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Chapter 1

Theory of Stochastic Processes

In this chapter, we recall some facts on theory of stochastic processes. Proofs can be found for
example in Dellacherie [40], Dellacherie and Meyer [44|, He, Wang and Yan [67] and Rogers and
Williams [119].

1.1 Background

As usual, we start with a filtered probability space (2, F,F,P) where F = (F;,¢t > 0) is a given
filtration satisfying the usual conditions, i.e., F is continuous on right (F; = Ns>+Fs) and Fy contains
all negligeable sets, and F = F.,. A process X is a family of random variables such that (w,t) —
Xi(w) is F ® B measurable, where B is the Borel field on RT (one says also measurable process).

1.1.1 Path properties

Definition 1.1.1 1) A process X is continuous if, for almost all w, the map t — X;(w) is contin-
uous. A process X is continuous on the right with limits on the left (in short cadlag following the
French acronym!) if, for almost all w, the map t — X(w) is cadlag.

2) A process A is increasing if Ag = 0, A is right-continuous, and As < A, a.s. for s <t. An
increasing process A = (A, t > 0) is integrable if E(As—) < 00, where Ano— = limy_, o0 Ay.

Sometimes, one has to consider increasing processes defined for ¢ € [0, 00] (with a possible jump at
+00). In that case, the process is integrable if F(A) < co.

For a (right-continuous) increasing process A, we note fab psdAs = jia b psdAs as soon as the
integral is well defined. The point here is that the integration is done on the interval ]a, b].

Definition 1.1.2 A process X is F-adapted if for any t > 0, the random variable X; is Fy-
measurable.

The natural filtration FX of a stochastic process X is the smallest filtration F which satisfies the
usual hypotheses and such that X is F-adapted. We shall write in short (with an abuse of notation)
FX =0(Xs,5<t).

Remark 1.1.3 It is not true in general that if F and F are right-continuous, the filtration K defined
as K; := F; V F; is right-continuous. Nevertheless, we shall often write F V F (with an abuse of
notation) the smallest right-continuous filtration which contains F and F.

1In French, continuous on the right is continu a droite, and with limits on the left is admettant des limites &

gauche. We shall also use cad for continuous on the right. The use of this acronym comes from P-A. Meyer.

11



12 CHAPTER 1. THEORY OF STOCHASTIC PROCESSES

Exercise 1.1.4 Starting from a non continuous on right filtration F°, define the smallest right-
continuous filtration F which contains F°. 4

In all the lecture, we shall write X € Fr (resp. X € bFr) for X is an Fp-measurable (resp. a
bounded Fr-measurable) random variable.

1.1.2 Stopping times

A random variable 7, valued in [0, o] is an F-stopping time if, for any t > 0, {r <t} € F;.

A stopping time 7 is predictable if there exists an increasing sequence (7,) of stopping times
such that almost surely
(i) limy, 7, = 7,
(ii) 7, < 7 for every n on the set {7 > 0}. If needed, we shall make precise the choice of the
filtration, writing that the F-stopping time 7 is F-predictable.
A stopping time 7 is totally inaccessible if P(7 = ¢ < c0) = 0 for any predictable stopping time o
(or, equivalently, if for any increasing sequence of stopping times (7,,,n > 0), P({lim7, = 7}NA4) =0
where A = N, {r, < 7}).
If all F-martingales are continuous, then any F-stopping time is predictable. This is the case in
particular if F is a Brownian filtration

Definition 1.1.5 If 7 is an F-stopping time, the o-algebra F. of events prior to T, and the o-algebra
Fr_ of events strictly prior to T are defined as:

Fr={Ae€Fn : An{r <t} € F, Vt}

whereas F,_ is the smallest o-algebra which contains Fo and all the sets of the form AN{t < 7},t >0
for A € Fy.

For A € F,, one sets 74 the stopping time defined as 74 = 711 4 + ool 4e.

Exercise 1.1.6 Prove that 74 is a stopping time. <

Exercise 1.1.7 Show that for a stopping time 7, one has 7 € F._ and F,_ C F,. Find an example
where F,_ # F. <

Exercise 1.1.8 Check that if F C G and 7 is an F-stopping time, (resp. F-predictable stopping
time) it is a G-stopping time, (resp. G-predictable stopping time). Give an example where 7 is a
G-stopping time but not an F-stopping time. Give an example where 7 is a G-predictable stopping
time, and an F-stopping time, but not a predictable F-stopping time. <

1.1.3 Predictable and optional o-algebra

If 7 and ¥ are two stopping times, the stochastic interval |¢, 7] is the set {(w, ) : H(w) <t < 7(w)}.
In the same way, we shall use the notation [¢, 7], as well as for other stochastic intervals.

Proposition 1.1.9 Let F be a given filtration.

e The optional o-algebra O is the o-algebra on RT x Q generated by cadlag F-adapted processes
(considered as mappings on RT x Q). The optional o-algebra O is equal to the o-algebra
generated on F @ B by the stochastic intervals [, 00 where T is an F-stopping time.

e The predictable o-algebra P is the o-algebra on RT x Q generated by the F-adapted cag (or
continuous) processes. The predictable o-algebra P is equal to the o-algebra generated on F QB
by the stochastic intervals |9, 7] where 9 and T are two F-stopping times such that 9 < 7.
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If necessary, we shall note P(FF) this predictable o-algebra, to emphasize the role of F. A process X
is said to be F-predictable (resp. F-optional) if the map (w,t) — X(w) is P-measurable (resp.
O-measurable).

Example 1.1.10 An adapted cag process is predictable.

The inclusion P C O holds. These two o-algebras P and O are equal if all F-martingales are
continuous. Note that O = P if and only if any stopping time is predictable. In general

O =PV o(AM, M describing the set of F martingales) .

If X is a predictable (resp. optional) process and 7 a stopping time, then the stopped process
X" = (X] = Xinr,t > 0) is also predictable (resp. optional). If X is a cadlag adapted process, then
(X¢-,t > 0) is a predictable process.

If 7 is a stopping time, the (cag) process 1, is predictable. A stopping time 7 is predictable
if and only if the process (Ij;<ry = 1 — l;<4y,t > 0) is predictable, that is if and only if the
stochastic interval [0, 7[= {(w,t) : 0 <t < 7(w)} is predictable. See Dellacherie [40], Dellacherie
and Meyer [42] and Cohen & Elliott [51] for related results.

Definition 1.1.11 A real-valued process X is progressively measurable with respect to a given
filtration F = (Fy,t > 0), if, for everyt, the map (w,s) — Xs(w) from Qx[0, ] into R is Fr@B([0,1])-
measurable.

Any cad (or cag) F-adapted process is progressively measurable. An F-progressively measurable
process is F-adapted. If X is progressively measurable, then

E(/OooXtdt> :/OOOE(Xt)dt,

where the existence of one of these expressions implies the existence of the other.
If X is F-progressively measurable and 7 an F-stopping time, then the r.v. X, is Fr-measurable on
the set {7 < oc0}.

If 7 is a random time (i.e. a non negative r.v.), the o-algebra F, and F,_ are defined as

Fr = o(Y;, Y is anF — optional process)
Fr— = o(Y;, Y is anF — predictable process)
1.1.4 Doob’s maximal identity

We present here a result that will be used letter on.

Definition 1.1.12 An F-local martingale N belongs to the class (Co), if it is strictly positive, with
no positive jumps, and lim;_, ., Ny = 0.

Lemma 1.1.13 For any a > 0, we have:

P(Se > a) = (%) A (1.1.1)

x
In particular, 5 is a uniform random variable on (0,1).
oo

For any F-stopping time ¥, denoting SV = SUpy>y9 Nu -

P (SY > a|Fy) = (]\;9) AT, (1.1.2)

N,
Hence =2 is also a uniform random variable on (0,1), independent of Fy.

5’19
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PROOF: The first part is left as the Exercise 1.6.3. The second part is an application of the first one
for the martingale (Ny4¢,t > 0) and the filtration (Fyie,t > 0). O

Exercise 1.1.14 et B be a Brownian motion. Prove that exp(AB; — ’\7215) belongs to (Cp). <

1.1.5 Localization

Definition 1.1.15 An adapted, right-continuous process M is an F-local martingale if there exists
a sequence of stopping times (1,,) such that:

e The sequence T, s increasing and lim, 7, = 0o, a.s.

e For every n, the stopped process M™ ¢, oy is an F-martingale (we recall that M = M- ).

A sequence of stopping times such that the two previous conditions hold is called a localizing or
reducing sequence. We also use the following definitions: A local martingale M is locally square
integrable if there exists a localizing sequence of stopping times (7,,) such that M™ 1, ¢y is a
square integrable martingale. An increasing process A is locally integrable if there exists a localizing
sequence of stopping times such that A™ is integrable. By similar localization, we may define locally
bounded martingales, local super-martingales, and locally finite variation processes.

If M is a local martingale, it is always possible to choose the localizing sequence (7,,,n > 1) such
that each martingale M™ 1, o) is uniformly integrable.
We denote by M,.(P,F) the space of P local martingales relative to F.

Exercise 1.1.16 Prove that a positive local martingale is a super-martingale. <

1.1.6 Doob-Meyer decomposition

An adapted process X is said to be of class? (D) if the collection X, 1, where 7 is a stopping
time is uniformly integrable.

If Z is a supermartingale of class (D), there exists a unique increasing, integrable and predictable
process A such that Z, = E(Aw — A¢|F:). In particular, any supermartingale of class (D) can be
written as Z = M — A where M is a uniformly integrable martingale. The decomposition is unique.

Any supermartingale can be written as Z = M — A where M is a local martingale and A a
predictable increasing process. The decomposition is unique.

There are other decompositions of supermartingales, as a sum of a martingale and an optional
process which satisfies particular conditions that are useful. We shall comment that later on.

Multiplicative decomposition of positive supermartingales

Lemma 1.1.17 Let Z be a positive supermartingale of class D. There exists a local martingale N
and a predictable decreasing process D such that Z = ND.

PRrROOF: Assume that the multiplicative decomposition exists. Then, from Yoeurp’s lemma 1.2.11
dZ; = DydN; + N;_dDy, and the Doob-Meyer decomposition of Z is dZ; = du; — dAY. From
uniqueness

dAY = —N;_dD; (1.1.3)

2Class (D) is in honor of Doob.
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which in particular, yields to AA? = —N;_ADy, so that D;_(1 — Zt%AAf) = D;. Therefore, using
(1.1.3) again, dD; = ——2t—dA?, so that

Zi_ —AAP
¢ 1
D; = - ——dA?P
! P ( /0 Zs— - AAEZ S)

Setting dN; = D%d,ut, we obtain the existence of the decomposition. If AP is continuous, D; = e~
where 'y = fot S—dAP. O

Iy

1.2 Semi-martingales

1.2.1 Definition

An F-adapted process X is an F-semi-martingale if X = M + A where M is an F-local martingale
and A an F-adapted process with finite variation. If there exists a decomposition with a process
A which is predictable, the decomposition X = M + A where M is an F-martingale and A an
F-predictable process with finite variation is unique and X is called a special semi-martingale. If
X is continuous, the process A is continuous.

In general, if G = (G, t > 0) is a filtration larger than F = (F;, ¢t > 0), i.e., Fy C G, Vi > 0 (we
shall write F C G), it is not true that an F-martingale remains a martingale in the filtration G. It

is not even true that F-martingales remain G-semi-martingales. One of the goal of this book is to
give conditions so that this property holds.

Example 1.2.1 (a) Let G; = F. Then, the only F-martingales which are G-martingales are
constants.

(b) An interesting example is Azéma’s martingale p, defined as follows. Let B be a Brownian motion
and g; = sup{s <t, B, = 0}. The process

e = (sgnBy) VvVt — g, t >0

is a martingale in its own filtration. This discontinuous F#-martingale is not an FZ-martingale, it
is not even an FB-semi-martingale.

(c) Let F be the filtration generated by a Brownian motion B and G; = Fi1s. The process B is not
a G-semimartingale.

Exercise 1.2.2 Let B be a Brownian motion. Prove that W; = fot sgn(B;) dBs defines an FB and
an FW Brownian motion.

Prove that 8, = By — fot %ds defines a Brownian motion (in its own filtration) which is not a
Brownian motion in FB. <

1.2.2 Properties

Proposition 1.2.3 Let G be a filtration larger than F, ie., F C G. If x is a wi. (uniformly
integrable) F-martingale, then there exists a G-martingale X, such that E(X;|Fy) = xy, t > 0.

PROOF: The process X defined by X; := E(z|G:) is a G-martingale, and

]
The uniqueness of such a martingale X is not claimed in the above proposition and it is not true in
general.

We recall an important (but difficult) result due to Stricker [127].
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Proposition 1.2.4 Let F and G be two filtrations such that F C G. If X is a G-semimartingale
which is F-adapted, then it is an F-semimartingale.

One has also the (obvious) following result (see Exercise 1.2.9)

Proposition 1.2.5 Let F and G be two filtrations such that F C G. If X is a G-martingale which
1s F-adapted, then it is also an F-martingale.

Remark 1.2.6 This result does not extend to local martingales. See Stricker [127] and Follmer and
Protter [61].

Exercise 1.2.7 Let N be a Poisson process (i.e., a process with stationary and independent in-
crements, such that the law of N; is a Poisson law with parameter At). Prove that the process M
defined as M; = N; — At is a martingale and that the process M? — A\t = (N; — A\t)? — At is also a
martingale. Prove that for any 6 € [0, 1],

is a decomposition of the semi-martingale N, where p is a martingale. For which decomposition is
the finite variation process (1 — 8)N; 4+ 6\t a predictable process ? <

Exercise 1.2.8 Let 7 be a random time. Prove that 7 is a H-stopping time, where H is the natural
filtration of Hy = 1l{,<;y, and that 7 is a G stopping time, where G = F V H, for any filtration F.<

Exercise 1.2.9 Prove that, if M is a G-martingale, then M defined as M, = E(M|F;) is an
F-martingale. <

Exercise 1.2.10 Prove that, if G = F Vv F where F is independent of F, then any F martingale
remains a G-martingale.

Prove that, if F is generated by a Brownian motion W, and if there exists a probability Q equivalent
to P such that F is independent of F under Q, then any (P, F)-martingale remains a (P, G)-semi
martingale. <

1.2.3 Stochastic Integration

If X = M+ A is a semi-martingale and Y a (bounded) predictable process, we denote Y.X the
stochastic integral

t t t
(Y.X), ::/ YsdX, :/ YsdM;, +/ Y,dA;
0 0 0

The process Y.X is a semi-martingale. Note that here, for a right-continuous process, the symbol
fg Y,dX, stands for f]o 1 Y,dXs, i.e., the upper bound t is included in the integration.

1.2.4 Integration by Parts

By definition, any semi-martingale X admits a decomposition as a local martingale M and a finite
variation process. The martingale part admits a decomposition as M = M¢ + M9 where M°¢ is
continuous and M? a discontinuous martingale. The process M€ is denoted in the literature as
X¢ (even if this notation is missleading!). The optional It6 formula is (for f in C?, with bounded
derivatives)

FX) = f(Xo)+ fy f/(Xe)dXs + 5 fo f/(Xe)d(XC)s

+ Zo<s§t[f(Xs) - f(Xs*) - f/(Xs*)AXs] .
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where AXt = Xt — Xt— 3.

If U and V are two finite variation processes, the Stieltjes integration by parts formula can be
written as follows:

Uy, = U0V0+/ Vster/ U,-dvV, (1.2.1)
10,t] 10,t]

UoVo+ | Vi-dU; +/ Us-dVe + Y AU AVL.
10,t] 10,t]

s<t
As a partial check, one can verify that the jump process of the left-hand side, i.e., U V; — U;- V-, is
equal to the jump process of the right-hand side, i.e., V,- AU; + U~ AV, + AU, AV;.

Let X be a continuous local martingale. The predictable quadratic variation process of X
is the continuous increasing process (X) such that X? — (X) is a local martingale.
Let X and Y be two continuous local martingales. The predictable covariation process is the con-
tinuous finite variation process (X,Y’) such that XY — (X,Y) is a local martingale. The covariation
process of continuous martingales does not depend on the filtration.

Let X and Y be two local martingales. The covariation process [X,Y] is the finite variation
process such that

(i) XY — [X,Y] is a local martingale

(i) A[X, Y], = AX,AY;
The process [X] = [X, X] is non-decreasing; if X is continuous, then [X] = (X).
The predictable covariation process is (if it exists) the predictable finite variation process (X,Y")
such that XY — (X,Y) is a local martingale.
If X is a semi-martingale with respect to F and to G, then [X] is independent of the filtration.

