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The twoClass dataset

This is a synthetic dataset, which can be found in Kuhn and Johnson 2013 (or
more simply in AppliedPredictiveModeling package).
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Classification



Classification = supervised learning with a binary label
Setting
> You have past/historical data, containing data about individuals

i=1,...,n

» You have a features vector x; € R? for each individual i

v

For each i, you know if he/she clicked (y; = 1) or not (y; = —1)
We call y; € {—1,1} the label of i
(xi, yi) are i.i.d realizations of (X, Y)

v

v

Aim

> Given a features vector x (with no corresponding label), predict a label
.)A/ € {_17 1}
» Use data D = {(x1,¥1),- ., (Xn, ¥n)} to construct a classifier



Probabilistic / statistical approach

» Model the distribution of Y|X

» Construct estimators p1(x) and p_1(x) of
P)=P(Y =1X =x) and pi(x)=1—pi(x)
» Given x, classify using

L)1 if pr(x) =t
Y= —1 otherwise

for some threshold t € (0, 1)



Bayes formula. We know that
X=xY =y)B(Y =y)
P(X = x)
_ P(X =x|Y = y)P(Y = y)
Dy PX=x]Y =y )P(Y =y)

If we know the distribution of X|Y and the distribution of Y, we know the
distribution of Y|X

py(x) = B(Y = ylX = x) = 2L

Bayes classifier. Classify using Bayes formula, given that:

> We model P(X]Y)
» We are able to estimate P(X|Y) based on data

Maximum a posteriori. Classify using the discriminant functions
5,(x) = log B(X = x|Y = y) + log (Y = y)

for y = 1,—1 and decide (largest, beyond a threshold, etc.)



Remark.

» Different models on the distribution of X|Y leads to different classifiers
> The simplest one is the Naive Bayes

» Then, the most standard are Linear Discriminant Analysis (LDA) and
Quadratic discriminant Analysis (QDA)



Naive Bayes



Naive Bayes. A crude modeling for P(X|Y): assume features X/ are
independent conditionally on Y:

d
P(X =x|Y =y) = [[P(X = x|y =)
j=1
Model the univariate distribution X/|Y: for instance, assume that
B(X'|Y) = Normal(jy;, 074),
parameters p; x and aﬁk easily estimated by MLE
> If the feature X’ is discrete, use a Bernoulli or multinomial distribution

> Leads to a classifier which is very easy to compute

> Requires only the computation of some averages (MLE)



Discriminant analysis



Discriminant Analysis. Assume that
P(X]Y = y) = Normal(s,, ),
where we recall that the density of Normal(u, X) is given by

1
©(2m)9/2/det T

In this case, discriminant functions are

(x) exp (= 3= = (x = )

dy(x) = logP(X = x|Y = y) + logP(Y = y)
1

)

—~

- d
X = Ny)T):y I(X — hy) — 5 In(2)

logdetY, + logP(Y = y)

N =



Estimation. Use “natural” estimators, obtained by maximum likelihood
estimation. Define for y € {—1,1}

L,={i=1,...,n: yi=y} and n,=|l,]|
MLE estimators are given by

I@’(Y:y): Ty ZXH

Iely

iy:*Z Hy)

i€ly

for y € {—1,1}. These are simply the proportion, sample mean and sample
covariance within each group of labels



Linear Discriminant Analysis (LDA)

> Assumes that X =31 =% _;
> All groups have the same correlation structure

» In this case decision function is linear (x, w) > ¢ with
-1
w=X""(p—p-1)

c= %((ula S ) = (-1, T i)
P(Y =1|X =x)
+log (]P’(Y —Tp g x)>

Quadratic Discriminant Analysis (QDA)

> Assumes that ¥; # ¥ _;

» Decision function is quadratic



Example: LDA
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Logistic regression



Logistic regression

» By far the most widely used classification algorithm
» We want to explain the label y based on x, we want to “regress” y on x
» Models the distribution of Y|X

For y € {—1,1}, we consider the model
P(Y =1|X =x) = o(x ' w+ b)

where w € R? is a vector of model weights and b € R is the intercept, and
1

where o is the sigmoid function o(z) = e
e—Z



Compute w and b as follows:

(W, b) € argmin = Zlog (14 e (Gaw)+o)y

weRrd ber N

» It is a convex and smooth problem
» Many ways to find an approximate minimizer

» Convex optimization algorithms (more on that later)

If we introduce the logistic loss function

Uy,y') = log(1+e™")
then
(W, b) € argmin 726 Yi, {Xi, w) 4 b)

wERd bER



Other classical loss functions for binary classication

» Hinge loss (SVM), £(y,y’) = (L — yy')+
» Quadratic hinge loss (SVM), £(y,y") = 3(1 — yy')3
> Huber loss {(y,y") = —4yy'l,, 1+ (1 — yy/)ilyy'zfl

Loss functions

Hinge
Squared hinge
Logistic

0/1

Huber

loss

» These losses can be understood as a convex approximation of the 0/1 loss
Uy, y')=1y<0



k Nearest-Neighbors



Example: k Nearest-Neighbors (with k = 3) |
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Example: k Nearest-Neighbors (with k = 4) |
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k Nearest-Neighbors

> Neighborhood Vy of x: k closest from x learning samples.

k-NN as local conditional density estimate

ZX,‘EVX 1{)’i:+1}

ﬁ+1(x) = |V |

» KNN Classifier:

+1if pra(x) > po1(x)
—1 otherwise

Feun (x) = {

» Remark: You can also use your favorite kernel estimator...



Metrics



Confusion matrix

Definitions : Confusion matrix

For all individual i = 1,...,n, define Y/ as the prediction (of Yi). The
confusion matrix is defined as
Observed labels

Yi=-1|VYi=1
Predictions Y/ = —1 TN FN
YF=1 FP TP
total N P

where P=POSITIVE, N=NEGATIVE, F=FALSE, T=TRUE.



Metrics from the confusion matrix

Define

> the true positive rate or sensitivity or recall as TP/P

» the false discovery rate as FP/(FP+TP)

> the true negative rate or specificity as TN/N

> the false positive rate as FP/(FP+TN)=FP/N = 1 - specificity

» the precision as
TP

TP + FP

> the accuracy as
TP+ TN

P+ N
» the False-Discovery-Rate (FDR) as 1—precision.



The ROC curve

To define the predictions (Y;"), we consider a 1/2 threshold. Now, let the
threshold varies from 0 to 1.

For each value of the threshold s, compute

> the true positive rate TPR;
> the false-discovery-rate FPR;.

The ROC curve and AUC

The ROC (receiver operating characteristic) curve is define as the curve

{(TPR, FPR;),Vs € [0,1]}.

The AUC is the area under the ROC curve.

A classification rule constructed purely at random has an AUC of around 0.5.
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