the
study of the volatility, or variability, of a time series. ARMA models were
used to model the conditional mean of a process when the conditional
variance was constant. Using an AR(1) as an example, we assumed

E(xt | xt�1, xt�2, . . . ) = fxt�1

var(xt | xt�1, xt�2, . . . ) = var(wt) = s2
w .

In many problems, however, the assumption of a constant conditional
variance will be violated. Models such as the autoregressive
conditionally heteroscedastic or ARCH model, first introduced by Engle
(1982), were developed to model changes in volatility. These models
were later extended to generalized ARCH, or GARCH models by
Bollerslev (1986).

In these problems, we are concerned with modeling the return or
growth rate of a series. For example, if xt is the value of an asset at time
t, then the return or relative gain, rt, of the asset at time t is

rt =
xt � xt�1

xt�1
. (5.1)

Definition (5.1) implies that xt = (1 + rt)xt�1. Thus, based on the
discussion in Section 3.8, if the return represents a small (in magnitude)
percentage change then
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r log(xt) ⇡ rt. (5.2)

Either value, r log(xt) or (xt � xt�1)/xt�1, will be called the return,1 and
will be denoted by rt.

Typically, for financial series, the return rt, does not have a constant
conditional variance, and highly volatile periods tend to be clustered
together. In other words, there is a strong dependence of sudden bursts
of variability in a return on the series own past. For example, Figure 1.4
shows the daily returns of the Dow Jones Industrial Average (DJIA) from
April 20, 2006 to April 20, 2016. In this case, as is typical, the return rt is
fairly stable, except for short-term bursts of high volatility.

The simplest ARCH model, the ARCH(1), models the return as

rt = stet (5.3)

s2
t = a0 + a1r2

t�1, (5.4)

where et is standard Gaussian white noise, et ⇠ iid N(0, 1). The normal
assumption may be relaxed; we will discuss this later. As with ARMA
models, we must impose some constraints on the model parameters to
obtain desirable properties. An obvious constraint is that a0, a1 � 0
because s2

t is a variance.
As we shall see, the ARCH(1) models return as a white noise process

with nonconstant conditional variance, and that conditional variance
depends on the previous return. First, notice that the conditional
distribution of rt given rt�1 is Gaussian:

rt
�

� rt�1 ⇠ N(0, a0 + a1r2
t�1). (5.5)

In addition, it is possible to write the ARCH(1) model as a non-Gaussian
AR(1) model in the square of the returns r2

t . First, rewrite (5.3)–(5.4) as

r2
t = s2

t e2
t

a0 + a1r2
t�1 = s2

t ,

and subtract the two equations to obtain

r2
t � (a0 + a1r2

t�1) = s2
t e2

t � s2
t .

Now, write this equation as

r2
t = a0 + a1r2

t�1 + vt, (5.6)

where vt = s2
t (e

2
t � 1). Because e2

t is the square of a N(0, 1) random
variable, e2

t � 1 is a shifted (to have mean-zero), c2
1 random variable.

To explore the properties of ARCH, we define Rs = {rs, rs�1, . . . }.
Then, using (5.5), we immediately see that rt has a zero mean:

E(rt) = EE(rt
�

� Rt�1) = EE(rt
�

� rt�1) = 0. (5.7)

1 Recall that if rt = (xt � xt�1)/xt�1 is a small percentage, then log(1+ rt) ⇡ rt. It is easier
to program r log xt, so this is often used instead of calculating rt directly. Although it is
a misnomer, r log xt is often called the log-return; but the returns are not being logged.
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Because E(rt | Rt�1) = 0, the process rt is said to be a martingale
difference.

Because rt is a martingale difference, it is also an uncorrelated
sequence. For example, with h > 0,

cov(rt+h, rt) = E(rtrt+h) = EE(rtrt+h | Rt+h�1)

= E {rtE(rt+h | Rt+h�1)} = 0. (5.8)

The last line of (5.8) follows because rt belongs to the information set
Rt+h�1 for h > 0, and, E(rt+h | Rt+h�1) = 0, as determined in (5.7).

An argument similar to (5.7) and (5.8) will establish the fact that the
error process vt in (5.6) is also a martingale difference and, consequently,
an uncorrelated sequence. If the variance of vt is finite and constant with
respect to time, and 0  a1 < 1, then based on Property 3.1, (5.6)
specifies a causal AR(1) process for r2

t . Therefore, E(r2
t ) and var(r2

t ) must
be constant with respect to time t. This, implies that

E(r2
t ) = var(rt) =

a0
1 � a1

(5.9)

and, after some manipulations,

E(r4
t ) =

3a2
0

(1 � a1)2
1 � a2

1
1 � 3a2

1
, (5.10)

provided 3a2
1 < 1. Note that

var(r2
t ) = E(r4

t )� [E(r2
t )]

2 .

These results imply that the kurtosis, k, of rt is

k =
E(r4

t )

[E(r2
t )]

2 = 3
1 � a2

1
1 � 3a2

1
, (5.11)

which is never smaller than 3, the kurtosis of the normal distribution.
Thus, the marginal distribution of the returns, rt, is leptokurtic, or has
“fat tails.” Thus, if 0  a1 < 1, the process rt itself is white noise and its
unconditional distribution is symmetrically distributed around zero; this
distribution is leptokurtic. If, in addition, 3a2

1 < 1, the square of the
process, r2

t , follows a causal AR(1) model with ACF given by
ry2(h) = ah

1 � 0, for all h > 0. If 3a1 � 1, but a1 < 1, it can be shown that
r2

t is strictly stationary with infinite variance (see Douc, et al., 2014).
Estimation of the parameters a0 and a1 of the ARCH(1) model is

typically accomplished by conditional MLE. The conditional likelihood
of the data r2, ...., rn given r1, is given by

L(a0, a1
�

� r1) =
n

’
t=2

fa0,a1(rt
�

� rt�1), (5.12)

where the density fa0,a1(rt
�

� rt�1) is the normal density specified in (5.5).
Hence, the criterion function to be minimized,
l(a0, a1) µ � ln L(a0, a1

�

� r1) is given by
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Fig. 5.1. ACF and PACF of the squares of the residuals from the AR(1) fit on U.S. GNP.

l(a0, a1) =
1
2

n

Â
t=2

ln(a0 + a1r2
t�1) +

1
2

n

Â
t=2

 

r2
t

a0 + a1r2
t�1

!

. (5.13)

Estimation is accomplished by numerical methods, as described in
Section 3.4. The likelihood of the ARCH model tends to be flat unless n
is very large. A discussion of this problem can be found in
Shephard (1996).

It is also possible to combine a regression or an ARMA model for the
mean with an ARCH model for the errors. For example, a regression
with ARCH(1) errors model would have the observations xt as linear
function of p regressors, zt = (zt1, ..., ztp)0, and ARCH(1) noise yt, say,

xt = b0zt + yt,

where yt satisfies (5.3)–(5.4), but, in this case, is unobserved. Similarly,
for example, an AR(1) model for data xt exhibiting ARCH(1) errors
would be

xt = f0 + f1xt�1 + yt.

These types of models were explored by Weiss (1984).

