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Introduction

A widespread confusion exists between the terms classification and clustering:

Classification presupposes the existence of classes with certain objects are known,
while
Clustering tries to discover a class structure which is “natural” to the data.

In the literature related to pattern recognition, the distinction between the two approaches
is often referred to by the terms “supervised” and “unsupervised” learning.
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Objectives

Clustering can have di�erent motivations:

compress information, to describe in a simplified way large masses of data,
structure a set of knowledge,
reveal structures, hidden causes,
make a diagnosis . . .
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Similarity

the fist step to any clustering is to define a measure resemblance between objects (shapes
vectors). Traditionally two approaches are envisaged:

monothetic : we can say that two objects are similar if they share a certain feature.
Basis of the Aristotelian approach [@Sutcli�e1994]. All objects in the same class share
a number of characteristics (e.g. “All men are mortal”);
polythetic : we can also measure the similarity by using a measure of proximity
(distance, dissimilarity). In this case the notion of resemblance is measured more
fuzzy and two objects of the same class will have “close” characteristics within the
meaning of the measure used.

Context of this lecture
polythetic classification
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Classes or groups

A classification leads to the distribution of the set of vectors forms in di�erent
homogeneous classes. The definition of a class and the relations between classes can be
very varied. In this chapter we will focus on both main classification structures:

partition,
hierarchy.
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Partitions

Définition
� being a finite set, a set P = (C

1
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, ..., CK ) non-empty parts of � is a partition if:
1 ’i ”= j, Ci fl Cj = ÿ,
2 fii Ci = �.

In a set � = (x
1

, ..., xN) partitioned into K classes, each element of the set belongs to a
class and only one. A practical way of describing this P partition consists of using a matrix
notation.
Let C(P) the characteristic matrix of the partition P = (C

1

, C
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, ..., CK ) (ou matrice de

C(P) = C =
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· · · c
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. . .

...
cN1

· · · cNK
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db

where cik = 1 i� x i œ Ck , and cik = 0 otherwise.
Note that the sum of the i th row is equal to 1 (an element belongs to a single class) and
the sum of the values of the k th column is worth nk the number of elements of the class
Ck . On a donc

qK
k=1

nk = N.
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Hard and Fuzzy partition

The notion of hard partition is based on a set design classic. Considering the work of
[@Zadeh1965] on the sets fuzzy, a definition of the concept of fuzzy partition seems
“Natural”. The fuzzy classification, developed at the beginning of 1970s [@Ruspini1969],
generalizes an approach classical classification by broadening the concept belonging to a
class.

Fuzzy sets
As part of the classic set design, an individual x i belongs to or does not belong to a given
set Ck . In the theory of fuzzy subsets, an individual can belong to several classes with
di�erent degrees of membership.
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Fuzzy clustering

In classification this amounts to authorize the vectors forms to belong to all classes, which
results in the releasing the binarity constraint on the coe�cients belonging to cik . A fuzzy
partition is defined by a fuzzy classification matrix C = {cik} checking the following
conditions:

1 ’k = 1..K , ’x i œ �, cik œ [0, 1].
2 ’k = 1..K , 0 <

qN
i=1

cik < N,
3 ’x i œ �,

qK
k=1

cik .

The second condition reflects the fact that no class should not be empty and the third
expresses the concept of total membership.
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Indexed Hierarchy

� is a finite set. H a set of non empty subsets of � is a hiearchy i�

� œ H
’x œ �, {x} œ H
’h, hÕ œ H, h fl hÕ = ÿ or hÕ µ h or h µ hÕ
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Index

The index of a hierarchy is a function i from H to R+ having the following properties

h µ hÕ ∆ i(h) < i(hÕ)
’x œ �, i({x}) = 0

(h, i) is then an indexed hierarchy
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Partition and Hierarchy

each level of a indexed hierarchy is a partition
{�, P1, P2, . . . , PK , x

1

, .., xn} is a hierarchy
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Clustering ideal

Ideal
2 objects of a class should be closer than 2 objects of 2 di�erent classes
∆ most of the time impossible to achieve

numerical approach: definition of a criterion (with or without a unique extremum)
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The Bell numbers

But the number of partitions possible, even for a problem of reasonable size, is huge.
Indeed if we consider a set of N objects to partition into K classes, the number of possible
partitions is:

NP(N, K) = 1
K !

Kÿ

k=0

(≠1)k≠1 · CK
k · kN .

Figure 1: The 52 partitions of a set with 5 elements
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The bell number

The bell number reccurence
Show that the number of partition of n objects verifies

Bn+1

=
nÿ

k=0

Cn
k Bk

Compute the number of partition of 5 objects.
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The bell number

fix an element x in a set with n + 1 elements,
sort the partitions according to the number k of elements outside the part containing
x,
For each value of k from 0 to n, it is necessary to choose k elements among the n
di�erent elements of x, then to give a partition.
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Criteria and algorithms I

The concepts of partition and polythetic classification being specified, the following
question emerges: how to find an optimal partition of a dataset, when the resemblance
between two individuals is assessed by a measure of proximity?