The integration by parts for semi-martingales is
t t
XY = XoYs +/ X, dYs +/ Yo dXs+[X,Y];. (1.2.2)
0 0
For finite variation processes

U, V] = AU, AV,

s<t

and, if Y is with finite variation, Yoeurp’s formula states that
t t
XYy = XoYp +/ XdYs +/ Y,_dX;. (1.2.3)
0 0

We recall also Yoeurp [131] lemma (see also [81, Proposition 9.3.7.1]):

Proposition 1.2.11 Let X be a semi-martingale.
a) If A is a bounded variation process

t t
X, A, = XoAo +/ X, dA, +/ A,_dX, (1.2.4)
0 0

and [X, Al = AX.A.
b) If A is a predictable process with bounded variation

t t
XeAy = XoAo + / X,_dA, + / AdX, (1.2.5)
0 0

and [X, A] = AAX.

3

one can prove that, for a semi-martingale X, the sum is well defined.
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Exercise 1.2.12 Prove that if X and Y are continuous, (X,Y) = [X,Y].
Prove that if M is the compensated martingale of a Poisson process with intensity A, [M] = N and

1.3 Change of probability and Girsanov’s Theorem

1.3.1 Brownian filtration

Let F be a Brownian filtration, L an F-martingale, strictly positive such that Ly = 1 and define
dQl]:f = Ltd]P|.7:f Thena
t
~ 1
Bt = Bt - / 7d<B,L>S
o Ls

is a (Q, F)-Brownian motion. If M is an F-martingale,

t
—~ 1
My = M, — / (M, 1),
0 s

is a (Q, F)-local martingale.

1.3.2 Doléans-Dade exponential

Let F be a Brownian filtration and 1 an adapted process satisfying fot Y2ds < 00,Vt. The solution
of dLy = LyidW; is the local martingale

t t
L; = Loexp (/ e dWy — %/ wgds) =: LoE (W),
0 0

If E(L;) =1, the process L is a martingale.

If L is a strict local martingale, the positive measure Q defined as dQ = L;dP is not a probability
Q) #1)

For a continuous martingale M, the solution of dL; = Ly;dM,; is a positive local martingale

t t
L; = Loexp (/ VYsdM, — %/ wfd<M>s) = Lo&(M);
0 0

1.3.3 General case

More generally, let ' be a filtration and L an F-martingale, strictly positive such that Ly = 1
and define dQ|r, = LidP|z,. Then, if M is an F-martingale,

t
~ 1
M, := M, 7/ —d[M, L],
0 S

is a (Q, F)-martingale. If the predictable co-variation process (M, L) exists,

t
1
Mt—/O 7 d(M, L),

S—
is a (Q, F)-local martingale.

If M is a discontinuous martingale, the solution of dL; = L;_1;dM; can take negative values
and Q is a signed measure. The solution of dL; = L;_dY; is

E(Y): :=exp (Yt -Y, — ;(Yc>t> H(l + AYS)e_AYS .

s<t
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The solution of dL; = Li_v:dM; is positive if yAM > —1.

1.3.4 Ito-Kunita-Wentcell formula

We recall here the Ito-Kunita-Wentcell formula (see Kunita [98]). Let Fi(z) be a family of stochastic
processes, continuous in (£, z) € (R, x R?) a.s., and satisfying the following conditions:

(i) for each t > 0, x — Fy(z) is C? from RY to R,
(ii) for each z, (Fi(x),t > 0) is a continuous semimartingale

dF,(z Z [ (x)dM7,

where M/ are continuous semimartingales, and f7(z) are stochastic processes continuous in (¢,z),
such that for every s > 0, the map z — f(z) is C*, and for every z, f7(x) is an adapted process.
Let X = (X!,---, X9) be a continuous semimartingale. Then

Fi(X:) = Fo(Xo) +Z/ (X de—&-Z/ 8F s)dX!
& o1 x . 02F, .
zZZ/ 89&1 ) M7, X7) Z / O0x;0xy, d(X*, X

See Bank and Baum [17] for an extension to processes with jumps.

1.4 Projections and Dual Projections

In this section, after recalling some basic facts about optional and predictable projections, we intro-
duce the concept of a dual predictable (resp. optional) projection, which leads to the fundamental
notion of predictable compensators. We recommend the survey paper of Nikeghbali [113].

1.4.1 Definition of Projections

Let X be a bounded (or positive) process, and F a given filtration (we do not assume that X is
F-adapted). The optional projection of X is the unique optional process °X which satisfies: for
any F-stopping time 7

E(XT]I{T<OO}) = E( OXT]l{T<OO}) . (1'4'1)

In case where many filtrations are involved, we shall use the notation >FX for the F-optional pro-
jection. For any F-stopping time 7, let I' € F, and apply the equality (1.4.1) to the stopping time
7 = 7l 4+ collpe . We get the re-inforced identity:

E(XT]]-{T<OO}|‘FT) = OXT]]-{T<O<>} .
In particular, if A is an increasing process, then, for s < t:
E(°A; — °Ag|Fs) = E(A; — Ag|Fs) > 0. (1.4.2)

Note that, for any ¢, E(X;|F:) = °X;. However, E(X;|F:) is defined almost surely for any ¢; thus
uncountably many null sets are involved, hence, a priori, E(X;|F;) is not a well-defined process
whereas °X takes care of this difficulty.

Comment 1.4.1 Let us comment the difficulty here. If X is an integrable random variable, the
quantity E(X|F;) is defined a.s., ie., if X; = E(X|F;) and X; = E(X|F:), then P(X; = X;) = 1.
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That means that, for any fixed ¢, there exists a negligible set € such that X;(w) = X;(w) for
w ¢ Q. For processes, we introduce the following definition: the process X is a modification (or
a version of)of Y if, for any ¢, P(X; = Y;) = 1. However, one needs a stronger assumption to
be able to compare functionals of the processes. The process X is indistinguishable from Y if
{w: Xi(w) = Y(w),Vt} is a measurable set and P(X; = Y;,Vt) = 1. If X and Y are modifications
of each other and are a.s. continuous, they are indistinguishable.

A difficult, but important result (see Dellacherie [39, p.73|) states: Let X and Y two optional (resp.
predictable) processes. If for every finite stopping time (resp. predictable stopping time) 7, X, = Y,
a.s., then the processes X and Y are indistinguishable.

Likewise, the predictable projection of X is the unique predictable process PX such that for
any F-predictable stopping time 7

E(X:1reo0y) = E(PXr L7 co0y) - (1.4.3)
As above, this identity reinforces as
E(XTH{T<OO}“FT*) = pXT]]-{T<oo} )

for any F-predictable stopping time 7 (see Section 1.1 for the definition of F,_).

Let 7 and ¥ be two stopping times such that ¢ < 7 and X a positive process. If A is an increasing

optional process, then,
E ( / XtdAt> —E < / "XtdAt) .
9 0

If A is an increasing predictable process, then, since 1}y ;] (t) is predictable

E(/; X,dA,) = E(/; PXdA,) .

If A is an increasing integrable (hence optional) adapted process, E(f[o oo XsdAs) = E(f[o oo ° X dAs).
If A is an increasing integrable predictable process , IE(f[O so] XsdAs) = ]E(f[O oo P XsdAs).

1.4.2 Dual Projections

The notion of interest in this section is that of dual predictable projection, which we define as
follows:

Proposition 1.4.2 Let (A, t > 0) be an integrable increasing process (not necessarily F-adapted).
There exists a unique integrable F-predictable increasing process (AY,t > 0), called the dual pre-
dictable projection of A such that

([ von) ([ o)

for any positive F-predictable process Y .

In the particular case where Ay = fot asds, one has

t
Af:/ Pagds (1.4.4)
0

PROOF: See Dellacherie [40, Chapter V]|, Dellacherie and Meyer [44, Chapter 6, (73), p. 148], or
Protter [118, Chapter 3, Section 5|. The integrability condition of (AY,¢ > 0) results from the
definition, since for Y = 1, one obtains E(A%,_) = E(Ax-). O
The dual optional projection is also useful
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Proposition 1.4.3 Let (A, t > 0) be an integrable increasing process (not necessarily F-adapted).
There exists a unique integrable F-optional increasing process (A2,t > 0), called the dual optional

projection of A such that
([ van) ([ )
0 0

for any positive F-optional process Y .

In the particular case where Ay = fot asds, one has
t
A7 = / ®asds (1.4.5)
0

This definition extends to the difference between two integrable increasing processes. The terminol-
ogy “dual predictable projection" refers to the fact that

E(/OOOYSdA{j> :E(/Ooo stdAS>

for any positive F-measurable process Y. Note that the predictable projection of an increasing
process is not necessarily increasing, whereas its dual predictable projection is.

If X is bounded and A (not necessarily adapted) has integrable variation, then
E(X:AP)) = E(( PX.A) o) -
This is equivalent to: for s < t,
E(A; — Ag|Fs) = E(AY — AZ|F,). (1.4.6)

Hence, if A is F-adapted (not necessarily predictable), then (A; — AY ¢ > 0) is an F-martingale. In
that case, AP is also called the predictable compensator of A.

Example 1.4.4 If N is a Poisson process, NY = At. If X is a Lévy process with Lévy measure v and
f a positive function with compact support which does not contain 0, the predictable compensator

of ngt F(AX,) is t [ f(z)v(dx)

In a general setting, the predictable projection of an increasing process A is a sub-martingale whereas
the dual predictable projection is an increasing process. The predictable projection and the dual
predictable projection of an increasing process A are equal if and only if PA is increasing.

Proposition 1.4.5 If A is increasing, the process °A is a sub-martingale and AP is the predictable
increasing process in the Doob-Meyer decomposition of the sub-martingale °A. The process °A — AP
is a martingale.

PROOF: Apply (1.4.1) and (1.4.6). O

Using that terminology, for two martingales X, Y, the predictable covariation process (X,Y) is
the dual predictable projection of the covariation process [X,Y]. The predictable covariation process
depends on the filtration.

Example

We now present an example of computation of dual predictable projection. Let (Bs)s>0 be an F—
Brownian motion starting from 0 and Bé”) = B, +vs. Let G be the filtration generated by the
process (|B§V)|,s > 0) (which coincides with the one generated by (B§”’)2) (note that G®) C T).
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We now compute the decomposition of the semi-martingale (B(*))? in the filtration G®) and the
G™)-dual predictable projection of the finite variation process fot Bgu)ds.

It6’s lemma provides us with the decomposition of the process (B (”))2 in the filtration F:
t t
(B2 = 2/ B"dB, + QV/ BWds +t. (1.4.7)
0 0

To obtain the decomposition in the filtration G*) we remark that,

B(e" | F1”!) = cosh(vB,) (= cosh(v|B.))

which leads, thanks to Girsanov’s Theorem to the equality:

E(B,e" P | P
FiE

E(evBs

E(B, + vs|FIBl) = = B, tanh(vB,) = ¥ (vB,) /v,

where () = x tanh(z). We now come back to equality (1.4.7). Due to (1.4.4), we have just shown
that:

t t
The dual predictable projection of 21// BWds is 2/ dsy(vBW). (1.4.8)
0 0

AS a COIISQCIUGHCG7
t
(BM)? — 2 / ds p(vBY)) — t
0

is a G(®)-martingale with increasing process 4fg(B£y))2ds. Hence, there exists a G(*)-Brownian
motion 8 such that

t t
(B; + vt)? = 2/ |Bs + vs|dBs + 2/ dsp(v(Bs +vs)) +t. (1.4.9)
0 0

1.4.3 Compensator of a random time
Let 7 be arandom time and H; : = 1, <;. It will be convenient to introduce the following terminology:

Definition 1.4.6 We call the F-predictable compensator associated with T the F-dual predictable
projection AP of the increasing process W<y . This dual predictable projection AP satisfies

E(Y;) =E (/Ooo mdA{;) (1.4.10)

for any positive, F-predictable process Y .

In case of possible confusion, we shall denote AP, or even AP™F this projection.

In the case where 7 is an F-stoping time, the process 1;,<;; — AP7 is an F-martingale.

In what follows (in particular in Chapter 8), a main tool will be the process Z; = P(1 > t|F;),
which is the optional projection of 1jy [ and is a right-continuous supermartingale (This process is
also called the Azéma supermartingale). Note that the process Z;_ is the predictable projection of
g -[- (see [41, Chapter XX]).

Proposition 1.4.7 The Doob-Meyer decomposition of the super-martingale Zy = P(1 > t|F;) is
Zy = B(AL|Fe) — A7 = pe — A}

where p - = E(AL |F) is the martingale part of Z.
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PROOF: From the definition of the dual predictable projection, for any predictable process Y, one

has -
EY;) =E </ YudAﬁ) .
0

Let t be fixed and Fy € F;. Then, the process Y, = Fyll{;<y},u > 0 is F-predictable. Then
E(Fillyery) = E(F (A2, — A7)).

It follows that E(AP, |F;) = Z; + AY. Note that p is a non-negative martingale. O

Proposition 1.4.8 Let 7 be a totally inaccessible stopping time for a filtration F.

a) The process Hy = 1<, is a submartingale, and there exists a continuous increasing, F-adapted
process C' = (Cy),t > 0 such that H — C is an F-martingale.

b) If the process C is absolutely continuous with respect to Lebesgue measure, then the compensator
of T is absolutely continuous in any smaller filtration and in particular F(t) = P(r < t) is an
absolutely continuous function.

¢) There exists an event I' € G, such that 70 has an absolutely continuous compensator and the
compensator of Tre is not absolutely continuous

Notation: We shall use frequently the two following conditions :

Condition (A): the random time 7 avoids the F-stopping times, i.e., P(7 = ) = 0 for any
F-stopping time

Condition (C) : all F-martingales are continuous

Lemma 1.4.9 Let 7 a random time, AP be the F-dual predictable projection of the process H and
let A° be the F-dual optional projection of H.
1) Assume condition (A), then AP = A° and these processes are continuous.

2) Under conditions (C) and (A), Z; :=P(1 > t|F) is continuous.
PROOF: Indeed, if ¥ is a jump time of AP, it is an F-stopping time, hence is predictable, and
E(A} — AP ) = E(ll,—g) = 0;

the continuity of AP follows.
See Dellacherie and Meyer [44] or Nikeghbali [113].

Lemma 1.4.10 Let 7 be a finite random time such that its associated Azéma’s supermartingale Z
is continuous. Then T avoids F-stopping times.

PROOF: See Coculescu and Nikeghbali [35].

Comment 1.4.11 It can be proved that the martingale
pe = E(AL|F) = A + 2,

is BMO. We recall that a continuous uniformly integrable martingale M belongs to BMO space if
there exists a constant m such that

E(<M>OO - <M>T|]:7') =m

for any stopping time 7. It can be proved (see, e.g., Dellacherie and Meyer [44, Chapter VII] ) that
the space BMO is the dual of H', the space of martingales such that E(sup,sq [M¢|) < co. Recall
that M, = H}

loc*
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Single Jump Processes, Counting Processes

For 7 being an F-stopping time and X = Ullj; o where U is a non negative r.v. F; measure, we
study some properties of the dual predictable projection (also called compensator) of X.

If 7 is positive and predictable, then X? = E(U|F; )1, o

If 7 is totally inaccessible, then XP? is the unique continuous finite variation process such that
e M (1 + AU, ) is a local martingale.

Proposition 1.4.12 If X is a quasi-left continuous counting process with compensator XP, then
XP is continuous and exp(aX; — (¢* — 1)X?P) is a local martingale for any a.

PROOF: The proof follows by It6’s calculus. In a first step, setting o = e® — 1, one has dexp(aX;) =
aexp(aX;_)dX;. Then, setting V; = exp(aX; — (e — 1) X? = exp(aX; — aX?), one deduces

dy, = e *X'd(e™ —aY,_dX?
= XXX, — aY,_dXP = e X X=X, — aY,_d(X; — XP).

O
Exercise 1.4.13 Let M a cadlag martingale. Prove that its predictable projection is M;_. <
Exercise 1.4.14 Let X be a measurable process such that E(fot | Xs|ds) < oo and Y; = fot X.ds. .
Prove that °Y; — fot °X¢ds is an F-martingale <
Exercise 1.4.15 Prove that if X is bounded and Y predictable (Y X) = Y PX <

Exercise 1.4.16 Prove that, more generally than (1.4.8), the dual predictable projection of fot f(Bgy))ds
is [y E(f(B{)|6¢)ds and that

FBE)er B 4 f(— B e B
2 cosh(yBg”)) :

E(f(BM)IG) =
<

Exercise 1.4.17 Prove that, if (as, s > 0) is an increasing F-predictable process and X a positive

measurable process, then
(/ Xsdas) = / P X das
0 0

. p .
(/ Xsds) = / PX.ds
0 0

Exercise 1.4.18 Give an example of random time 7 where A® and A(®) are different. <

In particular

1.5 Arbitrages

We recall some standard definitions on arbitrages (adapted to the case of enlargement of filtration).
We assume that the financial market has a savings account with null interest rate and a risky asset,
with price S which is an F-adapted semi-martingale and a G, F(") semi-martingale
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Let K be one of the filtrations {JF, G, IF(T)}.