Example 5.1 Analysis of U.S. GNP
In Example 3.27, we fit an MA(2) model and an AR(1) model to the
U.S. GNP series and we concluded that the residuals from both fits
appeared to behave like a white noise process. In Example 3.31 we
concluded that the AR(1) is probably the better model in this case. It
has been suggested that the U.S. GNP series has ARCH errors, and in
this example, we will investigate this claim. If the GNP noise term is
ARCH, the squares of the residuals from the fit should behave like a
non-Gaussian AR(1) process, as pointed out in (5.6). Figure 5.1 shows
the ACF and PACF of the squared residuals it appears that there may
be some dependence, albeit small, left in the residuals. The figure was
generated in R as follows.
u = sarima(diff(log(gnp)), 1, 0, 0)
acf2(resid(u$fit)^2, 20)

We used the R package fGarch to fit an AR(1)-ARCH(1) model to
the U.S. GNP returns with the following results. A partial output is
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shown; we note that garch(1,0) specifies an ARCH(1) in the code
below (details later).
library(fGarch)
summary(garchFit(~arma(1,0)+garch(1,0), diff(log(gnp))))

Estimate Std.Error t.value p.value
mu 0.005 0.001 5.867 0.000
ar1 0.367 0.075 4.878 0.000
omega 0.000 0.000 8.135 0.000
alpha1 0.194 0.096 2.035 0.042

Standardised Residuals Tests: Statistic p-Value
Jarque-Bera Test R Chi^2 9.118 0.010
Shapiro-Wilk Test R W 0.984 0.014
Ljung-Box Test R Q(20) 23.414 0.269
Ljung-Box Test R^2 Q(20) 37.743 0.010

Note that the given p-values are two-sided, so they should be
halved when considering the ARCH parameters. In this example, we
obtain f̂0 = .005 (called mu in the output) and f̂1 = .367 (called ar1) for
the AR(1) parameter estimates; in Example 3.27 the values were .005
and .347, respectively. The ARCH(1) parameter estimates are â0 = 0
(called omega) for the constant and â1 = .194, which is significant with a
p-value of about .02. There are a number of tests that are performed on
the residuals [R] or the squared residuals [R^2]. For example, the
Jarque–Bera statistic tests the residuals of the fit for normality based on
the observed skewness and kurtosis, and it appears that the residuals
have some non-normal skewness and kurtosis. The Shapiro–Wilk
statistic tests the residuals of the fit for normality based on the
empirical order statistics. The other tests, primarily based on the
Q-statistic, are used on the residuals and their squares.

The ARCH(1) model can be extended to the general ARCH(m) model
in an obvious way. That is, (5.3), rt = stet, is retained, but (5.4) is
extended to

s2
t = a0 + a1r2

t�1 + · · ·+ amr2
t�p. (5.14)

Estimation for ARCH(m) also follows in an obvious way from the
discussion of estimation for ARCH(1) models. That is, the conditional
likelihood of the data rp+1, . . . , rn given r1, . . . , rp, is given by

L(a
�

� r1, . . . , rm) =
n

’
t=m+1

fa(rt
�

� rt�1, . . . , rt�m), (5.15)

where a = (a0, a1, . . . , ap) and, under the assumption of normality, the
conditional densities fa(·|·) in (5.15) are, for t > p, given by

rt
�

� rt�1, . . . , rt�p ⇠ N(0, a0 + a1r2
t�1 + · · ·+ amr2

t�p).

Another extension of ARCH is the generalized ARCH or GARCH
model developed by Bollerslev (1986). For example, a GARCH(1, 1)
model retains (5.3), rt = stet, but extends (5.4) as follows:

s2
t = a0 + a1r2

t�1 + b1s2
t�1. (5.16)
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Under the condition that a1 + b1 < 1, using similar manipulations as in
(5.6), the GARCH(1, 1) model, (5.3) and (5.16), admits a non-Gaussian
ARMA(1, 1) model for the squared process

r2
t = a0 + (a1 + b1)r2

t�1 + vt � b1vt�1, (5.17)

where vt is as defined in (5.6). Representation (5.17) follows by writing
(5.3) as

r2
t � s2

t = s2
t (e

2
t � 1)

b1(r2
t�1 � s2

t�1) = b1s2
t�1(e

2
t�1 � 1),

subtracting the second equation from the first, and using the fact that,
from (5.16), s2

t � b1s2
t�1 = a0 + a1r2

t�1, on the left-hand side of the result.
The GARCH(p, q) model retains (5.3) and extends (5.16) to

s2
t = a0 +

p

Â
j=1

ajr2
t�j +

q

Â
j=1

b js
2
t�j. (5.18)

Conditional maximum likelihood estimation of the GARCH(m, r)
model parameters is similar to the ARCH(m) case, wherein the
conditional likelihood, (5.15), is the product of N(0, s2

t ) densities with s2
t

given by (5.18) and where the conditioning is on the first max(m, r)
observations, with s2

1 = · · · = s2
r = 0. Once the parameter estimates are

obtained, the model can be used to obtain one-step-ahead forecasts of
the volatility, say ŝ2

t+1, given by

ŝ2
t+1 = â0 +

p

Â
j=1

âjr2
t+1�j +

q

Â
j=1

b̂ jŝ
2
t+1�j. (5.19)

We explore these concepts in the following example.

Example 5.2 GARCH Analysis of the DJIA Returns
As previously mentioned, the daily returns of the DJIA shown in
Figure 1.4 exhibit classic GARCH features. In addition, there is some
low level autocorrelation in the series itself, and to include this
behavior, we used the R fGarch package to fit an AR(1)-GARCH(1, 1)
model to the series using t errors:
library(xts)
djiar = diff(log(djia$Close))[-1]
acf2(djiar) # exhibits some autocorrelation (not shown)
acf2(djiar^2) # oozes autocorrelation (not shown)
library(fGarch)
summary(djia.g <- garchFit(~arma(1,0)+garch(1,1), data=djiar,

cond.dist='std'))
plot(djia.g) # to see all plot options

Estimate Std.Error t.value p.value
mu 8.585e-04 1.470e-04 5.842 5.16e-09
ar1 -5.531e-02 2.023e-02 -2.735 0.006239
omega 1.610e-06 4.459e-07 3.611 0.000305
alpha1 1.244e-01 1.660e-02 7.497 6.55e-14
beta1 8.700e-01 1.526e-02 57.022 < 2e-16
shape 5.979e+00 7.917e-01 7.552 4.31e-14
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Fig. 5.2. GARCH one-step-ahead predictions of the DJIA volatility, st, superimposed on part of the
data including the financial crisis of 2008.

---
Standardised Residuals Tests:

Statistic p-Value
Ljung-Box Test R Q(10) 16.81507 0.0785575
Ljung-Box Test R^2 Q(10) 15.39137 0.1184312

To explore the GARCH predictions of volatility, we calculated and
plotted part of the data surrounding the financial crises of 2008 along
with the one-step-ahead predictions of the corresponding volatility, s2

t
as a solid line in Figure 5.2.

Another model that we mention briefly is the asymmetric power ARCH
model. The model retains (5.3), rt = stet, but the conditional variance is
modeled as

sd
t = a0 +

p

Â
j=1

aj(|rt�j|� gjrt�j)
d +

q

Â
j=1

b js
d
t�j . (5.20)

Note that the model is GARCH when d = 2 and gj = 0, for
j 2 {1, . . . , p}. The parameters gj (|gj|  1) are the leverage parameters,
which are a measure of asymmetry, and d > 0 is the parameter for the
power term. A positive [negative] value of gj’s means that past negative
[positive] shocks have a deeper impact on current conditional volatility
than past positive [negative] shocks. This model couples the flexibility of
a varying exponent with the asymmetry coefficient to take the leverage
effect into account. Further, to guarantee that st > 0, we assume that
a0 > 0, aj � 0 with at least one aj > 0, and b j � 0.