The first thing to do is to formally clarify the meaning of the word optimal.

The solution generally adopted is to choose a digital measure of the quality of a partition.

This measure is sometimes called a criterion, functional, or still function of energy. The
purpose of a classification procedure so is to find the partition or partitions that give the
best value (the smallest or the largest) for a given criterion.

Rather than looking for the best score, the one that gives the optimum value of the
criterion, more methods are used which converge towards “local” optima “of the criterion.
thus found scores are often satisfying.
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Intra-classe Inertia and partition I

Many criteria exist [@Gordon1980]. Some may be related, as we will see in the following,
at the choice of a model for all the data. One of most used functions is the sum of
intra-class variances:

IW =
Kÿ

k=1

Nÿ

i=1

cikÎx i ≠ µkÎ2

= trace(SW )

where the µk are the prototypes (centers) of classes and the cik are the elements of a hard
partition matrix. The problem is then a problem of optimization under constraints (related
to cik) :

(ĉ, µ̂) = arg min
(c,µ)

IW ((c, µ)) (1)

where µ represents all the centers of gravities.
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K-means algorithm I

A common algorithm for solving this problem is the one k-means. Historically, this
algorithm dates sixties. It has been proposed by several researchers in di�erent areas at
close dates [@ Edwards1965, @ Lloyd1957]. This algorithm based on considerations
Geometric certainly owes its success to its simplicity and e�ciency:

Algorithm
1 Initialization of centers: a common method is to initialize centers with coordinates of

K randomly selected points.
2 Then the iterations have the following alternate form:

1
given µ

1

, · · · , µK , chose cik minimizing IW ,

2
given C = {cik}, minimise IW with respect to µ

1

, · · · , µK .

The first step
assigns each x i to the nearest prototype,

the second step
recalculates the position of the prototypes considering that the prototype of the class i
becomes its mean vector.
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K-means algorithm II

Convervegence of kmeans algorithm
It is possible to show that each iteration decreases the criterion but no guarantee of
convergence towards a global maximum does not exist in general.

Link with fuzzy clustering
If the k-means criterion is considered from the point of view of research of a fuzzy
partition, that is, if the constraints on the cik are released and become cik œ [0, 1] instead
of cik œ {0, 1}, the optimal partition in the sense of the new criterion is the optimal one for
the classical criterion [@Selim1984]. In other words, there is no interest in considering
fuzzy scores when working with the criterion of k-means.
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Kmeans algorithm’s

Nuées dynamiques (dynamic swarm)
This form of alternate algorithm where a certain criterion is optimized, alternatively with
respect to the class membership variables, then compared to the parameters defining these
classes has been extensively exploited. Let’s mention among others the dynamic clouds of
Diday [@Diday1971] and the fuzzy c-means algorithm [@Bezdeck1974].
Note that Webster Fisher [@Fisher1958] (not to be confused with Ronald Fisher) had
proposed an algorithm finding the optimal partition, within the intra-class variance, of a set
of N data one-dimensional in O(N · K 2) operations using methods from dynamic
programming.
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In R, the function kmeans {stats} I

e�ectively implements the algorithm.

data(iris)
kmeans.res <- iris %>%

select(-Species,-Sepal.Length,-Sepal.Width) %>%
kmeans(3,nstart = 10)

cluster<-as.factor(kmeans.res$cluster)
centers <-as.tibble(kmeans.res$centers)

ggplot(iris, aes(x=Petal.Length, y=Petal.Width, color=cluster)) +
geom_point() +
geom_point(data=centers, color=�coral�,size=4,pch=21)+
geom_point(data=centers, color=�coral�,size=50,alpha=0.2)
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In R, the function kmeans {stats} II
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Figure 2: Automatic classification into three classes of iris by the k-means algorithm
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In R, the function kmeans {stats} III

knitr::kable(table(iris$Species, kmeans.res$cluster),
caption = "Table de contingence croisant
réalité et estimation de la structure par k-means")

Table 1: Table de contingence croisant réalité et estimation de la structure par k-means

1 2 3
setosa 0 50 0
versicolor 2 0 48
virginica 46 0 4
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Voronoi tiling I

By definition, kmeans partition the space by a Voronoi tiling defined by the centers.

library(deldir)

## Warning: package �deldir� was built under R version 3.4.4

## deldir 0.1-15

#This creates the voronoi line segments

voronoi <- deldir(centers$Petal.Length, centers$Petal.Width)

##
## PLEASE NOTE: The components "delsgs" and "summary" of the
## object returned by deldir() are now DATA FRAMES rather than
## matrices (as they were prior to release 0.0-18).
## See help("deldir").
##
## PLEASE NOTE: The process that deldir() uses for determining
## duplicated points has changed from that used in version
## 0.0-9 of this package (and previously). See help("deldir").
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Voronoi tiling II