For a € Ry, an element 6 € L¥(S) is said to be an a-admissible K-strategy if (6.5)_  :=
limy_,o0 (0. 9), exists and V;(0,0) := (6.S5), > —a P-as. for all t > 0. We denote by A% the
set of all a-admissible K-strategies. A process § € LK (S) is called an admissible K-strategy if
0eAC = AE,

a€R 4

1.5.1 Classical arbitrages and NFLVR

An admissible strategy yields an Arbitrage Opportunity if V' (0,0)_, > 0 P-a.s. and IF’(V 0,0), >
O) > 0. In order to avoid confusions, we shall call these arbitrages classical arbitrages. If there exists
no such § € A¥ we say that the financial market M(K) := (Q, K, P; S) satisfies the No Arbitrage
(NA) condition. No Free Lunch with Vanishing Risk (NFLVR) holds in the financial market M (K)
if and only if there exists an Equivalent Martingale Measure in K, i.e., a probability measure Q, such
that Q ~ P and the process S is a (Q, K)-local martingale. If NFLVR holds, there are no classical
arbitrages. In this section, we study another kind of arbitrages. We do not present the full theory
(for which we refer the reader to [5, 6, 4] and [1]).

If there exists no such 0 € AX we say that the financial market M(K) := (Q, K, P; S) satisfies the
No Arbitrage (NA) condition. No Free Lunch with Vanishing Risk (NFLVR) holds in the financial
market M(K) if and only if there exists an Equivalent Martingale Measure in K, i.e., a probability
measure Q, such that Q ~ P and the process S is a (Q, K)-local martingale. If NFLVR holds, there
are no classical arbitrages.

For future use, we state the following (obvious) proposition

Proposition 1.5.1 Assume that the financial market (S,F) is complete, and that S is a G semi-
martingale. Assume that X is an F-martingale such that Xo = 1 and there exists a with X; > a.
If, X; > 1 and P(X,; > 1) > 0, then, there is a classical arbitrage strategy in the market “before 77,
i.e., in (S7,G).

PRrROOF: From the market completeness, there exists an F-predictable process ¢ such that X =
1+ ¢.S. Then, ¢ll;<, is a G-predictable admissible self-financing strategy with initial value 1 and
final value X, — 1 satisfying X, —1 > 0 a.s. and P(X, —1 > 0) > 0, so it is a classical arbitrage
strategy in (S7,G). O

1.5.2 NUPBR

We present another kind of Arbitrages; Unbounded Profit with Bounded Risk.

A non-negative K .-measurable random variable £ with P (£ > 0) > 0 yields an Unbounded
Profit with Bounded Risk if for all > 0 there exists an element §” € A% such that V (z,6%) =
x4+ (0% .9)0o > & P-as. If there exists no such random variable, we say that the financial market
M(K) satisfies the No Unbounded Profit with Bounded Risk (NUPBR) condition (we recall that

NFLVR is equivalent to NA and NUPBR).

A strictly positive K-local martingale L = (L;),~, with Ly = 1 and Lo, > 0 P-a.s. is said to be
a local martingale deflator in K on the time horizon [0, g] if the process LS¢ is a K-local martingale;
here g is a K-stopping time. If there exists a deflator, then NUPBR holds.

1.6 Some Important Exercices

Exercise 1.6.1 Let B be a Brownian motion, F its natural filtration and B} = sup,<, Bs. Prove
that, for t < 1,
E(f(B)|F:) = F(1 —t, By, By)
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with

F(s,a,b) = % (f(b) /Ob_ae—u2/<25>du+/boo f(u) exp (—(“;)2) du> .

<

Exercise 1.6.2 Let ¢ be a C! function, B a Brownian motion and B} = sup,<; Bs. Prove that the
process

p(Bf) — (Bf — B))¢'(BY)

is a local martingale. <

Exercise 1.6.3 A Useful Lemma: Doob’s Maximal Identity. (see [107, lemma 0.1])
Let M be a positive continuous martingale such that My = z.

(i) Prove that if lim;_, o, M; = 0, then
P(sup M; > a) = (g) A1 (1.6.1)

and sup M, = % where U is a random variable with a uniform law on [0, 1].

aw

.. . 1 x
) t = 7 oo — Y.
(ii) Conversely, if sup M, i show that M. 0

(iii) Let 7" a stopping time and S” = sup s M. Prove that Mp/S” has a uniform law and is
independent from Fp

<

Exercise 1.6.4 Prove that, for any (bounded) process a (not necessarily adapted)

t t
M; = E(/ aydu|Fy) —/ E(ay|F.)du
0 0

is an F-martingale. Extend the result to the case fo Xsdas where (ag,s > 0) is an increasing
predictable process and X a positive measurable process. <

Exercise 1.6.5 Show that if X,,,n» > 1 is an integrable sequence of r.vs, viewed as a discrete time
process, adapted to some filtration F, then, there exists a martingale M and a predictable process
A such that X,, = M,, + A,,. <



Chapter 2

Compensators, Single Default

The F-compensator of a cadlag F-submartingale X is the cadlag increasing and F-predictable process
A such that X — A is an F-martingale. From Doob-Meyer decomposition, the compensator exists
(and is unique) if X is of class (D). Of course, the value of the compensator depends on the underlying
filtration, as well on the underlying probability.

An important example is a Poisson process N, with constant intensity A. In that case, the
increasing process N (a sub-martingale) admits A; = At as compensator (in its own filtration).

In this chapter, we shall study in more details compensators of some increasing processes (which
are obviously submartingales), in particular compensators of 1<, for a positive random variable 7,
of single jumps processes and of counting processes. Let us note that, if IF is a Brownian filtration and
7 an F-stopping time (or more generally, if 7 is an F-predictable stopping time), the F-compensator
of ]L,—St is ﬂ7§t~

2.1 Compensator of a Random Time

Let 7 be a random time (a non-negative random variable) on a probability space (£2,.4,P). We
denote by (H;,t > 0) the right-continuous increasing process H; = ;<4 and by H = (H;,t > 0)
its natural filtration. It is proved in Bélanger et al. [21] that the filtration H is continuous on right.
The filtration H is the smallest filtration which satisfies usual hypothesis, which makes 7 a stopping
time.

A key point is that any integrable H;-measurable r.v. K is of the form K = g(7)l;<4 +
h(t)1 ;< where g, h are Borel functions. It is also important (and obvious) to note that fot h(u)dH, =
jiO.,t] h(u)dH, = H:h(T), where the first equality is due to the definition of the symbol fg -dK for a
continuous on right process K.

We denote by F the (right-continuous) cumulative distribution function of 7, defined as F(t) =
P(r < t), and by G the survival function G(t) = 1 — F(¢).

We first give some elementary tools to compute the conditional expectation w.r.t. H;, as presented
in Brémaud [29], Dellacherie [39, 40], Cohen & Elliott [51]. Note that if the cumulative distribution

function of 7 is continuous, then 7 is an H-totally inaccessible stopping time. (See Dellacherie and
Meyer [44, Chapter IV, p.239 in the French version].)

The goal is to compute the H-compensator of 7.

Remark 2.1.1 Dellacherie [39, 44] considers the o algebra H? generated by 7 At (which contains
the atom {7 > ¢} ) and the associated filtration H°. This filtration is not continuous on right: H{,
is obtained by splitting the atom {r > ¢} into {r =t} and {r > t}. Setting #; = H},, the random
time 7 is an H* stopping time, but is not an H° stopping time (hence H* = H). It is proved that

27
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any H-stopping time is predictable and that, if the law of 7 is atomic and not degenerate, then 7
is H-accessible and not H-predictable.

2.1.1 Key Lemma

Lemma 2.1.2 If X is any integrable, A-measurable r.v., one has

E(X]l{s<’r})

IE(‘X‘,Hs)]l{s<*r} = ]1{8<T} P(S < 7_)

(2.1.1)

PrOOF: The r.v. E(X|H;) is Hs-measurable. Therefore, it can be written in the form E(X|H) =
9(T) s>y + h(s)l{s<ry for some functions g, h. By multiplying both members by 1;,.-y, and
taking the expectation, we obtain, using the fact that {s < 7} € H,,

E[H{S<T}E<X|H5)] = E[E<H{S<T}X|H8)] = IE[]1{5<'r})q
E(h(s)l{s<r}) = h(s)P(s < 7).
Hence, if P(s <7) # 0, h(s) = %

P(s < 7) = 0, then {7 > s} is a negligeable set and I, = 0 a.s. Then, in the right-hand side of
(2.1.1), we set 3 = 0. O

gives the desired result. If, for some s, one has

Exercise 2.1.3 Assume that Y is Ho.-measurable, so that Y = h(7) for some Borel measurable
function h : Ry — R and that F(t) < 1 for t > 0, F being continuous. Prove that

1 oo
E(Y|Ht) = Lir<pyh(7) + ——==Mjer) / h(u) dF(u). (2.1.2)
1= F(t) ¢
Prove that o
E(Y[H,) = Ly enh(r) + Lypery / h(u)e"O-T® gr(y) |
t
Find a predictable process ¢ so that dY; = o dM;. <

2.1.2 Some Martingales

In all this section, we assume that F' is continuous. The general case can be found in [§].

Proposition 2.1.4 Assuming that F' is continuous and F(t) < 1,Vt, the process (My,t > 0) defined

as B A dF(s) ¢ dF(s) K dG(s
Mt—Ht—/O li—Ht—/O(1—Hs,)1_7F(S)—Ht+/O(1—HS,) O

~—

is an H-martingale.

PrROOF: Let s < t. Then:

F(t) — F(s)

E(Ht — HS|HS) = ﬂ{s<T}E(]]‘{S<T§t}|HS) - ]1{S<T}1—7.F(S) ’

(2.1.3)

which follows from (2.1.1) with X = <.
On the other hand, the quantity

C::E{[@-Hu_)%\%s :
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is equal to
b dF(u)
C = /51—7FW)E [ rsuy |Hs]
t

e e e Ty

F(t) — F(s)
B . T

which, from (2.1.3) proves the desired result. O

The (continuous increasing) function

I(t) = /O % = —In(1 — F(t)) = —In(G(t))

is called the hazard function of 7. Note, for future use, that dF(t) = G(t)dT'(t) = e " ®dT'(t).
From Proposition 2.1.4, we obtain that the process My := H; — I'(t A 7) is an H martingale, hence
the Doob-Meyer decomposition of the submartingale H is H; = M; + I'(t A 7). The (predictable)

process A; = I'(¢ A7) is called the compensator of H.
Moreover, if F is differentiable with derivative f, the process

M, = H, — /Om +(s)ds = H, — /Ot ()1 — H,)ds

f(s)

is a martingale, where v(s) = 1—7F(s)

is a deterministic non-negative function, called the intensity

of 7.

Proposition 2.1.5 Assume that F is a continuous function. For any (bounded) Borel measurable
function h : Ry — R, the process

M} = 1<y h(7) —/O Th(u) dl(u) (2.1.4)

is an H-martingale. Moreover, dM]' = h(t)dM;.

PROOF: On the one hand, for s < t,

1 t
E(h(T)Liscr<ey | Hs) = ]]-{S<T}IP>(57<T)]E(}L(T)]]‘S<TSt) = ]]'{3<7'}6F(S)/ h(u)dF (u)

t
= 1{S<T}er(s)/ h(u)e T dT (u).

On the other hand, we get

J = E(/ ' h(u) dF(U)IHs) = E(h(N) L s<rary + MO Lirsny [ Hs)

AT

where, for fixed s, we set h(t) = f; h(u) dI'(u). Consequently,

t
7= U ([ e a0 @) + e TORD) =i By O,
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To conclude the proof, it is enough to observe that Fubini’s theorem yields

i / Al ()T / " () dr () + e TOR)

/S t dT (u)h(u) / T grv () / h(u) dl(u

/ t h(u)e ™ dT (u),

S

M{L:/ u)dH, /1— w) dT(u),

the differential form of M" is obtained. O

as expected. Writing

Example 2.1.6 In the case where N is an inhomogeneous Poisson process with deterministic in-
t

tensity A and 7 is the first time when N jumps, let H; = Nya,. It is well known that NV, —/ A(s)ds
0

is a martingale (indeed, N can be Viewed as a standard Poisson process N of intensity 1, changed
of time; Ny = Ny with Ay = fo (We shall come back to this change of time methodology

tAT
latter). Therefore, the process stopped at time 7 is also a martingale, i.e., Hy — / A(s)ds is a
0

martingale.

Exercise 2.1.7 Take the example of Exercise 2.1.3 and assume that I" is continuous. Prove that

E(Y|H) = Lp<nh(r) + ]1{,5<T}/ h(u)e" =T qr(y) .
t
Find a predictable process ¢ so that dY; = o dM;. <

Exercise 2.1.8 Let B be a Brownian motion and 7 = inf{t B; = a}. Find the F” compensator of
7. Find the F° compensator of 7, when FY is the trivial filtration. <

t
Exercise 2.1.9 a) Prove that the process L; : = ll{;~} exp (/ ’V(S)ds) is an H-martingale and
0

Li=1 —/ Lo dM, (2.1.5)
10,1

In particular, for t < T,

T
E(L{r>ry[He) = Lir>ty exp (—/ 7(5)d5> :
t
b) Let dQy, = L¢dP3,. Prove that Q(r <t) = 0. 4

Exercise 2.1.10 a) Let F be continuous and h : R — R be a (bounded) Borel measurable function.
Prove that the process

tAT
Yy = exp (L{r<ih(7)) —/ (e — 1) dT'(u) (2.1.6)
0
is a H-martingale. Find a predictable process ¢ such that

dYy = pdM;



2.2. COMPENSATOR OF A RANDOM TIME WITH RESPECT TO A REFERENCE FILTRATION31

Exercise 2.1.11 Assume that I' is a continuous function. Let h : Ry — R be a non-negative Borel
measurable function such that the random variable h(7) is integrable. Prove that the process

Y, = (1+ ]lTSth(T))eXp<— /OW h(w) dF(u)). (2.1.7)

is an H-martingale. Find a predictable process ¢ such that dY; = ¢dM; . Give a condition on h so
that Y is positive. In that case, find a predictable process i such that dY; = Y;_v;dM;. <

Exercise 2.1.12 In this exercise, F' is only continuous on right, and F(t—) is the left limit of F at
point ¢. Prove that the process (My,t > 0) defined as

g [T ARG) [Ty dF(s)
My = He /O 1_F(s_)*Ht /0(1 HS)l—F(s—)

is an H-martingale. <

2.2 Compensator of a Random Time with respect to a Refer-
ence Filtration

We denote (with an abuse of notation) by G = F V H the enlarged filtration which is the smallest
right-continuous filtration which contains F, making 7 a stopping time. More precisely

gt == ms>th V Hs

It is straightforward to establish that any G;-measurable random variable is equal, on the set {7 > ¢},
to an Fi-measurable random variable. Indeed, G;-measurable random variables are generated by
21 (g(T) ;<4 + h(t)1;<,), where x; is F; measurable and g, h are Borel functions. In particular, if Y
is a G-adapted process, there exists an F-adapted process YT, called the predefault-value of Y, such
that I Y = ll{t<T}YtIF. Under the standing assumption that Gy := P(7 > t|F;) > 0 for t € Ry,
the uniqueness of pre-default value process follows from [41, p.186]. Moreover, if Y is G-predictable
its pre-default value YF coincide up to 7 included (see [41, p.186]), namely,

Ly Ve = Le<r) V7
If Y is G-adapted, it is standard to check that Y > 0 implies Y > 0.

2.2.1 Key Lemma

We denote by F; = P(r < t|F;) the conditional cumulative probability of 7 given the information
Fy and we set’ Gy = P(7 > t|F;) = 1 — F,. We assume Gy > 0, for t > 0. See [8] for the case where
G can vanish.

Lemma 2.2.1 Key Lemma 1. Let X be an Fr-measurable integrable r.v. Then, fort <T

E(X:[I-{T>T}|ft) 1

]E(X]].T<7-|gt) = 1]-{T>t} E(H{T>t}‘ft) = ]].{T>t}at]E(XGT|.Ft) . (221)

PROOF: Note that
L onE(X[G) = Lirsn e

1Latter on, we shall denote frequently by Z this quantity, as it is done in the literature on enlargement of filtration.
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where x; is F;-measurable, and taking conditional expectation w.r.t. F; of both members, we deduce

E(XT 5] F) 1
SRy R(X G| F).
E(L{r>e3[F2) =1, (XCrlF)

Ty =

Lemma 2.2.2 Key lemma 2. Let h be an F-predictable process. Then, fort < T,
1 T
E(hT]].T<T|gt) = hrﬂ{7'<t} + ]]-{T>t}a]E(/ hudFu‘ft) (222)
t t

PROOF: In a first step, the result is established for processes h of the form h; = 1}, ,)(¢) K, where
K, € Fy. In that case, for t <u < v < T, applying the key lemma

1
E(thT<T‘gt) = E<Ku]1u<‘r<v|gt) = nt<Ta]E(Ku]1u<T<v|}—t)
t

It remains to note that

E(Ku]]-u<7-<v|ft) E(Ku]]-7<v‘ft) - E(KH]IT<H|]:t)

T
— E(K.(L- R)IF) - E(K.(0 - )R =B([ hdF|7)
t
The other cases are done in the same way. The result follows by approximation. O

As we shall see, this elementary result will allow us to compute the value of credit derivatives.

