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The twoClass dataset

This is a synthetic dataset, which can be found in Kuhn and Johnson 2013 (or
more simply in AppliedPredictiveModeling package).

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

PredictorA

P
re

di
ct

or
B classes

Class1

Class2



Classification



Classification = supervised learning with a binary label

Setting

I You have past/historical data, containing data about individuals
i = 1, . . . , n

I You have a features vector xi ∈ Rd for each individual i
I For each i , you know if he/she clicked (yi = 1) or not (yi = −1)
I We call yi ∈ {−1, 1} the label of i
I (xi , yi ) are i.i.d realizations of (X ,Y )

Aim

I Given a features vector x (with no corresponding label), predict a label
ŷ ∈ {−1, 1}

I Use data D = {(x1, y1), . . . , (xn, yn)} to construct a classifier



Probabilistic / statistical approach

I Model the distribution of Y |X
I Construct estimators p̂1(x) and p̂−1(x) of

p1(x) = P(Y = 1|X = x) and p−1(x) = 1− p1(x)

I Given x , classify using

ŷ =
{

1 if p̂1(x) ≥ t
−1 otherwise

for some threshold t ∈ (0, 1)



Bayes formula. We know that

py (x) = P(Y = y |X = x) = P(X = x |Y = y)P(Y = y)
P(X = x)

= P(X = x |Y = y)P(Y = y)∑
y′=−1,1 P(X = x |Y = y ′)P(Y = y ′)

If we know the distribution of X |Y and the distribution of Y , we know the
distribution of Y |X

Bayes classifier. Classify using Bayes formula, given that:

I We model P(X |Y )
I We are able to estimate P(X |Y ) based on data

Maximum a posteriori. Classify using the discriminant functions

δy (x) = log P(X = x |Y = y) + log P(Y = y)

for y = 1,−1 and decide (largest, beyond a threshold, etc.)



Remark.

I Different models on the distribution of X |Y leads to different classifiers
I The simplest one is the Naive Bayes
I Then, the most standard are Linear Discriminant Analysis (LDA) and

Quadratic discriminant Analysis (QDA)



Naive Bayes



Naive Bayes. A crude modeling for P(X |Y ): assume features X j are
independent conditionally on Y :

P(X = x |Y = y) =
d∏

j=1

P(X j = x j |Y = y)

Model the univariate distribution X j |Y : for instance, assume that

P(X j |Y ) = Normal(µj,k , σ
2
j,k ),

parameters µj,k and σ2
j,k easily estimated by MLE

I If the feature X j is discrete, use a Bernoulli or multinomial distribution
I Leads to a classifier which is very easy to compute
I Requires only the computation of some averages (MLE)



Discriminant analysis



Discriminant Analysis. Assume that

P(X |Y = y) = Normal(µy ,Σy ),

where we recall that the density of Normal(µ,Σ) is given by

f (x) = 1
(2π)d/2

√
det Σ

exp
(
− 1

2 (x − µ)>Σ−1(x − µ)
)

In this case, discriminant functions are

δy (x) = log P(X = x |Y = y) + log P(Y = y)

= −1
2 (x − µy )>Σ−1

y (x − µy )− d
2 ln(2π)

− 1
2 log det Σy + log P(Y = y)



Estimation. Use “natural” estimators, obtained by maximum likelihood
estimation. Define for y ∈ {−1, 1}

Iy = {i = 1, . . . , n : yi = y} and ny = |Iy |

MLE estimators are given by

P̂(Y = y) = ny

n , µ̂y = 1
ny

∑
i∈Iy

xi ,

Σ̂y = 1
ny

∑
i∈Iy

(xi − µ̂y )(xi − µ̂y )>

for y ∈ {−1, 1}. These are simply the proportion, sample mean and sample
covariance within each group of labels



Linear Discriminant Analysis (LDA)