We contiune the analysis of the DJIA returns in the following
example.

Example 5.3 APARCH Analysis of the DJIA Returns
The R package fGarch was used to fit an AR-APARCH model to the
DJIA returns discussed in Example 5.2. As in the previous example, we
include an AR(1) in the model to account for the conditional mean. In
this case, we may think of the model as rt = µt + yt where µt is an



160 5 Some Additional Topics **

AR(1), and yt is APARCH noise with conditional variance modeled as
(5.20) with t-errors. A partial output of the analysis is given below. We
do not include displays, but we show how to obtain them. The
predicted volatility is, of course, different than the values shown in
Figure 5.2, but appear similar when graphed.
library(xts)
library(fGarch)
summary(fit <- garchFit(~arma(1,0)+aparch(1,1), data=djiar,

cond.dist='std'))
plot(djia.ap) # to see all plot options (none shown)

Estimate Std. Error t value p.value
mu 5.234e-04 1.525e-04 3.432 0.000598
ar1 -4.818e-02 1.934e-02 -2.491 0.012727
omega 1.798e-04 3.443e-05 5.222 1.77e-07
alpha1 9.809e-02 1.030e-02 9.525 < 2e-16
gamma1 1.000e+00 1.045e-02 95.731 < 2e-16
beta1 8.945e-01 1.049e-02 85.280 < 2e-16
delta 1.070e+00 1.350e-01 7.928 2.22e-15
shape 7.286e+00 1.123e+00 6.489 8.61e-11
---
Standardised Residuals Tests:

Statistic p-Value
Ljung-Box Test R Q(10) 15.71403 0.108116
Ljung-Box Test R^2 Q(10) 16.87473 0.077182

In most applications, the distribution of the noise, et in (5.3), is rarely
normal. The R package fGarch allows for various distributions to be fit to
the data; see the help file for information. Some drawbacks of GARCH
and related models are as follows. (i) The GARCH model assumes
positive and negative returns have the same effect because volatility
depends on squared returns; the asymmetric models help alleviate this
problem. (ii) These models are often restrictive because of the tight
constraints on the model parameters (e.g., for an ARCH(1), 0  a2

1 < 1
3 ).

(iii) The likelihood is flat unless n is very large. (iv) The models tend to
overpredict volatility because they respond slowly to large isolated
returns.

Various extensions to the original model have been proposed to
overcome some of the shortcomings we have just mentioned. For
example, we have already discussed the fact that fGarch allows for
asymmetric return dynamics. In the case of persistence in volatility, the
integrated GARCH (IGARCH) model may be used. Recall (5.17) where
we showed the GARCH(1, 1) model can be written as

r2
t = a0 + (a1 + b1)r2

t�1 + vt � b1vt�1

and r2
t is stationary if a1 + b1 < 1. The IGARCH model sets a1 + b1 = 1,

in which case the IGARCH(1, 1) model is

rt = stet and s2
t = a0 + (1 � b1)r2

t�1 + b1s2
t�1.

There are many different extensions to the basic ARCH model that were
developed to handle the various situations noticed in practice. Interested
readers might find the general discussions in Engle et al. (1994) and
Shephard (1996) worthwhile reading. Also, Gouriéroux (1997) gives a
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detailed presentation of ARCH and related models with financial
applications and contains an extensive bibliography. Two excellent texts
on financial time series analysis are Chan (2002) and Tsay (2002).

5.2 Unit Root Testing

The use of the first difference rxt = (1 � B)xt can be too severe a
modification in the sense that the nonstationary model might represent
an overdifferencing of the original process.

Consider a causal AR(1) process (we assume throughout this section
that the noise is Gaussian),

xt = fxt�1 + wt. (5.21)

A unit root test provides a way to test whether (5.21) is a random walk
(the null case) as opposed to a causal process (the alternative). That is, it
provides a procedure for testing

H0 : f = 1 versus H1 : |f| < 1.

To see if it is reasonable to assume f � 1 = 0, an obvious test statistic
would be to consider (bf � 1), appropriately normalized, in the hope to
develop an asymptotically normal test statistic, where bf is one of the
optimal estimators discussed in Section 3.4. Note that the distribution in
Example 3.21 does not work in this case; if it did, under the null
hypothesis, bf ·⇠ N(1, 0), which is nonsense. The theory of Section 3.4
does not work in the null case because the process is not stationary.

However, the test statistic

U = n(bf � 1)

can be used, and it is known as the unit root or Dickey-Fuller (DF)
statistic, although the actual DF test statistic is normalized a little
differently. In this case, the distribution of the test statistic does not have
a closed form and quantiles of the distribution must be computed by
numerical approximation or by simulation. The R package tseries
provides this test along with more general tests that we mention briefly.

Toward a more general model, we note that the DF test was
established by noting that if xt = fxt�1 + wt, then
rxt = (f � 1)xt�1 + wt = gxt�1 + wt, and one could test H0 : g = 0 by
regressing rxt on xt�1. They formed a Wald statistic and derived its
limiting distribution. The test was extended to accommodate AR(p)
models, xt = Âp

j=1 fjxt�j + wt, as follows. Subtract xt�1 from the model
to obtain

rxt = gxt�1 +
p�1

Â
j=1

yjrxt�j + wt, (5.22)

where g = Âp
j=1 fj � 1 and yj = �Âp

i=j fi for j = 2, . . . , p. For a quick
check of (5.22) when p = 2, note that
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xt = (f1 + f2)xt�1 � f2(xt�1 � xt�2) + wt; now subtract xt�1 from both
sides. To test the hypothesis that the process has a unit root at 1 (i.e., the
AR polynoimial f(z) = 0 when z = 1), we can test H0 : g = 0 by
estimating g in the regression of rxt on xt�1,rxt�1, . . . ,rxt�p+1, and
forming a Wald test based on tg = bg/se(bg). This test leads to the
so-called augmented Dickey-Fuller test (ADF). While the calculations for
obtaining the asymptotic null distribution change, the basic ideas and
machinery remain the same as in the simple case. The choice of p is
crucial, and we will discuss some suggestions in the example. For
ARMA(p, q) models, the ADF test can be used by assuming p is large
enough to capture the essential correlation structure; another alternative
is the Phillips-Perron (PP) test, which differs from the ADF tests mainly
in how they deal with serial correlation and heteroskedasticity in the
errors.

One can extend the model to include a constant, or even
non-stochastic trend. For example, consider the model

xt = b0 + b1t + fxt�1 + wt.

If we assume b1 = 0, then under the null hypothesis, f = 1, the process
is a random walk with drift b0. Under the alternate hypothesis, the
process is a causal AR(1) with mean µx = b0(1� f). If we cannot assume
b1 = 0, then the interest here is testing the null that (b1, f) = (0, 1),
simultaneously, versus the alternative that b1 6= 0 and |f| < 1. In this
case, the null hypothesis is that the process is a random walk with drift,
versus the alternative hypothesis that the process is stationary around a
global trend (consider the chicken price series examined in Example 2.1).