Comment 2.2.3 It can be useful to understand the meaning of the lemma in the case where, as in
the structural model, the default time is an F-stopping time.

We are not interested in this lemma with G-predictable processes, mainly because any G-predictable
process is equal, on {t < 7} to an F-predictable process.

2.2.2 Martingales

Proposition 2.2.4 The process (Fy,t > 0) is an F-submartingale. The process G is an F-supermartingale.

Furthemore,
{r >t} c{G; >0} (2.2.3)

PROOF: From definition, and from the increasing property of the process H, for s < ¢:
E(Fy|Fs) = E(E(HF)|Fs) =E (He|Fs) > E(Hg|Fs) = Fs.
Let A; = {G; > 0}. Then P(Af N {7 > t}) = E(ILa:P(7 > t|F})) = 0. 0
As a supermartingale, G admits a Doob-Meyer decomposition

where p is a martingale and AP is a predictable increasing process (we have used that G, being
bounded is of class (D)).

Proposition 2.2.5 (i) If G > 0, the process Ly = (1 — H;)/G: is a G -martingale.
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(i) If X is an F-martingale, XL is a G -martingale.

(iii) If the process G is decreasing and continuous, the process My = H;—T'(t A7) is a G -martingale
where I' = —InG.

PROOF: (i) From the key lemma, for ¢ > s

1 1 1 1 1 1
E(Lt‘gs) = E(ﬂ{r>t}a|gs) = H{T>s}aE(ﬂ{r>t}a|}—8) = ﬂ{r>s}aE(aGt|}—s) = Il{r>s]»a =L,

(#i) From the key lemma,
E(LiX4|Gs) = E(L{r>4LiX:|Gs)

1 1
Lirssy G*SE(]L{T»} aXtV:s)

1 1
Tirssy aE(E(n{r>t}|ft)aXt|fs) = L,E(X:|Fs) = Ls Xs.
s t
(7i7) From integration by parts formula (H is a finite variation process, and I" an increasing continuous
process):
dL; = (1 — Hy)e'*dl'y, — e'*dH,

and the process My = Hy — I'(t A 7) can be written
M, = / dH, — (1—H,)dl, = —/ e TudL,
10,t] 10,t] 10,t]

and is a G-local martingale since L is G-martingale. (It can be noted that, if T is not increasing,
the differential of €' is more complicated.) ]

Comment 2.2.6 (a) Assertion (ii) seems to be related with a change of probability. It is important
to note that here, one changes the filtration, not the probability measure. Moreover, setting dQ* =
LdP does not define a probability Q equivalent to IP, since the positive martingale L vanishes. The
probability Q* would be only absolutely continuous w.r.t. P. See Collin-Dufresne and Hugonnier
[36].

(b) If G can vanish, the process L in Lemma 2.2.5 is a supermartingale. See [8] for a general study.

Proposition 2.2.7 Let AP be defined in (2.2.4). The process

tAT
dA?
M = H; — G“:;Ht_AMT
0 u—

is a G-martingale.

PROOF: We give the proof in the case where G is continuous in two steps. In the proof A = AP.
In a first step, we prove that, for s <t

1
E(Ht|gs) = Hs + ]15<7-G7E(At - AS|-7:S)

Indeed,

1 1
E(Ht|g8) = 1- P(t < T‘gs) =1- ]]-s<‘rG7E(Gt|J:s) =1- ]ls<'rG7E(/1*t - At'-Fs)
1 1
= 1- ﬂs<ra(ﬂs - As - ]E(At - As|~7:s)) =1- Ils<'rGT(/~Ls - E(At - AS|-7:S))

S S

1
== ]]-‘rgs + ]18<7‘G7]E(At - As|fs) .
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In a second step, we prove that, setting, for any v, K, = f:(l — Hs)dc‘?f,

1
E(Kt/\rlgs) = KS/\’T + HS<TG7E(At - As|]:s)

S

Indeed, from the key formula, for fixed ¢ and h, = Kiaq
E(Krl0) = Kinelrso+ Locr o ( / KonudF, | F, )
= K]17<5—|—]15<T (/KdF +/ thF|f>

= Ks/\TllT<s+Ils<7' (/ K,dF, +Kth]:>

We now use IP formula, using the fact that K has finite variation and is continuous
d(Ki(1 - F)) = —K{dF, + (1 — F})dK; = — K dF; + dA;
hence

t
/ KudFu+Kt(1—Ft) = —Kt(l—Ft)+KS(1—FS)+At—A5+Kt(1—Ft) = Ks(l—FS)+At—AS

It follows that

1
E(Kt/\7'|gs) = Ks/\'r]]-‘rgs + HS<TG7E (KSGS + At - As‘fs)
1
= KS/\T + ILS<‘I'C;¢7}E (At - AS"FS) .

Assuming that A is absolutely continuous w.r.t. the Lebesgue measure and denoting by a its
derivative, we have proved the existence of a F-adapted process A, called the intensity rate such
that the process

tAT t
0 0
is a G-martingale. More precisely, As = 7%%-.
For the general case, see Bielecki and Rutkowsk1 [27] or Elliott et al [53] O

Lemma 2.2.8 If (2.2.5) holds, the process \ satisfies

B 1Pt <7 <t+h|lF)
h—0 h ]P(t < T|JT"t)

PROOF: The martingale property of M implies that

t+h
E(Licr<tsnlGr) = / E((1— H)A|G:)ds
t

It follows that, on {t < 7}

1, _ 1P(t<T<t+hF)
Av = G im P <7 <t hlGr) = lim & =57 ——=
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Comment 2.2.9 We assume G continuous and positive. We recall that the Doob-Meyer decompo-
sition of G is denoted Gy = yy — A;. From L; = (1 — H;)(G;)™!, one obtains

1 1 1
e (dpe — dAz) + E?d<ﬂ>t - adHt

t

dLy = —(1 — H,_)

it follows that . . .
dLy — —dM; = —(1 — Hy)— | duy — —d
t G, t ( t)Gf ( e a, <ﬂ>t>
hence, due to the G-martingale property of L, the quantity (1 — Ht)é (d,ut - G%d(u)t) corresponds
to a G-local martingale. /

Proposition 2.2.10 Let H? be the G-predictable compensator of H, i.e., the G-predictable increas-
ing process such that H — H? is a G-martingale. The random variable H? has a unit exponential
law.

PROOF: Let ¢ be a bounded Borel function, ®(t) = fot ©(s)ds and

t t
MY = / S(HP)AM, = o(HP)1 <, — / S(HP)AH? = o(HP)1,<, - &(HY)
0 0

Then, for ¢ = oo, using the fact that HZ, = HP, one has E(o(HP)) = E(®(H?E)) and the result
follows. O

2.2.3 Covariation process

We suppose AP continuous, and write M; = H; — A¢nr the fundamental martingale M, where
AP is continuous. The covariation process of M is obviously H: indeed, M being a pure jump
martingale, M7? — > _,(AM,)? is a martingale. It suffices to note that (AM,)? = AM, = AH, so
that 3", ,(AM;)? = H,. Tt follows that M? — (H; — A(t AT)) — A(tAT) = M? — My —T(tAT) is
a martin?gale, so that M? — A(t A 7) is a martingale too, and the predictable covariation process is
At AT).

2.3 Cox Processes and Extensions

In this section, we present a particular construction of random times. This construction is the basic
one to define a default time in finance.In a credit risk setting, the random variable 7 represents the
time when a default occurs. In the literature, models for default times are often based on a threshold:
the default occurs when some driving process X reaches a given barrier. Based on this observation,
we consider the random time on IR in a general threshold model. Let X be a stochastic process
and © be a barrier which we shall make precise later. Define the random time as the first passage
time

7:=inf{t : X; > O}.

In classical structural models, a reference filtration I is given, the process X is an F-adapted process
associated with the value of a firm and the barrier © is a constant. So, 7 is an F-stopping time. If
T is a predictable stopping time (e.g., if F is a Brownian filtration), the compensator of H; = 1,<;
is H;. The goal is then to compute the conditional law of the default P(r > 6|F;X), for § > ¢

In reduced form approach (say, if 7 is not the first time where a process reaches a constant
barrier), we shall deal with two kinds of information: some information denoted as (F, ¢ > 0) and
the information from the default time, i.e. the knowledge of the time where the default occurred in
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the past, it the default has appeared. More precisely, this information is modeled by the filtration
H generated by the default process H (completed with negligeable sets).

At the intuitive level, F is generated by prices of some assets, or by other economic factors (e.g.,
interest rates). This filtration can also be a subfiltration of the prices. The case where F is the
trivial filtration is exactly what we have studied in the toy model. Though in typical examples F is
chosen to be the Brownian filtration, most theoretical results do not rely on such a specification of
the filtration F.

2.3.1 Construction of Cox Processes with a given stochastic intensity

Let (22, G,P) be a probability space endowed with a filtration F. A nonnegative F-adapted process A
is given. We assume that there exists, on the space (2, G,P), a random variable ©, independent of
Foo, With an exponential law: P(© > t) = e~ . We define the default time 7 as the first time when

the increasing process A; = fot As ds is above the random level O, i.e.,
T=inf{t >0 : A; > O}.

In particular, using the increasing property of A, one gets {7 > s} = {A; < ©}. We assume that
Ay < 00,Vt, Ao = 00, hence 7 is a real-valued r.v.. One can also define 7 as

T=inf{t>0: Ay > —InU}

where U has a uniform law and is independent of F,. Indeed, the r.v. —InU has an exponential
law of parameter 1, since {—InU > a} = {U < e }.

We write as usual Hy = lj;<4 and H; = o(Hs : s < t). We introduce the smallest right-
continuous filtration G which contains F and turns 7 in a stopping time. (We denote by F the
original Filtration and by G the enlarGed one.) As already said, we shall write G = F Vv H.

It is easy to describe the events which belong to the o-field G; on the set {7 > t}. Indeed, if
Gy € Gy, then Gy N {7 >t} = By N {7 > t} for some event B; € F;.

Therefore any G;-measurable random variable Y; satisfies 1~ Y; = 5y ys, where y; is an
JFi-measurable random variable.

Comments 2.3.1 (i) In order to construct the r.v. O, one needs to enlarge the probability space
as follows. Let (Q,]:" , ]f”) be an auxiliary probability space with a r.v. © with exponential law. We
introduce the product probability space ((NZ, g, @) = (2 x O, Foo @ F,Q® I@’) ~

(ii) Another construction for the default time 7 is to choose 7 = inf {t > 0 : N, = 1}, where
Ay = f(f A\sds and N is a Poisson process with intensity 1, independent of the filtration F. This
second method is in fact equivalent to the first. Cox processes are used in a great number of studies
(see, e.g., [101])

2.3.2 Conditional Expectations
Lemma 2.3.2 The conditional distribution function of T given the o-field F; is fort > s

P(r > s|F) =exp (— Ay) .

PROOF: The proof follows from the equality {7 > s} = {A; < ©}. From the independence assump-
tion and the F;-measurability of Ay for s < ¢, we obtain

P(r > s|F) = IE”(AS <o ’]—'t> —exp (—A,).
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In particular, we have

P(r < t|F) =P(r < t|Feo), (2.3.1)
and, for t > s, P(1 > s|F;) = P(7 > s|Fs). Let us notice that the process Fy = P(7 < t|F;) is here
an increasing process, as the right-hand side of (2.3.1) is. (]

The conditional density of 7, and the law of 7 can be easily computed. One has P(7 > t) =
E(eAt), so that P(T € df) = E(\ge"¢)df and, for 6 < t

P(T € df|F;) = Age 20db
For 6 > t, one has P(t > 0|F,) = P(1 > 0| F|F) = E(e ™| F,) = E(f," Aue " vdu|F;), hence

P(r € dO|F;) = BE(Nge | F;)do
Remark 2.3.3 If the process A is not non-negative, we get,
{r > s} ={supA, <O},
u<s

hence for s < t
P(1 > s|F;) = exp(—supA,) .

u<s
More generally, some authors define the default time as
T=inf{t >0 : X; > 6}

where X is a given F-semi-martingale. Then, for s < ¢

P(1 > s|F;) = exp(—sup X,,) .
u<s

Exercise 2.3.4 Prove that 7 is independent of F, if and only if A is a deterministic function. <

2.3.3 Immersion property

Lemma 2.3.5 Let X be an Fo-measurable integrable r.v.. Then

E(X|G:) = E(X|F). (2.3.2)

PROOF: To prove that E(X|G;) = E(X|F;), it suffices to check that
E(Bih(t A1) X) = E(Bih(t ANE(X|F))

for any By € Fy and any h = 1. For ¢t < a, the equality is obvious. For ¢ > a, we have from
(2.3.1)

E(Bilr<ayE(X[F)) = EE(BX[F)E(L{r<a}F1) = E(XBE(L{r<a}[F2))
= E(BtXE(]I{TSa}‘]:OO)) = E(BtX]I{TSa})

as expected. O

Remark 2.3.6 Let us remark that (2.3.2) implies that every F-martingale is a G-martingale.
However, equality (2.3.2) does not apply to any G..-measurable random variable; in particular
P(7 <tG¢) = ll{;<¢) is not equal to F; = P(7 < t[F).
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This lemma implies that any (u.i.) F-martingale is a G martingale. This property is known as
the immersion property of F with respect to G and will be studied in the next chapter. Let us give
another proof of this result.

Lemma 2.3.7 In a Cox model, any F-martingale is a G martingale

PROOF: Since © is independent from F, it is obvious that any F-martingale M is an F™ = F V 0(0)
martingale. Since G C F7, it follows that M is a G martingale. |

Exercise 2.3.8 Prove that H is, in general, not immersed in G. Prove that, if A is deterministic,
H is immersed in G. <

2.3.4 Predictable Representation Theorem, Change of Probability

In this section, we assume the condition (C), that is any F-martingale is continuous. We study the
form of a general u.i. G martingale. Restricting in the last step our attention to the case where F
is a Brownian filtration, we shall establish a predictable representation theorem, similar to the one
given in Kusuoka [100].

Predictable Representation Theorem

We start with u.i. G-martingales of the form Y; = E(X f(7)|G;) where X € F, is integrable and f
is a bounded Borel function. From the key lemma

Y = f(TEX[G) L7 + lltgreAt]E(X/ Flwe M AudulFy) = f(T)E(X|G) Lisr + i< Y
t

From immersion, and hypothesis (C), E(X|G;) = E(X|F;) =: X} is a continuous F-martingale. We
write

E(X /too fwe M du|F) = XTI — X, /Ot fwe M A du

where X/ (= E(X Io° fw)e ™™ X du|Fy) is an F-martingale. Finally, introducing the G martingale
Lt = ntSTGAt

t t
Y, = X, / F(u)dH, + L, <th - X, / Flu)e Do )\udu)
0 0

By integration by parts, using that the F-martingales are orthogonal to L, and after easy sim-
plifications, we get

dY; = X, f(£)(dH, — (1 = Hy)\dt) + udLy + pod X, + Lo dX{
where 1), = th . ¢ fot fu)e ™M N du, p; = f]o i fu)dHy, — Ly fot f(u)AyePdu are G-predictable
processes. Finally
dY; = (Xof(t) = Lo )AM; + ord Xy + Li-dX{

In the case where F is a Brownian filtration, any continuous F-martingale admits a representation
w.r.t. the Brownian motion W. Being true for u.i. martingales, of the specific form, the result extend
and we have obtained

Theorem 2.3.9 In the Cox model, if F is a Brownian filtration generated by W, any G martingale
admits a representation of the form

t t
Yt:YO+/ wdes+/ ooV,
0 0
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where 1 and ¢ are predictable processes, and s = Y, — Y where YT is the predefault value of Y.

Remark 2.3.10 This result will be extended in Theorem 4.2.14.

Change of Probability
We assume that we are under the conditions of the previous theorem, i.e. under condition (C), in
a Cox model. We are interested with the impact of a change of probability. Due to Theorem 2.3.9,
any equivalent probability measure Q can be written as dQg, = L:dP|G;; where L satisfies
st = Lt, (1/Jtth + ’Ytht)

where 1 and - are predictable processes, with v > —1 to preserve positivity of L. Indeed, the
process L can be written as

t t t
L; = exp (/0 PsdWy — %/0 wfds) exp ( — /0 %)xf’ds) (1 _i_%)Ht

where A& = \;(1 — Hy). Under Q, the processes W@ and M defined below, ae Q martingales:
t t
W2 =W, — / Yods, MQE = M, — / ACr,ds
0 0

Note that the F-intensity of 7 under Q is A2 = A;(1 4 ;) (so that H — [ = H)A(L+7)ds is a
(Q, G) martingale).