#Now we can make a plot

ggplot(data=iris, aes(x=Petal.Length, y=Petal.Width, color=cluster)) +
geom_point()+
#Plot the voronoi lines

geom_segment(
aes(x = x1, y = y1, xend = x2, yend = y2),
size = 2,
data = voronoi$dirsgs,
linetype = 1,
color= "coral") +

#Plot the points

geom_point(data=centers,
fill=�coral�,
pch=21,
size = 4,
color="#333333")
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Voronoi tiling III
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Figure 3: Classification automatique en trois classes des iris par l’algorithme des centres mobiles et

pavage de Voronoï
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Spectral Clustering
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Hierachical Clustering

There are two main approaches

Agglomerative
Divisive
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Hierarchical Agglomerative Clusering

The principle of Hierarchical Agglomerative Clusering is fairly easy

1 Initialisation each � element constitutes a class. A dissimilarity D is computed
between all classes.

2 While number of cluster > 1

1 group the two closest classes in the sense of the dissimilarity D,
2 calculation of “distances” between the new class and the others.
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Cluster dissimilarity

The dissimilarity D between two parts h and hÕ of �, can be defined in many ways from a
measure of dissimilarity d on �.

single link (critère du lien minimum):

D(h, hÕ) = min
#
d(x, y)/x œ h and y œ hÕ$ ,

complete link (critère du lien maximum)

D(h, hÕ) = max
#
d(x, y)/x œ h and y œ hÕ$ ,

* group average

D(h, hÕ) =
qnh

i=1

qnhÕ
j=1

d(x i , x j)
nh · nhÕ

,

Ward criterion

D(h, hÕ) = nh · nhÕ

nh + nhÕ
Îmh ≠ mhÕ Î2.
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Intra class criterion and Ward method I

When we have a partition in K classes, the criterion of intra-class inertia measures its
homogeneity:

IW = trace(SW ),

=
Kÿ

k=1

nkÿ

i=1

(x ik ≠ mk)t(x ik ≠ mk).

Let us consider two partitions

P = (P
1

, · · · , PK ),
and P Õ, the partition obtained by merging the classes Ck et C¸.
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Intra class criterion and Ward method II

We can show that the di�erence between the inertia of the two partitions is equal to
Ward’s aggregation criteria:

IW Õ ≠ IW = nk · n¸

nk + n¸
Îmk ≠ m¸Î2.

Thus, each stage of Ward’s algorithm chooses a new partition that limits the increase of
intra-class inertia. Note that this property does not guarantee overall optimization of the
criteria.
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Ultrametric distance

An ultrametric distance ” checks all the properties that define a classical distance and
satisfies in addition the inequality

”(x, z) Æ max (”(x, z), ”(z, y)) ,

stronger than the triangular inequality.

it is possible to interpret the minimum number of nestings required for two form
vectors to belong to one class, as a dissimilarity.
this dissimilarity is an ultrametric distance.
it is possible to understand the problem of hierarchical clustering as the search for an
ultrametric ” close to d , the dissimilarity used on �
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Divisive hierarchical clustering

the divisive clustering approach is much less popular
In theory, the first step of a downward method must compare $2ˆ{N-1}-1 $ possible
partitions from N vectors, in two classes.
To avoid those impossible calculations, one solution is to apply a method of
partitioning to get both classes. Repeating this process recursively on each class
obtained allows to have fast algorithms
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Hierarchical agglomerative clustering with R I

agnes
Agglomerative Nesting Description: Computes agglomerative hierarchical
clustering of the dataset. Usage: agnes(x, diss = inherits(x, “dist”), metric =
“euclidean”, stand = FALSE, method = “average”, keep.diss = n < 100,
keep.data = !diss)
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Example of use I

## Warning: package �MASS� was built under R version 3.4.4

##
## Attaching package: �MASS�

## The following object is masked from �package:dplyr�:
##
## select

library(cluster)

## Warning: package �cluster� was built under R version 3.4.4
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Example of use II

res<-agnes(crabsquant2,method="ward")

plot(res,which.plots=1)
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Example of use III

Height

Banner of  agnes(x = crabsquant2, method = "ward")

Agglomerative Coefficient =  0.98

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
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Example of use IV

plot(res,which.plots=2)
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Example of use V
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Example of use VI

plot(1:199,sort(res$height))
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Example of use VII
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Divisive Hiearchical Clustering with R

diana
DIvisive ANAlysis Clustering Description: Computes a divisive hierarchical
clustering of the dataset returning an object of class ‘diana’. Usage:
diana(x, diss = inherits(x, “dist”), metric = “euclidean”, stand = >FALSE,
keep.diss = n < 100, keep.data = !diss)
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Example of use I

res<-diana(crabsquant2)

plot(res,which.plots=1)

Christophe Ambroise Data Analysis 45 / 74



Example of use II

Height

Banner of  diana(x = crabsquant2)

Divisive Coefficient =  0.91

0.183 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0
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Example of use III

plot(res,which.plots=2)
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Example of use IV
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Example of use V

plot(1:199,sort(res$height))
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Example of use VI
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