Example 5.4 Testing Unit Roots in the Glacial Varve Series
In this example we use the R package tseries to test the null
hypothesis that the log of the glacial varve series has a unit root, versus
the alternate hypothesis that the process is stationary. We test the null
hypothesis using the available DF, ADF and PP tests; note that in each
case, the general regression equation incorporates a constant and a
linear trend. In the ADF test, the default number of AR components
included in the model, say k, is [[(n � 1)

1
3 ]], which corresponds to the

suggested upper bound on the rate at which the number of lags, k,
should be made to grow with the sample size for the general
ARMA(p, q) setup. For the PP test, the default value of k is [[.04n

1
4 ]].

library(tseries)
adf.test(log(varve), k=0) # DF test
Dickey-Fuller = -12.8572, Lag order = 0, p-value < 0.01
alternative hypothesis: stationary

adf.test(log(varve)) # ADF test
Dickey-Fuller = -3.5166, Lag order = 8, p-value = 0.04071
alternative hypothesis: stationary

pp.test(log(varve)) # PP test
Dickey-Fuller Z(alpha) = -304.5376,
Truncation lag parameter = 6, p-value < 0.01
alternative hypothesis: stationary

In each test, we reject the null hypothesis that the logged varve series
has a unit root. The conclusion of these tests supports the conclusion of
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the previous section that the logged varve series is long memory rather
than integrated.

5.3 Long Memory and Fractional Differencing

The conventional ARMA(p, q) process is often referred to as a
short-memory process because the coefficients in the representation

xt =
•

Â
j=0

yjwt�j,

obtained by solving
f(z)y(z) = q(z),

are dominated by exponential decay. As pointed out in Chapter 3, this
result implies the ACF of the short memory process r(h) ! 0
exponentially fast as h ! •. When the sample ACF of a time series
decays slowly, the advice given in Chapter 3 has been to difference the
series until it seems stationary. Following this advice with the glacial
varve series first presented in Example 3.20 leads to the first difference of
the logarithms of the data being represented as a first-order moving
average. In Example 3.29, further analysis of the residuals leads to fitting
an ARIMA(1, 1, 1) model,

rxt = frxt�1 + wt + qwt�1,

where we understand xt is the log-transformed varve series. In
particular, the estimates of the parameters (and the standard errors)
were bf = .23(.05), bq = �.89(.03), and bs2

w = .23. The use of the first
difference rxt = (1 � B)xt can be too severe a modification in the sense
that the nonstationary model might represent an overdifferencing of the
original process.

Long memory (or persistent) time series were considered in Hosking
(1981) and Granger and Joyeux (1980) as intermediate compromises
between the short memory ARMA type models and the fully integrated
nonstationary processes in the Box–Jenkins class. The easiest way to
generate a long memory series is to think of using the difference
operator (1 � B)d for fractional values of d, say, 0 < d < .5, so a basic
long memory series gets generated as

(1 � B)dxt = wt, (5.23)

where wt still denotes white noise with variance s2
w. The fractionally

differenced series (5.23), for |d| < .5, is often called fractional noise (except
when d is zero). Now, d becomes a parameter to be estimated along with
s2

w. Differencing the original process, as in the Box–Jenkins approach,
may be thought of as simply assigning a value of d = 1. This idea has
been extended to the class of fractionally integrated ARMA, or ARFIMA
models, where �.5 < d < .5; when d is negative, the term antipersistent
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Fig. 5.3. Sample ACF of the log transformed varve series.

is used. Long memory processes occur in hydrology (see Hurst, 1951,
and McLeod and Hipel, 1978) and in environmental series, such as the
varve data we have previously analyzed, to mention a few examples.
Long memory time series data tend to exhibit sample autocorrelations
that are not necessarily large (as in the case of d = 1), but persist for a
long time. Figure 5.3 shows the sample ACF, to lag 100, of the
log-transformed varve series, which exhibits classic long memory
behavior:
u = acf(log(varve), 100, plot=FALSE)
plot(u[1:100], ylim=c(-.1,1), main="log(varve)") # get rid of lag 0

To investigate its properties, we can use the binomial expansion
(d > �1) to write

wt = (1 � B)dxt =
•

Â
j=0

pjBjxt =
•

Â
j=0

pjxt�j (5.24)

where
pj =

G(j � d)
G(j + 1)G(�d)

(5.25)

with G(x + 1) = xG(x) being the gamma function. Similarly (d < 1), we
can write

xt = (1 � B)�dwt =
•

Â
j=0

yjBjwt =
•

Â
j=0

yjwt�j (5.26)

where
yj =

G(j + d)
G(j + 1)G(d)

. (5.27)

When |d| < .5, the processes (5.24) and (5.26) are well-defined stationary
processes (see Brockwell and Davis, 1991, for details). In the case of
fractional differencing, however, the coefficients satisfy Â p2

j < • and

Â y2
j < • as opposed to the absolute summability of the coefficients in

ARMA processes.
Using the representation (5.26)–(5.27), and after some nontrivial

manipulations, it can be shown that the ACF of xt is

r(h) =
G(h + d)G(1 � d)
G(h � d + 1)G(d)

⇠ h2d�1 (5.28)
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for large h. From this we see that for 0 < d < .5

•

Â
h=�•

|r(h)| = •

and hence the term long memory.
In order to examine a series such as the varve series for a possible

long memory pattern, it is convenient to look at ways of estimating d.
Using (5.25) it is easy to derive the recursions

pj+1(d) =
(j � d)pj(d)

(j + 1)
, (5.29)

for j = 0, 1, . . ., with p0(d) = 1. Maximizing the joint likelihood of the
errors under normality, say, wt(d), will involve minimizing the sum of
squared errors

Q(d) = Â w2
t (d).

The usual Gauss–Newton method, described in §3.6, leads to the
expansion

wt(d) = wt(d0) + w0
t(d0)(d � d0),

where

w0
t(d0) =

∂wt
∂d

�

�

�

�

d=d0

and d0 is an initial estimate (guess) at to the value of d. Setting up the
usual regression leads to

d = d0 �
Ât w0

t(d0)wt(d0)

Ât w0
t(d0)

2 . (5.30)

The derivatives are computed recursively by differentiating (5.29)
successively with respect to d: p0

j+1(d) = [(j � d)p0
j(d)� pj(d)]/(j + 1),

where p0
0(d) = 0. The errors are computed from an approximation to

(5.24), namely,

wt(d) =
t

Â
j=0

pj(d)xt�j. (5.31)

It is advisable to omit a number of initial terms from the computation
and start the sum, (5.30), at some fairly large value of t to have a
reasonable approximation.

Example 5.5 Long Memory Fitting of the Glacial Varve Series
We consider analyzing the glacial varve series discussed in
Example 2.7 and Example 3.20. Figure 2.7 shows the original and
log-transformed series (which we denote by xt). In Example 3.29, we
noted that xt could be modeled as an ARIMA(1, 1, 1) process. We fit
the fractionally differenced model, (5.23), to the mean-adjusted series,
xt � x̄. Applying the Gauss–Newton iterative procedure previously
described, starting with d = .1 and omitting the first 30 points from the
computation, leads to a final value of d = .384, which implies the set of
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Fig. 5.4. Coefficients pj(.384), j = 1, 2, . . . , 30 in the representation (5.29).

coefficients pj(.384), as given in Figure 5.4 with p0(.384) = 1. We can
compare roughly the performance of the fractional difference operator
with the ARIMA model by examining the autocorrelation functions of
the two residual series as shown in Figure 5.5. The ACFs of the two
residual series are roughly comparable with the white noise model.