In general, the immersion hypothesis between F and G is not satisfied under Q (see Coculescu et
al. [34], Section 4.1.2 and Section 8.6 for a counterexample). However, if v is taken as F-predictable,

then, from Bayes formula, denotingl; = Ep(L:|F;) = exp (fg Y dWy — % g’d@ds), one has
1 t t
Qr > 117) = FBelleot L F3) = Bollseonp (- [ vl ) =exo (= [ a1+ 7)as)
t 0 0

In can be noted that © € G, (indeed © = fOT Asds) and that, under a change of probability in
the filtration G, the independence of F and © can fail.
2.3.5 Extension to different barrier
One can define the time of default as
T=inf{t : Ay > X}

where ¥ a non-negative r.v. independent of F.,. This model reduces to the previous one: if ¢ is
the cumulative function of ¥, the r.v. ®(X) has a uniform distribution and

T =inf{t : ®(A;) > ®(X)} = inf{t : T [D(A,)] > O}
where ¥ is the cumulative function of the exponential law. Then,

F,=P(r <t|F) =P(A > S| F) =1 —exp (0 1 (®(Ay))) -

2.3.6 Dynamics of prices in a default setting

We assume here that F-martingales are continuous.
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Defaultable Zero-Coupon Bond

A defaultable Zero-coupon Bond of maturity 7' pays one monetary unit at time 7, if the default has
not occurred before T'. Let Q be a risk-neutral probability and B(t,T) be the price at time ¢ of a
default-free bond paying 1 at maturity 7' given by

B(t,T)—EQ(eXp(—/tTrsds) ‘.7:,5).

The market price D(¢,T') of a defaultable zero-coupon bond with maturity 7' is

T
D(t,T) Eq (ﬂ{T<~r} exp ( — /t Ts dS) ’ gt)

= ]1{7.>t}]E@(eXp (- /tT[rs + ] ds) ‘ ]-"t>.
Here, we are working in a Cox model under Q, i.e. 7 = inf{¢ fot Asds > O} where © is independent
of F under Q. In particular, Q(r > t|F;) = exp — fg Asds). Then, in the case r = 0,
D(t,T) = Iy e Q(r > T|F;) = Lymy
with m; = Q(7 > T|F;) = Eg(e 7| F;). Then,
dD(t,T) = mydLs + Ly_dmy = —my Ly dMy + Ly—dmy = —D(t—, T)dM; + Li—_dm,

In the particular case where ) is deterministic, m; = e ™7 and dm; = 0. Hence D(t,T) = Lie T
and
dD(t,T) = —-D(t—,T)dM;.

Remark 2.3.11 If P is a probability such that © is independent of F, and Q a probability equiv-
alent to P, it is not true, in general that © is independent of F, and has an exponential law under

Q. Changes of probabilities that preserve the independence of © and F,, change the law of ©, hence
the intensity.

Exercise 2.3.12 Write the risk-neutral dynamics of D for a general interest rate r. <

Recovery with Payment at maturity

We assume here that » = 0. We consider a contract which pays K, at date T, if 7 < T and no
payment in the case 7 > T, where K is a given F-predictable process.

An immediate application of the key lemma shows that the price at time ¢ of this contract is
Sy = E(KTHT<T|gt) =Kl + 1]-t<TE(KT]]-t<T<T|gt)

T
= K1, + Ilt<'r€AtE(/ Ky dF,|F)
t
where F,, = P(1 <u|F,)=1—e ", or

T
Sy = Kl oy + ﬂt<r€AtE(/ Kye ™\ dulF)
t

or

t t
St = / KudHu + Lt <—/ KueiAu)\udU + mf)
0 0
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where mX = E(fOT Kye ™\ du|F;). From dL; = —L;_dM; and
d(Lm™)y = Ly—dm{ + m{“dL, + d[m™,L]; = Li_dm{ +m;* dL,
we deduce that
dS; = Ki(dH; — M\(1 — Hy)dt) — S;_dM; + Lydm!’ = (K; — S;_)dM; + Lidm[

Note that, since m is continuous, its covariation process with L is null and that one can write

Lidm¥ instead of L,_dmf. Note also that, from the definition, the process S is a G-martingale.
This can be checked looking at the dynamics, since m” is a F, hence a G, martingale.(WHY?)

Exercise 2.3.13 Write the risk-neutral dynamics of the price of the recovery for a general interest
rate 7. <

Recovery with Payment at Default Time

Let K be a given F-predictable process. The payment K is done at time 7. Then, in the case r = 0,

T
Sy = ]]-t<‘rE(K‘rI]-t<T<T|gt) = ]1t<TeAtE(/ KudFUI‘Ft) .
t

The dynamics of S is
dSy = —S;_dM; + Ly(dm¥ — Kie 8 \)dt = —S;_dM; + (1 — Hy)(e™dmE — K \,)dt

and the process S; + K sy = St—&—fg K dH; = E(K.|G;) is a G-martingale, as well as the process
Sy + fgm- K Asds. The quantity Ki\; which appears in the dynamics of S can be interpreted as a

dividend K; paid at rate A; (or with probability \idt = P(t < 7 <t + dt|F;)/P(t < 7|F%))
Price and Hedging a Defaultable Call
We assume that
e the savings account Y,? =1
e a risky asset with risk-neutral dynamics
dY; = YiodW,
where W is a Brownian motion and o is a constant

e a DZC of maturity T with price D(¢,T)

are traded. The reference filtration is that of the BM W. The price of a defaultable call with payoff
]1T<7'(YT — K)+ is

C; = E(lr<,(Yr — K)T|G) = L, eME(e 7 (Yr — K)*|F)

= Ltmz/
with m} = E(e *7(Yr — K)*|F;). Hence

dC; = Lydm) — m] Li_dM,

e In the particular case where A is deterministic,

my =e ME((Yr — K)T|F) =e Y
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where CY is the price of a call in the Black Scholes model. This quantity is CY = CY (t,Y;) and
satisfies dCY = A;dY; where Ais the Delta-hedge (A; = 9,CY (¢,Y}))
Cy = NyereMe ™7 CY (1Y) = Lie ™7 CY (1,Y;) = D(t, T)CY (t,Y?)
From
Cy = D(ta T)Cy(ta Yt)

we deduce

dc, e A (L,dCY + CYdLy) = e M (LAY, — CY Ld M)

e A (L AdY; — CY Led M)

Therefore, using that dD(t,T) = mydM; = —e =7 L;dM; we get

dC; = e ML AdY; — CYdD(t,T) = e A LAY, + D(?T)dD(LT)

hence, an hedging strategy consists of holding in particular % DZCs.
e In the general case, one obtains

Ct_ mf Y Ct_
= ——dD(t,T)+ Li— L = D(t, T Y;
dCt D(t, T) d (t, ) + t e dmt + tdmt D(t7 T) d (t, ) + 19td t

An hedging strategy consists of holding % DZCs.

Credit Default Swap

Definition 2.3.14 A T-maturity credit default swap (CDS) with a constant rate k and recovery
at default is a contract. The seller agrees to pay the recovery at default time, the buyer pays (in
continuous time) the premium k till maturity or to default time, whichever occurs the first. The

F-predictable process § : [0,T] — R represents the default protection, and the constant k is the fixed
CDS rate (also termed the spread or premium of the CDS).

Let By = exp fot rsds. The cumulative ex-dividend price of a CDS equals, for any ¢t € [0,T], to
the expectation of the remaining discounted future payoffs

TAT
Sy = BiEq((By) 10, Lycrar — / kB *ds|Gy)
t
The cumulative price is
TAT
Sy = BiEo((By) *0, ly<r — / kB ds|Gy)
0

We denote by D the dividend process associated with the CDS:
Dt = Ztllq—gt — KZ(t A T)
An immediate application of the key lemma gives the following result

Proposition 2.3.15 The ex-dividend price of a CDS equals, for any t € [0,T],

B T T
Si(k) = Npery 51 Eg (/ B Gy du — n/ B 'G,du ‘ ]-'t> , (2.3.3)
t t

and thus the cumulative price of a CDS equals, for any t € [0,T],

B T T
SP (k) = Ly EiEQ (/ B Gy du — /1/ B;'G,du ’ ]?t) + B, /]0 ]BgldDu. (2.3.4)
t t it
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An easy computation yields to

Corollary 2.3.16 The dynamics of the ex-dividend price S(k) on [0,T] are
dSt(I{) = —St_(li) th + (1 — Ht)(rtSt +K— )\tét) dt + (1 — Ht)Gt_lBt d?’lt,

where the F-martingale n is given by the formula

T T
ne = Eqg (/ B Gubuhy du — n/ B'Gy du ’ ]ft) . (2.3.5)
0 0

The dynamics of the cumulative price S°"™ (k) on [0,T] are

dsfum(lﬁ) = TtStcum(K?) dt + (5t - St_(li)) th + (1 - Ht)Gt_lBt d’th

2.3.7 Generalisation

We start with the filtered space (2,G,F,P) and the random variable ©, independent of F,, with
an exponential law. We define the default time 7 as the first time when the increasing process I is

above the random level O, i.e.,
T=inf{t>0:T; > 06}

We do not assume any more that I' is absolutely continuous, and we are even interested with the
case where I fails to be continuous.

The same proof as before yields to
P(r > t|F;) = e 1t

However, since I fails to be predictable, the compensator of H is no more I'.

Let us study the following example. Let X be a compound Poisson process, with positive jumps,

ie.,
Ny
Xi=)Y Y,
n=1
where N is a Poisson process and Y,, positive random variable, i.i.d. and independent from N.

Let ¥(u) = fooo(l — e"¥)F(dy) where F is the cumulative distribution function of Y;. Then,
et XettA(u) s 4 martingale. Then, from Gy = e~ Xt = e XeHAV(=D) = tAP(=1) — p o=tAV(=1) where
n is a martingale one deduce, by integration by parts the Doob-Meyer decomposition that

dGy = eMEDAN, — e ED A (—1)dt

and it follows that
Lo — (EAT)IN(-1)
is a martingale.

One can also compute directly the Doob-Meyer decomposition of supermartingale G from Itd’s
formula. Let g the jump measure of X

¢ ¢
e Xt =1 —|—/ /(ef(X“*er) — e %) (u(du, ds) — dulF(dy)) +/ /(ef(X“er) — e %) duF (dy)
0 0

where the quantity fot [(e=Fu=+¥) —e=Xu=) ((u(du, ds) — dulF(dy))) represents a martingale. Hence
the form of the compensator.
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Chapter 3

Two Defaults

3.1 Two defaults, trivial reference filtration

As usual, a probability space (2, .4,P) is given. Let us first study the case with two random times
71, T2. We denote by 71y = inf(71,72) and 7(2) = sup(7i,72), and we assume, for simplicity, that
P(11 = 72) = 0. We denote by (H},t > 0) the default process associated with 7;, (i = 1,2), and by
H; = H} + H? the process associated with the two defaults. As before, H' is the filtration generated
by the process H* and H is the filtration generated by the process H. The filtration G is generated
by two processes H. The o-algebra G, = H} VH? is equal to o (11 At)Vo(re2 At). It is useful to note
that G; is strictly greater than H;. Exemple: assume that 71 and 7 are independent and identically
distributed. Then, obviously, for u < t

P(Tl < 7'2|T(1) = u,T(2) :t) = 1/2,

hence o(m1,72) # U(T(l)>7(2))'

3.1.1 Computation of joint laws

A H} V H}-measurable random variable is equal to

- a constant on the set t < T(1)s

- a 0(7(1))-measurable random variable on the set 71y <t < 7(2), i.e., a o(71)-measurable
random variable on the set 71 <t < 79, and a o(73)-measurable random variable on the set 7 <t <
T1

- a o(m, T2)-measurable random variable on the set 75 < t.
We denote by G the survival probability of the pair (71, 72), i.e.,

G(t,s) =P(r > t, 70 > s).
We shall also use the notation

g(s) = disG(s, s) = 01G(s, s) + 02G(s, 5)

where 0;G is the partial derivative of G with respect to the first variable (resp. 902G is the partial
derivative of G with respect to the second variable).

e We present in a first step some computations of conditional laws.

P(ry >s) = P >s,m>s)=G(s,s)
P(ry > tltay =) = %s) (01G(s,t) + 02G(t,5)), fort > s
= 1, fors>t

45
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o We also compute conditional expectation in the filtration G = H* vV H?: For t < T

T L)(T = T(l)) = i< 7G(T7 D

"W P(t < T(1)) ™OG(t,t)

P(T <mn Hz
Licr, IP’((t<T1||’H§)) + 1«
]P(T<Tl7t<7'2) P(T<’7'1|T2)
]P)(t<7'1,t<7’2) T2 st P(t<7’1|7’2)
= ]]-t<7'1 <]]-t<7'2 G(T t) T <t]P)(:r<T1|7-2)> ]17' <t
G(t,t) PUP(E < ) !

P(t < Ty < T2) < T)

]P(T < T(1)|Ht1 vV 'Hf)

P(T <m|HiVH]) =

= Iicr, <Ht<7'2 > + 1<

]P)(t < To < T‘Tl)

P <T 1 \Y 2 = 1 T ]]'T i
(T(2) < T[H; V H) < P(t < 71)) 1St P(t < 72|m)
]P)(t <7< T|7—2)
+]17'2§t<7'1 P(t = T1|T2) + ]17'(2)<t .

e The computation of P(T' < 71|72) can be done as follows: the function h such that P(T < 71|m2) =
h(7o) satisfies
E(h(r2)¢(72)) = E(p(r2)Lr<r,)

for any Borel (bounded) function ¢. This implies that (assuming that the pair (71, 72) has a density

) o o
/ dvh(v)gp(v)/ duf(u,v) / dvp(v / duf(u,v)
0 0 0
or
(o) o0
/ dvh(v)p(v) = / dvp(v)0:G(T, v)
0 0
02G(T,
hence, h(v) = W.
We can also write
]P)(T <T1,T2 € dv) 1 d 82G(T7’U)
(T <7l =v) P(ry € dv) P € dv) dv (1> 172 > v)dv = 02G(0,v)
hence, on the set 0 < T,
62G(Ta 7—2)

P(T' <mln) =h(n) =5 =6

e In the same way, for T >t
P(Tl <T< 7—2|H% \ H%)]l{ﬁgt<7'2} = ]]-{Tlgt<7'2}\p(7—1)

where WU satisfies
E(p(m1) s <t<T<r,) = E(0(T1) ¥ (1) U {7, <t<rn})

for any Borel (bounded) function . In other terms

/dwp / dvf(u,v) = /dugp (u)/toodvf(u,v)

[ dup(worciu,T) - / dusp (1) ¥ (1), G, ).
0

0

or

This implies that
"G(u,T)

V) = 5 G

81 (7—17 )
P(ry <T < 7o|H{ VH) 7, <try) = ﬂ“l““”Wﬁ)
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3.1.2 Value of credit derivatives

We assume in this section that the default-free interest rate is null r = 0.

We introduce two kinds of credit derivatives

A defaultable zero-coupon related to the default times 7¢ delivers 1 monetary unit if (and only if)
7; is greater that T: D'(t,T) = E(Lyr<r3|H{ V HE)

A contract which pays (at time T') R! is one default occurs before T' and Ry if the two defaults
occur before T: CDy = E(R11{o<r,, <1} + R21{0<T(2)§T}\H% vV HE)

We obtain
(T ’7'2) G(T’ t)
DYt,T) = sy <]1{T2<t} nGltms) TGy
81 (Tl,T) G(taT)
D(T) = Lipsy (ﬂ{ﬂ<f}ac:(ms) Flee0Ga
G(t,t) — G(T,T)

Dy = Rlﬂ{T(1>>t} ( G(t,t) ) + R2H{T(2>St} + Rl]l{‘r(1)§t}

TR (7,50 {It(O, 1) (1 - Mw) + I,(1,0) (1 alG(M)

82G(t,7'2) oG (7'1, )
G, T)+G(T,t)— G(T,T)
I 1—
+ t(Oa 0) ( G(t, t)
where we have denoted
It(la 1) = ﬂ{TlSt,mSt} ) It(070) = ]1{7—1>t,7—2>t}
It(lao) = ﬂ{rlgt,72>t} ’ It<07 1) = ]l{n>t;rg§t}

More generally, some easy computation leads to
E(h(7'1, 7—2)|Ht) = It(l, 1)h(7’1, 7'2) + It(l, 0)\111’0(7'1) + It(O, 1)\11071(7'2) + It(O, 0)\110’0

where
1 o
\Ill,O(U) = _m‘/t h(uw)@lG(u,dv)
1
(

\110,1(7)) = M[ h(u,v)agG(du,v)

1 oo oo
\\J =
0,0 G /t t h(u,v)G(du, dv)

The next result deals with the valuation of a first-to-default claim in a bivariate set-up. Let us
stress that the concept of the (tentative) price will be later supported by strict replication arguments.
In this section, by a pre-default price associated with a G-adapted price process 7, we mean here the
(deterministic) function 7 such that m 1, ~¢y = T(t) L, >y for every t € [0,T]. In other words,
the pre-default price 7 and the price 7 coincide prior to the first default only.