I Assumes that Σ = Σ1 = Σ−1

I All groups have the same correlation structure
I In this case decision function is linear 〈x ,w〉 ≥ c with

w = Σ−1(µ1 − µ−1)

c = 1
2 (〈µ1,Σ−1µ1〉 − 〈µ−1,Σ−1µ−1〉)

+ log
( P(Y = 1|X = x)
P(Y = −1|X = x)

)
Quadratic Discriminant Analysis (QDA)

I Assumes that Σ1 6= Σ−1

I Decision function is quadratic



Example: LDA
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Logistic regression



Logistic regression

I By far the most widely used classification algorithm
I We want to explain the label y based on x , we want to “regress” y on x
I Models the distribution of Y |X

For y ∈ {−1, 1}, we consider the model

P(Y = 1|X = x) = σ(x>w + b)

where w ∈ Rd is a vector of model weights and b ∈ R is the intercept, and
where σ is the sigmoid function σ(z) = 1

1 + e−z



Compute ŵ and b̂ as follows:

(ŵ , b̂) ∈ argmin
w∈Rd ,b∈R

1
n

n∑
i=1

log(1 + e−yi (〈xi ,w〉+b))

I It is a convex and smooth problem
I Many ways to find an approximate minimizer
I Convex optimization algorithms (more on that later)

If we introduce the logistic loss function

`(y , y ′) = log(1 + e−yy′
)

then

(ŵ , b̂) ∈ argmin
w∈Rd ,b∈R

1
n

n∑
i=1

`(yi , 〈xi ,w〉+ b)



Other classical loss functions for binary classication

I Hinge loss (SVM), `(y , y ′) = (1− yy ′)+

I Quadratic hinge loss (SVM), `(y , y ′) = 1
2 (1− yy ′)2

+

I Huber loss `(y , y ′) = −4yy ′1yy′<−1 + (1− yy ′)2
+1yy′≥−1

I These losses can be understood as a convex approximation of the 0/1 loss
`(y , y ′) = 1yy′≤0



k Nearest-Neighbors



Example: k Nearest-Neighbors (with k = 3) I
1 2

3 4



Example: k Nearest-Neighbors (with k = 4) I



k Nearest-Neighbors

I Neighborhood Vx of x: k closest from x learning samples.

k-NN as local conditional density estimate

p̂+1(x) =
∑

xi∈Vx
1{yi =+1}

|Vx|

I KNN Classifier:

f̂KNN(x) =
{

+1 if p̂+1(x) ≥ p̂−1(x)
−1 otherwise

I Remark: You can also use your favorite kernel estimator...



Metrics



Confusion matrix

Definitions : Confusion matrix
For all individual i = 1, . . . , n, define Y P

i as the prediction (of Yi ). The
confusion matrix is defined as

Observed labels
Yi = −1 Yi = 1

Predictions Y P
i = −1 TN FN

Y P
i = 1 FP TP
total N P

where P=POSITIVE, N=NEGATIVE, F=FALSE, T=TRUE.



Metrics from the confusion matrix

Define

I the true positive rate or sensitivity or recall as TP/P
I the false discovery rate as FP/(FP+TP)
I the true negative rate or specificity as TN/N
I the false positive rate as FP/(FP+TN)=FP/N = 1 - specificity
I the precision as

TP
TP + FP

I the accuracy as
TP + TN

P + N
I the False-Discovery-Rate (FDR) as 1−precision.



The ROC curve

To define the predictions (Y P
i ), we consider a 1/2 threshold. Now, let the

threshold varies from 0 to 1.

For each value of the threshold s, compute

I the true positive rate TPRs

I the false-discovery-rate FPRs .

The ROC curve and AUC
The ROC (receiver operating characteristic) curve is define as the curve{

(TPRs ,FPRs),∀s ∈ [0, 1]
}
.

The AUC is the area under the ROC curve.

A classification rule constructed purely at random has an AUC of around 0.5.
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