To perform this analysis in R, first download and install the
fracdiff package. Then use
library(fracdiff)
lvarve = log(varve)-mean(log(varve))
varve.fd = fracdiff(lvarve, nar=0, nma=0, M=30)
varve.fd$d # = 0.3841688
varve.fd$stderror.dpq # = 4.589514e-06 (questionable result!!)
p = rep(1,31)
for (k in 1:30){ p[k+1] = (k-varve.fd$d)*p[k]/(k+1) }
plot(1:30, p[-1], ylab=expression(pi(d)), xlab="Index", type="h")
res.fd = diffseries(log(varve), varve.fd$d) # frac diff resids
res.arima = resid(arima(log(varve), order=c(1,1,1))) # arima resids
par(mfrow=c(2,1))
acf(res.arima, 100, xlim=c(4,97), ylim=c(-.2,.2), main="")
acf(res.fd, 100, xlim=c(4,97), ylim=c(-.2,.2), main="")

The R package uses a truncated maximum likelihood procedure that
was discussed in Haslett and Raftery (1989), which is a little more
elaborate than simply zeroing out initial values. The default truncation
value in R is M = 100. In the default case, the estimate is bd = .37 with
approximately the same (questionable) standard error.

Forecasting long memory processes is similar to forecasting ARIMA
models. That is, (5.24) and (5.29) can be used to obtain the truncated
forecasts

exn
n+m = �

n

Â
j=1

pj( bd) exn
n+m�j, (5.32)

for m = 1, 2, . . . . Error bounds can be approximated by using

Pn
n+m = bs2

w

 

m�1

Â
j=0

y2
j ( bd)

!

(5.33)

where, as in (5.29),

yj( bd) =
(j + bd)yj( bd)

(j + 1)
, (5.34)
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Fig. 5.5. ACF of residuals from the ARIMA(1, 1, 1) fit to the logged varve series (top) and of the
residuals from the long memory model fit, (1 � B)dxt = wt, with d = .384 (bottom).

with y0( bd) = 1.
No obvious short memory ARMA-type component can be seen in the

ACF of the residuals from the fractionally differenced varve series
shown in Figure 5.5. It is natural, however, that cases will exist in which
substantial short memory-type components will also be present in data
that exhibits long memory. Hence, it is natural to define the general
ARFIMA(p, d, q), �.5 < d < .5 process as

f(B)rd(xt � µ) = q(B)wt, (5.35)

where f(B) and q(B) are as given in Chapter 3. Writing the model in the
form

f(B)pd(B)(xt � µ) = q(B)wt (5.36)

makes it clear how we go about estimating the parameters for the more
general model. Forecasting for the ARFIMA(p, d, q) series can be easily
done, noting that we may equate coefficients in

f(z)y(z) = (1 � z)�dq(z) (5.37)

and
q(z)p(z) = (1 � z)df(z) (5.38)

to obtain the representations

xt = µ +
•

Â
j=0

yjwt�j

and

wt =
•

Â
j=0

pj(xt�j � µ).

We then can proceed as discussed in (5.32) and (5.33).
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Problems

5.1 Weekly crude oil spot prices in dollars per barrel are in oil.
Investigate whether the growth rate of the weekly oil price exhibits
GARCH behavior. If so, fit an appropriate model to the growth rate.

5.2 The stats package of R contains the daily closing prices of four major
European stock indices; type help(EuStockMarkets) for details. Fit a
GARCH model to the returns of one of these series and discuss your
findings. (Note: The data set contains actual values, and not returns.
Hence, the data must be transformed prior to the model fitting.)

5.3 The data set arf is 1000 simulated observations from an
ARFIMA(1, 1, 0) model with f = .75 and d = .4.

(a) Plot the data and comment.
(b) Plot the ACF and PACF of the data and comment.
(c) Estimate the parameters and test for the significance of the estimates

bf and bd.
(d) Explain why, using the results of parts (a) and (b), it would seem

reasonable to difference the data prior to the analysis. That is, if xt
represents the data, explain why we might choose to fit an ARMA
model to rxt.

(e) Plot the ACF and PACF of rxt and comment.
(f) Fit an ARMA model to rxt and comment.

5.4 Compute the sample ACF of the absolute values of the NYSE returns
displayed in Figure 1.4 up to lag 200, and comment on whether the ACF
indicates long memory. Fit an ARFIMA model to the absolute values and
comment.

5.5 Plot the global temperature series, globtemp, and then test whether
there is a unit root versus the alternative that the process is stationary
using the three tests, DF, ADF, and PP, discussed in Example 5.4.
Comment.

5.6 Plot the GNP series, gnp, and then test for a unit root against the
alternative that the process is explosive. State your conclusion.

5.7 Verify (5.22).



Appendix R
R Supplement

R.1 First Things First

To obtain R, point your browser to the Comprehensive R Archive
Network (CRAN), http://cran.r-project.org/ and download and install
it. The installation includes help files and some user manuals. You can
find helpful tutorials by following CRAN’s link to Contributed
Documentation. Finally, get RStudio (https://www.rstudio.com/), it will
make using R easier.

R.2 astsa

The examples use the R package astsa . The package can be obtained
from CRAN and its mirrors in the usual way. To install astsa, start R and
type
install.packages("astsa")

You will be asked to choose the closest CRAN mirror to you. As with all
packages, you have to load astsa before you use it by issuing the
command
library(astsa)

All the data are loaded when the package is loaded. If you create a
.First function as follows,
.First <- function(){library(astsa)}

and save the workspace when you quit, astsa will be loaded at every
start until you change .First.

The R html help system can be started by issuing the command
help.start(). The help files for installed packages can also be found
there. A useful command to see all the data files available to you,
including those loaded with astsa, is
data()

http://cran.r-project.org/
https://www.rstudio.com/
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R.3 Getting Started

The best way to use the rest of this appendix is to start up R and enter
the example code as it is presented. Also, you can use the results and
help files to get a better understanding of how R works (or doesn’t
work).

The convention throughout the text is that R code is in blue, output is
purple and comments are # green. Get comfortable, then start her up and
try some simple tasks.
2+2 # addition
[1] 5
5*5 + 2 # multiplication and addition
[1] 27
5/5 - 3 # division and subtraction
[1] -2
log(exp(pi)) # log, exponential, pi
[1] 3.141593
sin(pi/2) # sinusoids
[1] 1
exp(1)^(-2) # power
[1] 0.1353353
sqrt(8) # square root
[1] 2.828427
1:5 # sequences
[1] 1 2 3 4 5
seq(1, 10, by=2) # sequences
[1] 1 3 5 7 9
rep(2, 3) # repeat 2 three times
[1] 2 2 2

Next, we’ll use assignment to make some objects:
x <- 1 + 2 # put 1 + 2 in object x
x = 1 + 2 # same as above with fewer keystrokes
1 + 2 -> x # same
x # view object x
[1] 3
(y = 9 * 3) # put 9 times 3 in y and view the result
[1] 27
(z = rnorm(5)) # put 5 standard normals into z and print z
[1] 0.96607946 1.98135811 -0.06064527 0.31028473 0.02046853

It is worth pointing out R’s recycling rule for doing arithmetic. In the
code below, c() [concatenation] is used to create a vector. Note the use of
the semicolon for multiple commands on one line.
x = c(1, 2, 3, 4); y = c(2, 4, 6, 8); z = c(10, 20); w = c(8, 3, 2)
x * y # 1*2, 2*4, 3*6, 4*8
[1] 2 8 18 32
x + z # 1+10, 2+20, 3+10, 4+20
[1] 11 22 13 24
y + w # what happened here?
[1] 10 7 8 16
Warning message:
In y + w : longer object length is not a multiple of
shorter object length

To work your objects, use the following commands:
ls() # list all objects
"dummy" "mydata" "x" "y" "z"
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ls(pattern = "my") # list every object that contains "my"
"dummy" "mydata"
rm(dummy) # remove object "dummy"
rm(list=ls()) # remove almost everything (use with caution)
help.start() # html help and documentation
data() # list of available data sets
help(exp) # specific help (?exp is the same)
getwd() # get working directory
setwd() # change working directory
q() # end the session (keep reading)

When you quit, R will prompt you to save an image of your current
workspace. Answering yes will save the work you have done so far, and
load it when you next start R. We have never regretted selecting yes, but
we have regretted answering no.