Definition 3.1.1 Let Z;,i = 1,2 be two functions, and X a constant. A FtD claim pays Z1(m1) at
time 11 if 11 < T, 11 < T2, pays Za(12) at time 7o if 7o < T, 70 < 71, and X at maturity if iy Ao > T

Proposition 3.1.2 The pre-default price of a FtD claim (X,0,Z,1)), where Z = (Zy,Z2) and
X =¢(T), equals

T T
G(t,t) (/t Z1(u) G(du, u) */t Zz(v)G(v,dv)JrXG(T,T)).
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PROOF: The price can be expressed as

Eo(Z1(m1)Lir, <1573 |Gt) + Eo(Za(2) L {7, <77y 57031 Gt) + Eq(e(T) L7, >73[Ge)-

The pricing formula now follows by evaluating the conditional expectation, using the joint distribu-
tion of default times under the martingale measure Q. O

Comment 3.1.3 Same computations appear in Kurtz and Riboulet [99]

3.1.3 Martingales

We present the computation of the martingales associated with the times 7; in different filtrations.
In particular, we shall obtain the computation of the intensities in various filtrations.

We have established that, if F is a given reference filtration and if Gy = P(7 > t|F;) is the Azéma
supermartingale admitting a Doob-Meyer decomposition Gy = Z; — fot asds, then the process

tAT
as
Ht — A GS_ ds

is a G-martingale, where G =F VH and H; = o(t A 7).

o Filtration H'. We study the decomposition of the semi-martingales H* in the filtration H*. We
set Fi(s) = P(r; < s) = [y fi(u)du. From our general result, recalled above, applied to the case
where F is the trivial filtration, we obtain that for any 7 = 1, 2, the process

tAT; .
M} = H} —/ ﬂds (3.1.1)
O 1
is a H'-martingale.

e Filtration G. We apply the general result to the case F = H? and H = H'. Let
G,? =PB(r > t|H?)

be the Azéma supermartingale of 7| in the filtration H?, with Doob-Meyer decomposition Gi 2 =
Zt1|2 — fot aimds where Z'12 is a H2-martingale. Then, the process

tAT a1‘2
S
H} —/ s
0 G

s—

. . 12 tAT1 all?
is a G-martingale. The process Atl = Jo ! gj 5
o

ds is the G-adapted compensator of H'. The same
methodology can be applied for the compensator of H?2.

Proposition 3.1.4 The process MYC defined as

tATIAT2 6 G(S 8) tATY f(S 7_2)
MM = H} +/ 17’ds—~—/ 1= ds
! K 0 G(S?S) tATIATS aQG(saTZ)

is a G-martingale.

PROOF: Some easy computation enables us to write
P(Tl > 1,79 > t)
]P(TQ > t)
= Hh'(t,m)+ (1 - HY)Y() (3.1.2)

GI? = P(r > t|H2) = H2P(r > t|m) + (1 — H2)
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where
_ OG(t,v)

1
h’ (t,?}) - agG(O,’U) ’

P(t) = G(t,1)/G(0, ).

Function ¢ — (¢) and process t — h(t, T2) are continuous and of finite variation, hence integration
by parts rule leads to

dG{? = h(t,7)dH2 + H29,h(t, 72)dt + (1 — H2) (t)dt — 1b(t)dH?
= (h(t,72) —¥(t)) dH} 4+ (H701h(t,72) + (1 — H{)Y'(t)) dt
_ (82G(t,72) G(t,t)

9G(0,72) G(O,t)) dH + (H701h(t,72) + (1 — HP)y'(t)) dt

From the computation of the Stieljes integral, we can write

/OT (G(t,t) aQG(t,72)>dHt2 _ (G(Tg,r2) B aQG(TQ,TQ)) Lery

G(0,t)  5G(0,72) G(0,72)  02G(0,72)

(TG 9:.G(t1) )
B /0 (G(o,t)_aij,t))dHt

and substitute it in the expression of dG*I? :

1|2 oG 5 G 5 2 2 2N,/
01"~ (B0 G ) 41+ ) )

We now use that
02G(0,¢)

dH} = dM7? — (1 — H}) R0

dt

where M? is a H2-martingale, and we get the H2— Doob-Meyer decomposition of G'I? :

12 G(t,t)  G(t,t) G(t,t)  0G(t,t)\ 9G(0,t)
dG <82G(O,t) a G(O,t)) dM; — (1~ Hy) <G(O,t) a BQG(O,t)) G(0, 1) dt
+ (Hfalh(l)(t, )+ (1 — Hf)w’(t)) dt
and from

we conclude

12 _ [ G,t) _ 9,G(t,1) 2 24 7(1) g2 Gt t)
th = (G(O,t) 82G(0,t) th + Ht o1 h (t,Tg) + (1 Ht) G(O,t) dt

From (3.1.2), the process G2 has a single jump of size gjg(%?) - g((é?) From (3.1.2),

G

on the set 75 > t, and its bounded variation part is ¢’(¢). The hazard process has a non null

martingale part, except if g((é?) = gjg((é?) (this is the case if the default are independent). Hence,

(H) hypothesis is not satisfied in a general setting between H* and G.
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Remark 3.1.5 Note that

oo / a” / H30\0 (5,72) — (1 = H2)91G(5,5)/G(0,5)
! Gi? o HZh(s,72) + (1 — H3)Y(s)
tAT 1
1 O1ht(s,72) 01 G(s,5)/G(0,s)
= Hl—/ H2— " _(1-H? ds
c Sy B RGmy  UTHET
_ Hl B /t/\'rl 61}11(577'2) ds B /t/\‘rl/\'rz 31G’(s,s) dS
K tATIAT2 ht (37 T2) 0 G(87 8)
hl(t/\’]’l /\TQ,TQ) . \/t/\‘rl/\T2 81G(S,S)
hi(t A T1,72) 0 G(s,s)

It follows that the intensity of 7 in the G-filtration is %(Ss)s)

on the set {73 <t < 71}. It can be proved that the intensity of 71 A 72 is
0nG(s,s) = 02G(s,s) g(t)

G(s, s) G(s,s)  G(t,t)

= H/-In ds

1
on the set {t < 7o A7y} and %

where g(t) = £G(t,1)

e Filtration H We reproduce now the result of Chou and Meyer [33], in order to obtain the
martingales in the filtration H, in case of two default times. Here, we denote by H the filtration
generated by the process H; = H} + H?. This filtration is smaller than the filtration G. We denote
by 71y = 71 A 72 the infimum of the two default times and by 73y = 71 V 72 the supremum. The
filtration H is the filtration generated by o(7(1) At) Vo —tz At), up to completion with negligeable
sets.

Let us denote by G'(t) the survival distribution function of 7y, i.e., G1(t) = P(1y > t, 70 > t) =
G(t,t) and by Ga(t;u) the survival conditional distribution function of 75y with respect to 73, i.e.,
for t > u,

Ga(ust) = P(rpa) >ty = u) = —— (01G(u, t) + BG(t,u)) ,

b
g9(u)
where g(t) = £G(t,t) = £P(7(1) € dt). We shall also note

K(u;t) = (7’(2) — T > t|7'(1) = u) = Gg(u;t + u)
The process M, := H; — A; is a H-martingale, where

At = Al (t)]lt<7'(1) [Al (T(]. ) + AQ( 1)3 t— T( ))] HT(l)St<T(2)

with
dGl G(t,1)
1(t) 0 / G S S n G(O, 0) nG(ty t)
and
b d K (s;u) K(s;t)
A N = — U\ ) — y
2(s;t) . K(s,u) nK(s;O)
hence
Ao(r1y, t —7(1)) = me:fln 2(7(1); 1)

K (71(1);0) Ga (1) (1))
. 011G (7‘(1 )+(3'2 (t 7'(1))
G (1), 1)) + G(1(1), T(1))

It is proved in Chou-Meyer [33] that any H-martingale is a stochastic integral with respect to M.
This result admits an immediate extension to the case of n successive defaults.

This representation theorem has an interesting consequence: a single asset is enough to get a complete
market. This asset has final payoff Hr — Ap. It corresponds to a swap with cumulative premium
leg A
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3.1.4 Application of Norros lemma for two defaults
Norros’s lemma

Proposition 3.1.6 Let 7;,i = 1,---,n be n finite-valued random times and G; = H} V -V HP.
Assume that

(i) P(ri = 75) = 0,Vi #j
(ii) there exists continuous processes A such that M} = H] — A}, are G-martingales

then, the r.v’s Aii are independent with exponential law.

Proof. For any p; > —1 the processes L = (1 + Mi)Htie*“iAi“i, solution of
dL} = Li_p;dM;}

are uniformly integrable martingales. Moreover, these martingales have no common jumps, and are
orthogonal. Hence E(I],(1 + pi)e "% = 1, which implies

E(H e—#i/\f—i) — H(]‘ +,ui)_1

% i

hence the independence property. O

Application

In case of two defaults, this implies that U; and U, are independent, where

T ai(s)
U, = ds
o Gi(s)
and (with AV (t,v) = &G7t37 A3 (u,t) = %)
= 2 17 2 * = 2 (1) - 2
ai(t) = —(1 — H?) G0, + Hp oV (t,7),  Gi(t) = HER WD (8, 7) + (1 Ht)G(O,t)’
aQG(tat) G(t’t)
_ 1 g RGGT) 19 1(2) 2 —H!
ax(t) = (1~ H})~grg + HI0:hP (1), G3() = Hip? (1, 1) + (1 ") G0y

are independent. In a more explicit form,

T1AT2 (1) T1INT2
/ hG(s,s) ds 4 In R (71, 72) _ / " G(s,s) ds 4 In 02G(11,72)
0 G(S,S) h(l)(Tl /\TQ,’TQ) 0 G(S,S) 82G(7'1 /\TQ,TQ)

is independent from

TINT2 (2) TIAT2
/ aQG(S’S)ds—&—ln h2) (11, 79) :/ 82G(8’8)d5+1n N G(11,72)
0 G(S,S) h(2)(7-1,7-1/\7-2) 0 G(S,S) 81G(T1,’7'1/\T2)
Example of Poisson process

In the case where 71 and 75 are the two first jumps of a Poisson process, we have

e M fors <t
Gt s) = { e (L+ s —1t)) fors >t
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with partial derivatives

—de Mfort > s Ofort>s
alG(tv 5) = { “deMfors>t 82G(t, 5> - { —)\267)‘5(5 — t) for s >t
and
lfort>s Ofort>s
h(t,s) = { Lfors>t ° Orh(t,s) = { Lfors>t
0fort>s 0fort>s
kt,s) = { 1—e D fors>t ok(t, ) = { Ae A6 for 5 > ¢

Then, one obtains Uy =71 et Uy =70 — 71

3.1.5 Dynamic of CDSs
Let us now examine the valuation of a single-name CDS written on the default 7;. Our aim is to
show that the dynamics of this CDS will be affected by the information on 75: when 75 occurs, the

intensity of 71 changes, and this will change the parameters of the price dynamics. We reproduce
some result appearing in Bielecki et al. [?]

We consider a CDS

e with a constant spread x

e which delivers d(7;) at time 7 if 74 < T, where ¢ is a deterministic function.
The value of the CDS takes the form
Vi(k) = Vi(K) Licrnr, + Ve(8) Lry nry<tar, -

First, we restrict our attention to the case t < 79 A 7y.

Proposition 3.1.7 On the sett < 15 A 1y, the value of the CDS is

~ T T
Vi(k) = ﬁ <—/75 0(u)01G(u,t) du—/-e/t G(u,t) du) .

PROOF: The value V (k) of this CDS, computed in the filtration H, i.e., taking care on the
information on the second default contained in that filtration, is

Vi(k) = Licr E(6(m) sy <7 = 6((T' A1) = 8)[Hy)

Let us denote by 7 = 71 A 7o the first default time. Then, 1oy Vi(k) = ]l{t<7.}‘7t(/€), where

‘Z(H) - WE (6(7—1)]17—1 ST]lt<T - H((T A Tl) - t)]lt<7')
- ﬁﬁl (6(m)Lr <rlyer — (T AT1) — ) Lter)

1 T
= ) (/t O(u)Q(m1 € du, 10 > t)

T e
—/i/t (u—1t)Q(11 € du, 70 >1t) — (T—t)/i/T Q(m1 € du, 0 > t))
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In other terms, using integration by parts formula

1 ) (— /Td(U)81G(u,t) du—fﬁ/T G(Uat)d“>

Ti) =

Proposition 3.1.8 On the event {2 <t < 11}, the CDS price equals

Vi(k) = Vt—IIKTlIE Ly <r = 6((T A1) = t)|o(72))

T
= ( / 0(u) f(u,12) du—m/ 02G(u, m2) du> — th\2(7'2)
T T
‘/tlp(g) = 82%(158) <_/t 6(u)f(u75) du — K',/t 62G(ua8) du) .

In the financial interpretation, V;m(s) is the market price at time ¢ of a CDS on the first credit name,
under the assumption that the default 75 occurs at time s and the first name has not yet defaulted
(recall that simultaneous defaults are excluded, since we have assumed that G is differentiable).

where

The price of a CDS is V; = VtIlKTz A T Vt oA <t<r - Differentiating the deterministic function
which gives the value of the CDS, we obtain

aVi() = ((a(t) + Xa(0) Val) + 5 = M (D3(0) = MoV, (1)) i,

where for i = 1,2 the function \;(¢) is the (deterministic) pre-default intensity of 7; given in (?7?)
and

aVi(n) = (X2 (72) (Vatw) = 8()) + )

where Xi‘z(u) is given in (?7).
Proposition 3.1.9 The price of a CDS follows

AV = (1= HY)( = H})s = SN (1)db + (1~ B HE (5 = 6()X; )t
~VidM} + (1= H)(V () = Vi )aM? (3.1.3)

PROOF: Differentiating V; = V;(1 — H})(1 — H2) + V,(1 — H})H2 one obtains

av; = (1-H})(1 - H})dV;, + (1 - H})H?dV; — V,_dH}
+(1— HHVP (1) - Vi)am?

which leads to the result after light computations O

Comment 3.1.10 As for a single name CDS, the quantity —5(t)xl(t) corresponds to the dividend
d to be paid at time ¢ with probability A' on the set t < 71 A 75 and 5(t)xt1 12 corresponds to the
dividend § to be paid at time ¢ with probability )\,} 12 on the set T9 < t < 711. The quantity Vtm(t) ~V,
represents the jump in the value of the CDS, when default 75 occurs at time ¢.
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The cumulative price of the CDS is
Ve = B(3(r) Ly <1 — #(T A T)[Hy)

It follows that
AV = dVi — §(t)dH}! — k(1 — H})dt

hence, since the cumulative price is a martingale

dVy = dmy + S()A\fdt — k(1 — H})dt

AV = (1= H])(1— H)(k — 6N (8))dt + (1 — H)YHP (s — 8(t)X, )t
Ve dM + (1= H})(V}P(t) = Vi )AME = 6(0)dH] — (1 — H} )t
= (0(t) = Vi )dM} + (1 — HN(V; () — Vi )dM?

which is an easy way to obtain the drift term in (3.1.3).

3.1.6 CDSs as hedging assets

Assume now that a CDS written on 75 is also traded in the market. We denote by V% i = 1,2 the
prices of the two CDSs. Since the CDS are paying dividends, a self financing strategy consisting in
9% shares of CDS’s has value X; = 9}V,! + 92V, and dynamics

dXt —_ ﬁ%d‘/tl,cum +19t2d‘/tQ,cum,
= 01 (8 () = VL)aM} + (L - BV P(0) - Van?)

07 ((82(8) = VE)AME + (1= BV (1) - V2)am})
= (960 - V) + 30 - B (1) - V) an}
+ (90— HO( P () = V) + 026 (1) - V2) ) an

Let A € Hp be a terminal payoff with price (we use the PRT to prove the existence of the coefficients
)

t
At:E(A)—i—/ midM; .
0

. In order to hedge that claim, it remains to solve the linear system

LSt — Vi) + 921 - BV () - V) = nf
OH1 — HHY(VP (1) = V) +92(82(t) — V) = P

Hence, on the set ¢ < 71 A 72, noting that V;i = V' on that set,

- T (82(t) — V2) — 2 (V! - v2)
t = (S1() — V(82 (1) — V2) — (V2 — vy v2t — vz
9 = (01 (t) = Vi) = (V2 - V)
L) — V() — V) — (VAR — v vt - )

on the set 1 <t <7y

P G O 7 ks L/ () SR
f OO -VHEemH-va T R0 -V
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on the set 7 <t <7

191 :_7771&1 02: W?(él(ﬂ—‘/tl)_ﬂtl(v;lp_v?)
TR T T G- vee - v
on the set 71 V1o <t 1 2
9 = ™ 92 — Wit.
O A O

As we saw above, for the case A = h(71,72)), one has a closed form for the coefficients .

mio= (A7) o (b ) HE + (da0t1) = doo(0) (1~ HY)

m = (h(r,t) = ro(m, ) HE + (Yo (t,t) — oo(t)) (1 — H})

3.2 Cox process modelling

We are now studying a financial market with null interest rate, and we work under the probability
chosen by the market.