To create your own data set, you can make a data vector as follows:
mydata = c(1,2,3,2,1)

Now you have an object called mydata that contains five elements. R calls
these objects vectors even though they have no dimensions (no rows, no
columns); they do have order and length:
mydata # display the data
[1] 1 2 3 2 1
mydata[3] # the third element
[1] 3
mydata[3:5] # elements three through five
[1] 3 2 1
mydata[-(1:2)] # everything except the first two elements
[1] 3 2 1
length(mydata) # number of elements
[1] 5
dim(mydata) # no dimensions
NULL
mydata = as.matrix(mydata) # make it a matrix
dim(mydata) # now it has dimensions
[1] 5 1

If you have an external data set, you can use scan or read.table (or
some variant) to input the data. For example, suppose you have an ascii

(text) data file called dummy.txt in your working directory, and the file
looks like this:
1 2 3 2 1
9 0 2 1 0

(dummy = scan("dummy.txt") ) # scan and view it
Read 10 items
[1] 1 2 3 2 1 9 0 2 1 0

(dummy = read.table("dummy.txt") ) # read and view it
V1 V2 V3 V4 V5
1 2 3 2 1
9 0 2 1 0

There is a difference between scan and read.table. The former produced
a data vector of 10 items while the latter produced a data frame with
names V1 to V5 and two observations per variate. In this case, if you want
to list (or use) the second variate, V2, you would use
dummy$V2
[1] 2 0
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and so on. You might want to look at the help files ?scan and
?read.table now. Data frames (?data.frame) are “used as the
fundamental data structure by most of R’s modeling software.” Notice
that R gave the columns of dummy generic names, V1, ..., V5. You can
provide your own names and then use the names to access the data
without the use of $ as above.
colnames(dummy) = c("Dog", "Cat", "Rat", "Pig", "Man")
attach(dummy)
Cat
[1] 2 0
Rat*(Pig - Man) # animal arithmetic
[1] 3 2
head(dummy) # view the first few lines of a data file
detach(dummy) # clean up (if desired)

R is case sensitive, thus cat and Cat are different. Also, cat is a reserved
name (?cat) in R, so using "cat" instead of "Cat" may cause problems
later. You may also include a header in the data file to avoid colnames().
For example, if you have a comma separated values file dummy.csv that
looks like this,
Dog,Cat,Rat,Pig,Man
1,2,3,2,1
9,0,2,1,0

then use the following command to read the data.
(dummy = read.csv("dummy.csv"))

Dog Cat Rat Pig Man
1 1 2 3 2 1
2 9 0 2 1 0

The default for .csv files is header=TRUE; type ?read.table for further
information on similar types of files.

Two commands that are used frequently to manipulate data are cbind
for column binding and rbind for row binding. The following is an
example.
x = runif(4) # generate 4 values from a uniform(0,1) into object x
y = runif(4) # generate 4 more and put them into object y
(u = cbind(x,y)) # column bind the two vectors (4 by 2 matrix)

x y
[1,] 0.6547304 0.7503984
[2,] 0.8222048 0.1335557
[3,] 0.4555755 0.2151735
[4,] 0.9843289 0.8483795

(u = rbind(x,y)) # row bind the two vectors (2 by 4 matrix)
[,1] [,2] [,3] [,4]

x 0.6547304 0.8222048 0.4555755 0.9843289
y 0.7503984 0.1335557 0.2151735 0.8483795

Summary statistics are fairly easy to obtain. We will simulate 25
normals with µ = 10 and s = 4 and then perform some basic analyses.
The first line of the code is set.seed, which fixes the seed for the
generation of pseudorandom numbers. Using the same seed yields the
same results; to expect anything else would be insanity.
set.seed(90210) # so you can reproduce these results
x = rnorm(25, 10, 4) # generate the data
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Fig. R.1. Crazy example.

c( mean(x), median(x), var(x), sd(x) ) # guess
[1] 9.473883 9.448511 13.926701 3.731850
c( min(x), max(x) ) # smallest and largest values
[1] 2.678173 17.326089
which.max(x) # index of the max (x[25] in this case)
[1] 25
summary(x) # a five number summary with six numbers

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.678 7.824 9.449 9.474 11.180 17.330

boxplot(x); hist(x); stem(x) # visual summaries (not shown)

It can’t hurt to learn a little about programming in R because you will
see some of it along the way. Consider a simple program that we will call
crazy to produce a graph of a sequence of sample means of increasing
sample sizes from a Cauchy distribution with location parameter zero.

1 crazy <- function(num) {
2 x <- c()
3 for (n in 1:num) { x[n] <- mean(rcauchy(n)) }
4 plot(x, type="l", xlab="sample size", ylab="sample mean")
5 }

The first line creates the function crazy and gives it one argument, num,
that is the sample size that will end the sequence. Line 2 makes an
empty vector, x, that will be used to store the sample means. Line 3
generates n random Cauchy variates [rcauchy(n)], finds the mean of
those values, and puts the result into x[n], the n-th value of x. The
process is repeated in a “do loop” num times so that x[1] is the sample
mean from a sample of size one, x[2] is the sample mean from a sample
of size two, and so on, until finally, x[num] is the sample mean from a
sample of size num. After the do loop is complete, the fourth line
generates a graphic (see Figure R.1). The fifth line closes the function. To
use crazy ending with sample of size of 200, type
crazy(200)

and you will get a graphic that looks like Figure R.1 .
Finally, a word of caution: TRUE and FALSE are reserved words,

whereas T and F are initially set to these. Get in the habit of using the
words rather than the letters T or F because you may get into trouble if
you do something like
F = qf(p=.01, df1=3, df2=9)

so that F is no longer FALSE, but a quantile of the specified F-distribution.
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R.4 Time Series Primer

In this section, we give a brief introduction on using R for time series.
We assume that astsa has been loaded. To create a time series object, use the
command ts. Related commands are as.ts to coerce an object to a time
series and is.ts to test whether an object is a time series. First, make a
small data set:
(mydata = c(1,2,3,2,1) ) # make it and view it
[1] 1 2 3 2 1

Now make it a time series:
(mydata = as.ts(mydata) )
Time Series:
Start = 1
End = 5
Frequency = 1
[1] 1 2 3 2 1

Make it an annual time series that starts in 1950:
(mydata = ts(mydata, start=1950) )
Time Series:
Start = 1950
End = 1954
Frequency = 1
[1] 1 2 3 2 1

Now make it a quarterly time series that starts in 1950-III:
(mydata = ts(mydata, start=c(1950,3), frequency=4) )

Qtr1 Qtr2 Qtr3 Qtr4
1950 1 2
1951 3 2 1

time(mydata) # view the sampled times
Qtr1 Qtr2 Qtr3 Qtr4

1950 1950.50 1950.75
1951 1951.00 1951.25 1951.50

To use part of a time series object, use window():
(x = window(mydata, start=c(1951,1), end=c(1951,3) ))

Qtr1 Qtr2 Qtr3
1951 3 2 1

Next, we’ll look at lagging and differencing. First make a simple series,
xt:
x = ts(1:5)

Now, column bind (cbind) lagged values of xt and you will notice that
lag(x) is forward lag, whereas lag(x, -1) is backward lag.
cbind(x, lag(x), lag(x,-1))

x lag(x) lag(x, -1)
0 NA 1 NA
1 1 2 NA
2 2 3 1
3 3 4 2 <- in this row, for example, x is 3,
4 4 5 3 lag(x) is ahead at 4, and
5 5 NA 4 lag(x,-1) is behind at 2
6 NA NA 5
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Compare cbind and ts.intersect:
ts.intersect(x, lag(x,1), lag(x,-1))
Time Series: Start = 2 End = 4 Frequency = 1

x lag(x, 1) lag(x, -1)
2 2 3 1
3 3 4 2
4 4 5 3

To difference a series, rxt = xt � xt�1, use
diff(x)

but note that
diff(x, 2)

is not second order differencing, it is xt � xt�2. For second order
differencing, that is, r2xt, do one of these:
diff(diff(x))
diff(x, diff=2) # same thing

and so on for higher order differencing.
We will also make use of regression via lm(). First, suppose we want

to fit a simple linear regression, y = a + bx + e. In R, the formula is
written as y~x:
set.seed(1999)
x = rnorm(10)
y = x + rnorm(10)
summary(fit <- lm(y~x) )
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2576 0.1892 1.362 0.2104
x 0.4577 0.2016 2.270 0.0529
--
Residual standard error: 0.58 on 8 degrees of freedom
Multiple R-squared: 0.3918, Adjusted R-squared: 0.3157
F-statistic: 5.153 on 1 and 8 DF, p-value: 0.05289

plot(x, y) # draw a scatterplot of the data (not shown)
abline(fit) # add the fitted line to the plot (not shown)

All sorts of information can be extracted from the lm object, which we
called fit. For example,
resid(fit) # will display the residuals (not shown)
fitted(fit) # will display the fitted values (not shown)
lm(y ~ 0 + x) # will exclude the intercept (not shown)

You have to be careful if you use lm() for lagged values of a time
series. If you use lm(), then what you have to do is align the series using
ts.intersect. Please read the warning Using time series in the lm() help
file [help(lm)]. Here is an example regressing astsa data, weekly
cardiovascular mortality (cmort) on particulate pollution (part) at the
present value and lagged four weeks (part4). First, we create ded, which
consists of the intersection of the three series:
ded = ts.intersect(cmort, part, part4=lag(part,-4))

Now the series are all aligned and the regression will work.
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summary(fit <- lm(cmort~part+part4, data=ded, na.action=NULL) )
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 69.01020 1.37498 50.190 < 2e-16
part 0.15140 0.02898 5.225 2.56e-07
part4 0.26297 0.02899 9.071 < 2e-16
---
Residual standard error: 8.323 on 501 degrees of freedom
Multiple R-squared: 0.3091, Adjusted R-squared: 0.3063
F-statistic: 112.1 on 2 and 501 DF, p-value: < 2.2e-16

There was no need to rename lag(part,-4) to part4, it’s just an example
of what you can do. There is a package called dynlm that makes it easy to
fit lagged regressions. The basic advantage of dynlm is that it avoids
having to make a data frame; that is, line 2 would be avoided.

In Problem 2.1, you are asked to fit a regression model

xt = bt + a1Q1(t) + a2Q2(t) + a3Q3(t) + a4Q4(t) + wt

where xt is logged Johnson & Johnson quarterly earnings (n = 84), and
Qi(t) is the indicator of quarter i = 1, 2, 3, 4. The indicators can be made
using factor.
trend = time(jj) - 1970 # helps to `center' time
Q = factor(cycle(jj) ) # make (Q)uarter factors
reg = lm(log(jj)~0 + trend + Q, na.action=NULL) # no intercept
model.matrix(reg) # view the model design matrix

trend Q1 Q2 Q3 Q4
1 -10.00 1 0 0 0
2 -9.75 0 1 0 0
3 -9.50 0 0 1 0
4 -9.25 0 0 0 1
. . . . . .
. . . . . .

summary(reg) # view the results (not shown)

The workhorse for ARIMA simulations is arima.sim. Here are some
examples; no output is shown here so you’re on your own.
x = arima.sim(list(order=c(1,0,0), ar=.9), n=100) + 50 # AR(1) w/mean 50
x = arima.sim(list(order=c(2,0,0), ar=c(1,-.9)), n=100) # AR(2)
x = arima.sim(list(order=c(1,1,1), ar=.9 ,ma=-.5), n=200) # ARIMA(1,1,1)

An easy way to fit ARIMA models is to use sarima from astsa. The script
is used in Chapter 3 and is introduced in Section 3.8.

R.4.1 Graphics

We introduced some graphics without saying much about it. Many
hipsters use the graphics package ggplot2 for producing fabulous
graphics, but for quick and easy graphing of time series, the R base
graphics does fine. As seen in Chapter 1, a time series may be plotted in
a few lines, such as
plot(gtemp)

in Example 1.2, or the multifigure plot
plot.ts( cbind(soi, rec) )

which we made little fancier in Example 1.4:
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par(mfrow = c(2,1))
plot(soi, ylab='', xlab='', main='Southern Oscillation Index')
plot(rec, ylab='', xlab='', main='Recruitment')

But, if you compare the results of the above to what is displayed in
the text, there is a slight difference because we improved the aesthetics
by adding a grid and cutting down on the margins. This is how we
actually produced Figure 1.3:
1 dev.new(width=7, height=4) # default is 7 x 7 inches
2 par(mar=c(3,3,1,1), mgp=c(1.6,.6,0) ) # change the margins (?par)
3 plot(gtemp, type='n')
4 grid(lty=1, col=gray(.9))
5 lines(gtemp, type='o')

In line 1, the dimensions are in inches. Line 2 adjusts the margins; see
help(par) for a complete list of settings. In line 3, the type=’n’ means to
set up the graph, but don’t actually plot anything yet. Line 4 adds a grid
and then in line 5, the data are (‘o’ver)plotted. The reason for using
type=’n’ is to avoid having the grid lines on top of the data plot.

If you are using a program such as Word™and you want to be able to
paste the graphic in the document, then you can print directly to a png
by replacing line 1 with something like
png(file="gtemp.png", width=480, height=360) # default is 480 x 480 px

but you have to turn the device off to complete the file save:
dev.off()

For plotting many time series, plot.ts and ts.plot are available. If
the series are all on the same scale, it might be useful to do the following:
ts.plot(cmort, tempr, part, col=2:4)
legend('topright', legend=c('M','T','P'), lty=1, col=2:4)

This produces a plot of all three series on the same axes with different
colors, and then adds a legend. We are not restricted to using basic
colors; an internet search on ‘R colors’ is helpful. The following code
gives separate plots of each different series (with a limit of 10):
plot.ts(cbind(cmort, tempr, part) )
plot.ts(eqexp) # you will get a warning
plot.ts(eqexp[,9:16], main='Explosions') # but this works

Here’s the code we used to plot two series individually in Figure 1.5:
dev.new(width=7, height=6)
par(mfrow = c(2,1), mar=c(2,2,1,0)+.5, mgp=c(1.6,.6,0) )
plot(soi, ylab='', xlab='', main='Southern Oscillation Index', type='n')
grid(lty=1, col=gray(.9))
lines(soi)
plot(rec, ylab='', main='Recruitment', type='n')
grid(lty=1, col=gray(.9))
lines(rec)