3.2.1 Independent Barriers

We now assume that n non negative processes \;,7 = 1,...,n, F-adapted are given and we denote
Ay = f(f Aisds. We assume the existence of n r.v. U;,i = 1,--- ,n with uniform law, independent
and independent of F, and we define

i =1inf{t : U; > exp(—Aie)}-

We introduce the following different filtrations
o H; generated by H;; = 1,,<;
o the filtration G defined as

Ge=FVH1 V- VHit V- -Hpy

o the filtration G; as G;; = F; V Hiy
o H_; the filtration
Heneg=Hit V- VHic1 0 VHipre - Hip

Note the obvious inclusions
FCG,CG, H_yCG=G;VH_,
We note £;(t, T) the loss process
6i(t,T) = E(l,,<7|Gt) = P(ri < T|G;) = E(H; 7|Gt)
and D;(t,T) = E(exp(A; 4A; )| F;) the predefault price if a DZC.

Lemma 3.2.1 The following equalities holds

P(ri > t;,Vi) = E(exp— Y Asi) (3.2.1)
P(r; > t;,VilF) = eXP_ZAti,ia vt; <t, (3.2.2)
P(ri > t;,VilF) = [[P(ri>tlF), vt <t, Vi (3.2.3)

P(r; > t;,VilFy) = E(exp— Y A ilF), Vi, (3.2.4)

>4V
P(r; > t;, Vi|Gy) = W on the set 7 >t;,Vi (3.2.5)
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PROOF: From the definition

P(r; > t;,Vi) = P(exp —Ay,; > U;, Vi) = E(exp — ZAtz)

where we have used that P(u; > U;) = u; and E(U(X,Y)) = E(¢(X)) with ¢(x) = E(¥(z,Y)) for
independent r.v. X and Y.

In the same way,
]P)(Ti 2 tz,VZL/_'.t) = P(exp *Ati,i 2 Ul,Vz|}'t)
= exp— Z Ay, i

where we have used that E(U(X,Y)|X)) = ¢(X) with ¢(z) = E(¥(z,Y) for independent r.v’s X
and Y, and that the A, ; are F;-measurable for ¢; < t.

Lemma 3.2.2 (a) Any bounded F-martingale is a G-martingale.
(b) Any bounded G;-martingale is a G-martingale

PROOF: (a) Using the caracterisation of conditional expectation, one has to check that
E(n]F:) = E(n]Foo)
for any G;-measurable r.v. It suffices to prove the equality for
n=Fhi(t A1) ho(t A7)

where F; € F; and h;,i = 1,--- ,n are bounded measurable functions. We can reduce attention to
functions of the from h;(s) = 1jg.q,1(s). If a; > ¢, hy(t A7;) =1, so we can pay attention to the case
where all the a;’s are smaller than ¢t. The equality is now equivalent to

E(r; < a,VilFy) = E(ry < aq, Vi Foo)
By definition
E(r < a;, VilFy) = E(exp —Asa, < Ui, Vi|lF) = U(Agpi=1,--+ ,n)
with U(u;;4=1,---,n) =[[(1 — ;). The same computation leads to
E(r; < a4, VilFso) = U(Ajgi=1,---,n)

(b) Using the same methodology, we are reduced to prove that for any bounded G;-measurable r.v.

7,
E(n|Gi,) = E(nlgu,w))

or even only that
E(mn2|Gi¢) = E(mn21G,00))
for m € Gt and 2 € H(_;) 4, that is
E(n2]Gi) = En2]G,00))

To simplify, we assume that ¢ = 1. Using the same elementary functions h as above, we have to
prove that

E(ha(12a At) - hn(Tn A an)|G1e) = E(ha(t2 At) -+ hy(Tn A an)|G(1,00))
where a; < t, that is

E(]]‘T2SU«2 T ﬂfnéan ‘gl,t) = E(]l7'2§a2 T ﬂfnéan|gl,<><>)
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Note that the vector (Us,---,U,) is independent from
Gloo=Fc V() V--0(mm) =Fo Va(Uz)V---a(Upy)

It follows that

n

E(lLry<ay -+ Ur <0, ]G100) = Blllexp —Ag uy <tz Nexp A0, <0, [F1,00) = [ [ (1 — exp(=Aya,))
1=2

Lemma 3.2.3 The processes M; + : = Hi7t—f0t(1—Hi75)Ai,sds are G;-martingales and G-martingales

ProOF: We have shown that M, ; := H;; — f(f(l — H; s)A; sds are G;-martingales. Now, from the
lemma, G; martingales are G martingales as well.

Lemma 3.2.4 The processes £;(t,T) are G-martingales and

lig=(1—Hi)(1 —E(exp(Ais — Ai1)|Ft) + Hiy

From the definition, the processes ¢;(t,T) are G-martingales. From Lemma

P(Ti Z T|]:t)

P(r; > T, |G) = 11t<nm

=(1—H;)E(exp—(Aip — Air)| Fr)

hence El(t, T) = H’L,t + (1 — Hi,t)E(l — exp _(Ai,t — Ai,T)|Ft)
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Chapter 4

(Generalities and Immersion Property

From the end of the seventies, Jacod, Jeulin and Yor started a systematic study of the problem of en-
largement of filtrations: namely, if F and G are two filtrations satisfying F C G, which F-martingales
M remain G-semi-martingales and if it is the case, what is the semi-martingale decomposition of M
in G?7
In the literature, there are mainly two kinds of enlargement of filtration:

o Initial enlargement of filtrations: in that case, G; = F; V o(L) where L is a r.v. (or, more
generally G, = F; V F where F is a o-algebra, up to right-continuous regularization)

e Progressive enlargement of filtrations, where G; = F; V H; with H the natural filtration of
H; = 1l{;<4; where 7 is a random time (or, more generally G; = F;\V F; where [ is another filtration).

In fact, very few studies are done in the case G, = F; V .7?t. One exception is for ft = o(J;) where
Jy = infs>; X when X is a three dimensional Bessel process (see [82]). See also the recent work of
Kchia et al. [91].

Up to now, three lecture notes volumes have been dedicated to this question: Jeulin [82], Jeulin
& Yor [86] and Mansuy & Yor [108]. There are also related chapters in the books of Protter [118]
Dellacherie, Maisonneuve & Meyer [41], Jacod [75], Jeanblanc et al. [81] and Yor [135]. Chapter
20 in [41] (in French) contains a very general presentation of enlargement of filtration, based on
fundamental results of the general theory of stochastic processes, developed in the previous chap-
ters and books by the same authors. Chapter 12 in Yor [135] and the book Mansuy & Yor [108]
are concerned with the case where all martingales in the reference filtration F are continuous. A
survey, as well as many exercises, can be found in Mallein & Yor [106, Chapter 10]. More recently,
Protter [118] and Jeanblanc, Yor & Chesney [81] have devoted a chapter of their books to the sub-
ject. The lecture by Song [123] is very complete and contains a deep general study. The reader can
also find a summary and many examples of some classical problems in the lecture by Ouwehand [116].

Some first and important papers are Brémaud and Yor [30] (devoted to immersion case), Barlow
[18] (for a specific study of honest times), Jacod [75, 76] and Jeulin & Yor [83]. A non-exhaustive
list of references contains the papers of Ankirchner et al. [13], Nikeghbali [113] and Yoeurp [132].

Several thesis are devoted to this problem: Aksamit [2] Amendinger [9], Ankirchner [12], Bedini
[20], Falala [28], Kchia [92], Kreher [97], Li [102], Song [122] and Wu [130].

Enlargement of filtration results are extensively used in finance to study two specific problems
occurring in insider trading: existence of arbitrage using strategies adapted w.r.t. the large filtration,
and change of prices dynamics, when an F-martingale is no longer a G-martingale. They are also a
main stone for study of default risk.

An incomplete list of authors concerned with enlargement of filtration in finance for insider
trading is: Ankirchner [13, 12|, Amendinger [9, 10], Amendinger et al. [11], Baudoin [19], Corcuera
et al. [37], Eyraud-Loisel [55], Florens & Fougere [59], Gasbarra et al. [65], Grorud & Pontier
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[66], Hillairet [68], Hillairet and Jiao [70, 69], Imkeller [72], Karatzas & Pikovsky [90], Wu [130],
Kohatsu-Higa & Qksendal [96], Zwierb [136]. The recent book of Hillairet and Jiao [71] is devoted
to that subject.

A general study of arbitrages which can occur in an enlarged filtration is presented in Aksamit
et al. [4, 5, 6], Acciao et al. [1], Fontana et al. [64]

Di Nunno et al. [46], Imkeller [73], Imkeller et al. [74], Kohatsu-Higa [94, 95| have introduced
Malliavin calculus to study the insider trading problem. We shall not discuss this approach here.

Enlargement theory is also used to study asymmetric information, see, e.g. Follmer et al. [62] and
progressive enlargement is an important tool for the study of default in the reduced form approach
by Bielecki et al. [24, 25, 26], Elliott et al.[53] and Kusuoka [100] among others.

Let F and G be two filtrations such that F C G. Our aim is to study some conditions which
ensure that F-martingales are G-semi-martingales, and one can ask in a first step whether all F-
martingales are G-martingales. This last property is equivalent to E(¢|F;) = E(¢|G:), for any ¢ and
¢ € LN(Fx).

Let us study the simple example where G = F V o(¢) where ¢ € L'(F.) and ( is not Fo-
measurable. Obviously, m; := E(¢|F;) is an F-martingale. If m would be a G-martingale, E(mq|G;) =
mg, hence ¢ = m; and, in particular ¢ = E(¢|Fp) which is not the case.

In this chapter, we start with the case where F-martingales remain G-martingales. In that
case, there is a complete characterization so that this property holds. Then, we study a particular
example: Brownian and Poisson bridges.

4.1 Immersion of Filtrations

4.1.1 Definition

The filtration F is said to be immersed in G if any F-martingale is a G-martingale (Tsirel’son [128§],
Emery [54]). This is also referred to as the (%) hypothesis by Brémaud and Yor [30].

(H) Every F- martingale is a G-martingale.
Proposition 4.1.1 Hypothesis (H) is equivalent to any of the following properties:

(H1) Vt > 0, the o-fields Foo and G, are conditionally independent given Fy, i.e., Yt >0, VG; €
L2(Gi),V F € L*(Foo), E(G} F|Fy) = E(G4|F)E(F|F).

(H2) ¥t >0, VG € LYGy), B(Gi|Foo) = E(Ge|F).
(H3) V>0, VF € L'(Fx), E(F|G:) = E(F|F).

In particular, (H) holds if and only if every F-local martingale is a G-local martingale. Furthermore,

if Hypothesis (H) holds, then Gy N Foo = Fi.

PRrOOF:

o (H) = (H1). Let F € L?*(F) and assume that hypothesis (H) is satisfied. This implies that the
martingale Fy = E(F|F;) is a G-martingale such that F, = F', hence F; = E(F|G;). It follows that
for any t and any G, € L?(G,):

E(FGt|-7:t) = E(GtE(F‘gt)‘ft) = E(GtE(F|-7:t)|-7:t) = E(Gt|ft)E(F|ft)

which is exactly (H1).
o (H1) = (H2). Let F € L*(Fx) and Gy € L?(G;). Under (H1),

E(FE(Gy|F)) = E(E(F|F)E(G|Fy)) & E(E(FGy|Fy)) = E(FG,)
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which is (H2).
o (H2) = (H3). Let F € L*(F) and G; € L?*(G,). If (H2) holds, then it is easy to prove that, for
F e L*(Fx),

E(GE(F|F,)) = B(FE(G,|F,)) & E(FE(G/|Fu))E(FGy),

which implies (H3).
e Obviously (#3) implies ().
The proof of G;NFo, = F; is now simple. We have only to check that G;NF,, C F;. Let A € GiNFo.
Then,
14 =E(alFx) = E(LalF)

which implies that A € F; O

In particular,if F is immersed in G and if W is an F-Brownian motion, then it is a G-martingale
with bracket ¢, since such a bracket does not depend on the filtration. Hence, it is a G-Brownian
motion. It is important to note that f(f sdWy is then a G-local martingale, for a G-adapted process
1, satisfying some integrability conditions (see [85]).

A trivial (but useful) example for which F is immersed in G is G =F Vv F where F and F are two
filtrations such that F.. is independent of F.

Exercise 4.1.2 Assume that F is immersed in G and that W is an F-Brownian motion. Prove that
W is a G-Brownian motion without using the bracket. <

Exercise 4.1.3 Prove that, if F is immersed in G, then, for any ¢, F; = G; N Fo. <

Exercise 4.1.4 Show that, if 7 € F, immersion holds between F and F V H where H is generated
by H; = 1l,<; if and only if 7 is an F-stopping time. <

4.1.2 Change of probability

Of course, the notion of immersion depends strongly on the probability measure, and in particular,
is not stable by change of probability. See Subsection 4.3.5 for a counter example. We now study in
which setup the immersion property is preserved under change of probability.

Proposition 4.1.5 Assume that the filtration F is immersed in G under P, and let Q be equivalent
to P, with Q|g, = LP|g, where L is assumed to be F-adapted. Then, F is immersed in G under Q
and the F-intensities of T under P and Q are the same.

PROOF: Let N be a (F,Q)-martingale, then (NyL;,t > 0) is a (I, P)-martingale, and since F is
immersed in G under P, (N;L;,t > 0) is a (G,P)-martingale which implies that N is a (G, Q)-
martingale. We have for each t < s

Ep(Lillfr<sy | Ft)

Qr < #1F) = =5 TR =P <1 F) =P(r <1 F) =Qr < t|F),

where the last equality follows by another application of the Bayes formula. The assertion follows.[]

Note that, if one defines a change of probability on F with a Radon-Nikodym density which is
(as it must be) an F-martingale L, one can not extend this change of probability to G by setting
Q|g, = LiP|g,, since, in general, L fails to be a G-martingale.

We recall that, if X is a positive martingale, there exists N, a local martingale such that X =
E(N). This process N is denoted £(M) and called the stochastic logarithm of X.
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Proposition 4.1.6 Assume that F is immersed in G under P, and let Q be equivalent to P with
Qlg, = LiP|g, where L is a G-martingale and define €; := E(L:|Ft). Assume that all F-martingales
are continuous and that L is continuous. Then, F is immersed in G under Q if and only if the

(G, P)-local martingale
b dL, e,
_ c— L(L), —
/0 Ls 0 gs [’( )t ‘C(e)t

is orthogonal to the set of all (F,P)-local martingales.

PrOOF: Every (F,Q)-martingale M2 may be written as

b d(MP, ),
M2 =MF — /0 —

where M is an (F,P)-martingale. By immersion hypothesis, M is a (G,P)-martingale and, from

Girsanov’s theorem, MF = N2 + fot ‘MMLA where N© is an (G, Q)-martingale. It follows that

"d(MF,L)s [ d(M",b)s
M = Nﬁ@*/ T*/ T
0 s 0 s

= N2 +/t d(MT, L(L) — L(0))s .
0

Thus M© is a (G, Q) martingale if and only if (MF, L(L) — L(£))s = 0. O

Proposition 4.1.7 Let P be a probability measure, and

Q‘gt = LtP‘gt; Q|]:t = gtpb‘_t .
Then, immersion holds under Q if and only if:

Ep(XLr|G)  Eeo(Xlr|F)

VT,VX >0, X € Fp, ¥t < T, - (4.1.1)
Lt gt
PROOF: Note that, for X € Fr,
1 1
Eo(X|G:) = £ Ee(XLr|G:)) , Eq(X|Ft)= ;Ep(X{r|G)
t t
and that, from MCT, (#) holds under Q if and only if, VT, VX € Fr,Vt < T, one has
Eq(X|G:) = Eq(X|Ft).
O

Comment 4.1.8 The (H) hypothesis (immersion hypothesis) was studied by Brémaud and Yor
[30] and Mazziotto and Szpirglas [110], and in a financial setting by Kusuoka [100], Elliott et al. [53]
and Jeanblanc and Rutkowski [78, 79).

Exercise 4.1.9 Prove that, if ' is immersed in G under P and if QQ is a probability equivalent to
P, then, any (Q, F)-semi-martingale is a (Q, G)-semi-martingale. Let

Q|gt - LtIP|gf,; Q‘ff = étm}} .
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and X be a (Q,F) martingale. Assuming that F is a Brownian filtration and that L is continuous,
prove that

S

X+ /O t (id@a 0~ F-d(xX, L>s)

is a (G, Q) martingale.
In a general case, prove that

L. (1 1
Xt+/0 I (Esd[X,E]s I d[X,L]S>

is a (G, Q) martingale. See Jeulin and Yor [84]. <

Exercise 4.1.10 Assume that any F martingale is a F semi-martingale, with F C INF, and 7 an F
stopping time. Prove that any F martingale is a G semi-martingale, where G, = o(t A7) (regulariser)
<

Exercise 4.1.11 Assume that F is immersed in F and 7 is an F stopping time. Prove that any F is
immersed in G (regulariser) <

Exercise 4.1.12 Assume that ft(L) = F; V o(L) where L is a random variable. Find under which
conditions on L, immersion property holds. <

Exercise 4.1.13 Construct an example where some F-martingales are G-martingales, but not all
F martingales are G-martingales. <

Exercise 4.1.14 Assume that F C G where (H) holds for F and G.
a) Let 7 be a G-stopping time. Prove that () holds for F and F™ = F vV H where H; = o(7 A t).
b) Let G be such that F C G C G. Prove that F be immersed in G. <

Exercise 4.1.15 Assume that ft(T) = F; V o(7) where 7 is a positive random variable, and G; =
FiV H; where Hy = o(7 At). Find under which conditions on 7 the filtration G is immersed in F(m,
<

4.2 Immersion in a Progressive Enlargement of Filtration

We now consider the case where a random time 7 is given and where G is the progressively enlarged
filtration. We introduce the F-supermartingale Z; = P(7 > t|F%).