Finally, we mention that size matters when plotting time series.
Figure R.2 shows the sunspot numbers discussed in Problem 4.6 plotted
with varying dimension size as follows.
layout(matrix(c(1:2, 1:2), ncol=2), height=c(.2,.8))
par(mar=c(.2,3.5,0,.5), oma=c(3.5,0,.5,0), mgp=c(2,.6,0), tcl=-.3, las=1)
plot(sunspotz, type='n', xaxt='no', ylab='')
grid(lty=1, col=gray(.9))
lines(sunspotz)

plot(sunspotz, type='n', ylab='')
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Fig. R.2. The sunspot numbers plotted in different-sized boxes, demonstrating that the dimensions of
the graphic matters when displaying time series data.

grid(lty=1, col=gray(.9))
lines(sunspotz)

title(xlab="Time", outer=TRUE, cex.lab=1.2)
mtext(side=2, "Sunspot Numbers", line=2, las=0, adj=.75)

The result is shown in Figure R.2. The top plot is wide and narrow,
revealing the fact that the series rises quickly " and falls slowly & . The
bottom plot, which is more square, obscures this fact. You will notice
that in the main part of the text, we never plotted a series in a square
box. The ideal shape for plotting time series, in most instances, is when
the time axis is much wider than the value axis.
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ACF, 17, 19
large sample distribution, 24
of an AR(1), 58
of an AR(2), 66
of an ARMA(1,1), 67
of an MA(q), 65
sample, 23

AIC, 36, 96, 139
AICc, 36, 96
Aliasing, 113
Amplitude, 112
APARCH, 161
AR model, 11, 57

conditional sum of squares, 85
conditional likelihood, 85
likelihood, 84
maximum likelihood estimation, 84
spectral density, 120
unconditional sum of squares, 84

ARCH model
ARCH(p), 159
ARCH(1), 156
Asymmetric power, 161
estimation, 157
GARCH, 159

ARFIMA model, 163, 167
ARIMA model, 86

fractionally integrated, 167
multiplicative seasonal models, 103

ARMA model, 60
pure seasonal models

behavior of ACF and PACF, 101
backcasts, 83
behavior of ACF and PACF, 70
causality, 62
conditional least squares, 73
forecasts

prediction intervals, 81
Gauss–Newton, 74

invertibility, 62
multiplicative seasonal model, 101
pure seasonal model, 99

Autocorrelation function, see ACF
Autocovariance

calculation, 16
Autocovariance function, 15, 19, 58

random sum of sines and cosines,
113

Autoregressive Integrated Moving
Average Model, see ARIMA
model

Autoregressive models, see AR model

Backcasting, 82
Backshift operator, 43
Bandwidth, 128
Bartlett kernel, 136
BIC, 36, 96, 139
BLP

m-step-ahead prediction, 80
mean square prediction error, 80

one-step-ahead prediction, 78

Causal, 62
conditions for an AR(2), 64

CCF, 18, 21
large sample distribution, 26
sample, 25

Cepstral analysis, 152
Chicken prices, 41
Coherence, 145

estimation, 147
hypothesis test, 148

Complex roots, 67
Convolution, 141
Cospectrum, 145
Cross-correlation function, see CCF
Cross-covariance function, 18
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sample, 25
Cross-spectrum, 144
Cycle, 112

Daniell kernel, 134, 135
modified, 134, 135

Detrending, 32
DFT, 116

inverse, 122
Differencing, 41–43
DJIA, see Dow Jones Industrial

Average, see Dow Jones Industrial
Average

Dow Jones Industrial Average, 7
Durbin–Levinson algorithm, 79

Exponentially Weighted Moving
Averages, 88

Fejér kernel, 136
FFT, 116
Filter, 43

high-pass, 142
linear, 140
low-pass, 142

Folding frequency, 113, 116
Fourier frequency, 116, 122
Fractional difference, 163

fractional noise, 163
Frequency bands, 119, 127
Frequency response function, 141

of a first difference filter, 142
of a moving average filter, 142

Functional magnetic resonance
imaging series, 9

Fundamental frequency, 115, 116, 122

Glacial varve series, 45, 75, 95, 165, 172
Global temperature series, 6, 44
Growth rate, 90, 155

Harmonics, 131

Impulse response function, 141
Innovations, 93

standardized, 93
Integrated models, 86, 88, 103

forecasting, 87
Invertible, 62

Johnson & Johnson quarterly earnings
series, 5

LA Pollution – Mortality Study, 37, 53,
98

Lag, 17, 22
Lead, 22
Leakage, 137

sidelobe, 137
license, 1
Likelihood

AR(1) model, 84
conditional, 85

Linear filter, see Filter
Ljung–Box–Pierce statistic, 93
Long memory, 163

estimation, 165
estimation of d, 169
spectral density, 168

LSE
conditional sum of squares, 85
Gauss–Newton, 73
unconditional, 84

MA model, 11, 58
autocovariance function, 16, 65
Gauss–Newton, 74
mean function, 14
spectral density, 120

Mean function, 14
Method of moments estimators, see

Yule–Walker
MLE

conditional likelihood, 85

Ordinary Least Squares, 32

PACF, 69
of an MA(1), 70
iterative solution, 79
large sample results, 69
of an AR(p), 69
of an MA(q), 70

Parameter redundancy, 61
Partial autocorrelation function, see

PACF
Period, 112
Periodogram, 116, 122

disribution, 124
Phase, 112
Prewhiten, 27

Quadspectrum, 145

Random sum of sines and cosines, 113
Random walk, 12, 15, 87

autocovariance function, 17
Recruitment series, 8, 26, 46, 70, 82,

125, 129, 135, 148
Regression
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ANOVA table, 35
autocorrelated errors, 97

Cochrane-Orcutt procedure, 98
model, 32
multiple correlation, 35
normal equations, 33

Return, 7, 90, 155, 156
log-, 156

Scatterplot matrix, 38, 46
Scatterplot smoothers

kernel, 52
lowess, 52, 53
nearest neighbors, 52

SIC, 36
Signal plus noise, 13

mean function, 15
Signal-to-noise ratio, 14
Southern Oscillation Index, 8, 26, 46,

125, 129, 135, 137, 139, 142, 148
Spectral density, 118

autoregression, 138
estimation, 127

adjusted degrees of freedom, 128
bandwidth stability, 132
confidence interval, 128
degrees of freedom, 128
large sample distribution, 128
nonparametric, 138
parametric, 138
resolution, 132

matrix, 146
of a filtered series, 141
of a moving average, 120
of an AR(2), 120

of white noise, 119
Spectral Representation Theorem, 118

vector process, 146
Stationary

jointly, 21
strictly, 18
weakly, 18

Stochastic trend, 86
Structural model, 54

Taper, 135, 137
cosine bell, 136

Transformation
Box-Cox, 44

Trend stationarity, 20

U.S. GNP series, 90, 94, 96, 158
U.S. population series, 96
Unit root tests, 171

Augmented Dickey-Fuller test, 172
Dickey-Fuller test, 171
Phillips-Perron test, 172

Varve series, 169
Volatility, 7, 155

White noise, 10
autocovariance function, 16
Gaussian, 10

Yule–Walker
equations, 72
estimators, 72

AR(2), 72
MA(1), 73
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