4.2.1 Characterization of Immersion

Lemma 4.2.1 In the progressive enlargement setting, (H) holds between F and G if and only if one
of the following equivalent conditions holds:

(i) V(t,s),s<t, P(r < s|Fx) = P(r <s|F),

(i) Vi, P(r < t|Fu) = P(r<t|F). (4.2.1)

ProOF: If (ii) holds, then (i) holds too. If (i) holds, Fo, and o(t A 7) are conditionally independent
given F;. The property follows. This result can be found in Dellacherie and Meyer [43]. O

Note that, if (#) holds, then (ii) implies that the process P(r < t|F;) is increasing (See Section
8.7 for a study of that property).



64 CHAPTER 4. GENERALITIES AND IMMERSION PROPERTY

Exercise 4.2.2 Prove that in a Cox model (see Section 2.3), immersion holds. <

Exercise 4.2.3 Prove that if H and F are immersed in G, and if any F martingale is continuous,
then 7 and F,, are independent. <

Exercise 4.2.4 Assume that immersion property holds and let, for every u, y;(u) be an F-martingale.
Prove that, for ¢ > s,
]]‘TSSE(yt (T)|gs) = ﬂTSsys (7_)

Exercise 4.2.5 Prove that G is immersed in F V o(7) if and only if 7 is constant. <

4.2.2 Norros’s lemma

Proposition 4.2.6 Assume that Z is continuous and lim;_, o, Zy = 0 and let A be the increasing
predictable process such that My = Hy — Ajpr- 18 a martingale. If F is immersed in G, then, the r.v.
Ao has unit exponential law and the variable A, is independent of Fo.

PRrOOF: Fix z > 0 and consider the process X = (X¢,t > 0), defined by:
X; = (14 z)ft em#henr
for all ¢ > 0. Then, applying the integration by parts formula, we get:
dX; = ze #err dM, . (4.2.2)

Hence, by virtue of the assumption that z > 0, it follows from (4.2.2) that X is a G-martingale, so
that:
E[(1+2)7r e7# 7 | G] = (1 + 2)Hs em Ao (4.2.3)

holds for all 0 < s < t. (Note that the martingale property of X follows also from Exercise ?? for
h = 1.) In view of the implied by z > 0 uniform integrability of X, we may let ¢ go to infinity in
(4.2.3). Setting s equal to zero in (4.2.3), we therefore obtain:

E[(1+2)e ] =1.

This means that the Laplace transform of A is the same as one of a standard exponential variable and
thus proves the claim. Under immersion property, Z is decreasing and, under continuity assumption,
dA = dZ/Z. Applying the change-of-variable formula, we get, for continuous Z:

t
]]‘ T>S
e*ZAt/\r =1 + Z/ e*ZAs ﬁ ng (424)
0 Z

S

for all t > 0 and any z > 0 fixed. Then, taking conditional expectations under F; from both parts
of expression (4.2.4) and applying Fubini’s theorem, we obtain from the immersion of F in G that:

Fo [ —aa L)
.7-}]=1—|—z/0 E e *% 7

S

t
P
- 1—|—z/ e~ s 7(T>S|J:t) dZ,
0 Zs

E [e—ZAtm—

]:t} dZs (4.2.5)

¢
=1+ z/ e N dz,
0
for all t > 0. Hence, using the fact that Ay = —In Z;, we see from (4.2.5) that:

E[e_ZAMT |]:t] =1+ lj-iz ((Zt)1+z _ (Zo)1+z)
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holds for all ¢ > 0. Letting ¢ go to infinity and using the assumption Zy = 1, as well as the fact that
Zs =0 (P-a.s.), we therefore obtain:

1
1+2

]E[eiZA’ | Foo] =

that signifies the desired assertion. (|

Comment 4.2.7 This result does not extend to the discontinuous case! As a trivial counter exam-
ple, take F a Brownian filtration and 7 be an F stopping time. Then, A; = ;<.

Exercise 4.2.8 (A different proof of Norros’ result) Suppose that
P(r <t[Fo)=1—e '

where I' is an arbitrary continuous strictly increasing F-adapted process. Prove, using the inverse
of ' that the random variable I'; is independent of F,, with exponential law of parameter 1. <

4.2.3 G-martingales versus F martingales

Proposition 4.2.9 Assume that F is immersed in G. Let Y be a G-adapted, integrable process
given by the formula
YtG =ylror +ye(7)Lr<e, VEER,, (4.2.6)

where:
(i) the projection of Y onto F, which is defined by

YV =E(YF|IR) =y P(r > t|F) + E(g (1) L<i| F),

is a (P, F)-martingale,
(i) for any fized u € R, the process (y:(u), t € [u,00)) is a (P,F)-martingale.
Then the process Y is a (P, G)-martingale.

PROOF: Let us take s < t. Then
E(Y;Glgs) = ]E(ytﬂ‘r>t|gs) + E(yt('r)ﬂs<‘r§t|gs) + E(yt(T)ﬂT§s|gs)
1
= 18<77(E(yt2t|fs) + E(yt(T)ﬂs<‘r§t‘]_—s)) + ]E(yt(T)HTSS‘gs)

S

On the one hand,
E(ye(7)1r<s|Gs) = Lr<sys(T) (4.2.7)

Indeed, it suffices to prove the previous equality for y;(u) = h(u)X; where X is an F-martingale. In
that case,

E(Xih(r)1r<5|Gs) = Lr<sh(T)Ep(X4]Gs) = Lr<sh(T)E(Xe| Fys) = Ly <sh(7) X = Lr<sys(7)
In the other hand, from (i)
E(y: Zt + yu(7)Ur<t|Fs) = ys Zs + E(ys (1) Lr <] Fs)
It follows that

E(Y,°|Gs) = lls<TZiS(ysZs FE((Ys (1) = ye () Ly s Fs)) + Lrcsys(7) -

It remains to check that
E((ys(7) — ye(7))Lr<s|Fs) =0
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which follows from
E(yt(T)]lrgs|~Fs) = ]E(yt(T)]]-Tgs‘gs‘fs) = E(yS(T)]lTSSLFS)
where we have used (4.2.7). O

Exercise 4.2.10 In a Cox model, for a continuous A, prove that 7 is independent of F, if and only
if A is a deterministic function. <

Exercise 4.2.11 Prove that, if P(7 > t|F;) is continuous and strictly decreasing, then there exists
O independent of Fo, such that 7 = inf{t : A; > ©}. <

Exercise 4.2.12 In a Cox model, write the Doob-Meyer and the multiplicative decomposition of
Z. <

Exercise 4.2.13 Show how one can compute P(7 > t|F;) when
T =inf{t : X; > O}

where X is an [F-adapted process, not necessarily increasing, and © independent of F.,. Does
immersion property still holds? Same questions if © is not independent of F. <

4.2.4 Martingale Representation Theorems

Theorem 4.2.14 Suppose that F is immersed in G and that any F-martingale is continuous. Then
the martingale M]' = E(h,|G;), where h is an F-predictable process such that Elh,| < oo, admits
the following decomposition in the sum of a continuous martingale and a discontinuous martingale

tAT 1
MP = mp + / —dm! + / (hy — M) dM,, (4.2.8)
0o Zu 10,¢A7]

where m" is the continuous F-martingale given by

mh = —E(/Oo hydZ, ft)
0

and M is the discontinuous G-martingale defined as My = Hy — T'ypr, where ' = —In Z.

PrRoOOF: We start by noting that

My

)

t
= Lpsrphe + Lparye’ (mi“r/ hy dZu). (4.2.9)
0

E(h7|gt) = n{tZT}hT - ]l{t<‘r}ert E(/ hu dZu
t

We will sketch two slightly different derivations of (4.2.8).

First derivation. Let the process J be given by the formula, for ¢t € R,

Jy = el (m? + /t ha dZu).
0

Noting that I is a continuous increasing process and m” is a continuous martingale, we deduce from
the It6 integration by parts formula that

t
dJ; = eltdml —elthy dF, + (mf + / ha, dZu>eFt dTy
0

= elvdml + e h,dz, + J, dTy.
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Therefore, from dZ; = —e~ Tt dTY,
dJ; = et dml + (J; — hy) dTy
or, in the integrated form,
t t
Jy = M} +/ el dm! +/ (Ju — hy) dT,.

0 0

Note that J; = M} = M} on the event {t < 7}. Therefore, on the event {t < 7},
tAT tAT
M} = MP + / el dmh 4 / (M!_ — h,)dl,,.
0 0
From (4.2.9), the jump of M" at time 7 equals
hy —Jy =h, — M =M — MP.

Equality (4.2.8) now easily follows.

Second derivation. Equality (4.2.9) can be re-written as follows
t t
M) = / ho dHy + (1 — Hy)e'™ (m? — / B dFu).
0 0
Hence formula (4.2.8) can be obtained directly by the integration by parts formula. O

Corollary 4.2.15 Suppose that F is immersed in G and that F is a Brownian filtration generated
by B. Then, any G martingale Y admits a representation as

tAT
Vi = Yo+ / pudB. + / (Y, — Y)dM,, (4.2.10)
0 10,tAT]

4.2.5 Stability under Change of Probability

In this section, we extend the results obtained in the Cox setting (see Section 2.3.4).

Case of the Brownian filtration

Let W be a Brownian motion under P and F its natural filtration. Since we work under immersion
hypothesis, W is a Brownian motion with respect to G under P. Our goal is to show that immersion
is still valid under Q € Q for a large class Q of (locally) equivalent probability measures on (£2,G).

Let @ be an arbitrary probability measure locally equivalent to P on (2,G). In our set-up,
Kusuoka’s representation theorem 4.2.15 implies that there exist G-predictable processes 6 and
¢ > —1, such that the Radon-Nikodym density L of Q with respect to IP satisfies the following SDE

dLy = Ly— (0 AWy + (; dM;) (4.2.11)

with the initial value Ly = 1. More explicitly, the process n equals

Li=§& (/ 0., qu> & (/ Cu dMu> =ML, (4.2.12)
0 0
1 . t 1 t
LW =g (/O Guqu> = exp (/0 0, AW, — 5/0 agdu> ,

. t AT
LY = ¢, </0 Ca dMu> = exp (/0 In(1 + Cy) dH, — /0 " CuVu du) . (4.2.13)

where we write

and
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Proposition 4.2.16 Assume that immersion holds under P. Let Q be a probability measure locally
equivalent to P with the associated Radon-Nikodym density process L given by formula (4.2.12) . If
the process 0 is F-adapted then immersion is valid under Q and the F-intensity of T under Q equals

(1+Ct)'yt, where ¢ is the unique F-predictable process such that the equality Gilyi<ry = Gillyi<ry
holds for every t € Ry.

PROOF: Let P* be the probability measure locally equivalent to P on (€, G), given by

dP* | g, = & (/O Cu dMu> dP|g, = L!? dP|g,. (4.2.14)

We claim that immersion holds under P*. From Girsanov’s theorem, the process W follows a Brow-
nian motion under P* with respect to both F and G. Moreover, from the predictable representation
property of W under P*, we deduce that any F-local martingale L under P* can be written as a
stochastic integral with respect to W. Specifically, there exists an F-predictable process £ such that

t
0

This shows that L is also a G-local martingale, and thus immersion holds under P*. Since

dQ|g, =& (/ Huqu> dP* | g,,
0

by virtue of Proposition 4.1.5, immersion is valid under QQ as well. The last claim in the statement of
the lemma can be deduced from the fact that immersion holds under Q and, by Girsanov’s theorem,
the process

t

t
Mt = Mt — / ﬂ{u<7}’7u<u du = Ht — / ﬂ{u<7’}(1 + Cu)’)/u du
0 0

is a Q-martingale. O

We claim that the equality P* = P holds on the filtration F. Indeed, we have dP* | z, = L; dP | 7,
where we write L, = EP(LEQ) | F+), and

Ep(L{? | F)) = Ep (& (/ Cu dMu> ‘]—'OO> =1, VteR,, (4.2.15)
0

where the first equality follows immersion.

To establish the second equality in (4.2.15), we first note that since the _process M is stopped at
7, we may assume, without loss of generality, that ( = ( where the process ( is F-predictable. More-
over,the conditional cumulative distribution function of 7 given Fo, has the form 1 — exp(—T';(w)).
Hence, for arbitrarily selected sample paths of processes ¢ and I, the claimed equality can be seen
as a consequence of the martingale property of the Doléans exponential.

Formally, it can be proved by following elementary calculations, where the first equality is a
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consequence of (4.2.13)),

P (St 0. Eu dMu> ‘f > Ep ((1 + ll{tzT}ET) exp ( — /OMT Zu% du) '.7:00>
0 tAu
/O (1 + ]l{tZu}Eu) exp ( - [) gv'}/v d”>7u67 Jot v dv gy, ‘ ]:oo)

(
:EP</Ot(1+CufyueXp( /1+Cv%dv>du‘]-">

C%dv ]E]p( Yul - 'V“d”du‘}' )

:]E]P’

—|—exp<—
0

t
:/ (1 +Cu Yu eXp / 1 +Cv Yo dv)du
0 0

+eXp<—/0 @%dv)/ e o e Ay

t
t

=1—eXp(—/ot(1+5v)%dv)+exr>(—/0t5v%dv)exz>(—/o %dv) =1,

where the second last equality follows by an application of the chain rule.

Extension to orthogonal martingales

Equality (4.2.15) suggests that Proposition 4.2.16 can be extended to the case of arbitrary orthogonal
local martingales. Such a generalization is convenient, if we wish to cover the situation considered
in Kusuoka’s counterexample.

Let N be alocal martingale under P with respect to the filtration F. It is also a G-local martingale,
since we maintain the assumption that immersion holds under P. Let Q be an arbitrary probability
measure locally equivalent to PP on (2,G). We assume that the Radon-Nikodym density process L
of Q with respect to P equals

dLy = Ly (0,5 dNy + ¢ th) (4.2.16)

for some G-predictable processes § and ¢ > —1 (the properties of the process 6 depend, of course,
on the choice of the local martingale N). The next result covers the case where N and M are
orthogonal G-local martingales under P, so that the product M N follows a G-local martingale.

Proposition 4.2.17 Assume that the following conditions hold:

(a) N and M are orthogonal G-local martingales under P,

(b) N has the predictable representation property under P with respect to F, in the sense that any
F-local martingale L under P can be written as

t
Lt:Lo—&-/ £, dN,, VteR,,
0

for some F-predictable process &,

(c) P* is a probability measure on (0, G) such that (4.2.14) holds.
Then we have:

(i) immersion is valid under P*,

(i) if the process 0 is F-adapted then immersion is valid under Q.

The proof of the proposition hinges on the following simple lemma.
Lemma 4.2.18 Under the assumptions of Proposition 4.2.17, we have:

(i) N is a G-local martingale under P*,
(ii) N has the predictable representation property for F-local martingales under P*.
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PROOF: In view of (c), we have dP*|g, = L§2) dP|g,, where the density process L) is given by
(4.2.13), so that dng) = L§2_) (¢ dM;. From the assumed orthogonality of N and M, it follows that N

and L are orthogonal G-local martingales under P, and thus NL(? is a G-local martingale under
P as well. This means that N is a G-local martingale under P*, so that (i) holds.

To establish part (ii) in the lemma, we first define the auxiliary process L by setting L, =
]Ep(ng) | 7). Then manifestly dP* |z, = L,dP|,, and thus in order to show that any F-local
martingale under P* follows an F-local martingale under P, it suffices to check that 77; = 1 for every
t € Ry, so that P* =P on F. To this end, we note that

Ep(L® | F) = Bz (& (/ cudMu) \foo> _1, VieR.,
0

where the first equality follows from immersion property, and the second one can established similarly
as the second equality in (4.2.15).

We are in a position to prove (ii). Let L be an F-local martingale under P*. Then it follows also
an F-local martingale under P and thus, by virtue of (b), it admits an integral representation with
respect to N under P and P*. This shows that N has the predictable representation property with
respect to ' under P*. O

We now proceed to the proof of Proposition 4.2.17.

Proof of Proposition 4.2.17. We shall argue along the similar lines as in the proof of Proposition
4.2.16. To prove (i), note that by part (ii) in Lemma 4.2.18 we know that any F-local martingale
under P* admits the integral representation with respect to N. But, by part (i) in Lemma 4.2.18,
N is a G-local martingale under P*. We conclude that L is a G-local martingale under P*, and thus
the immersion is valid under P*. Assertion (ii) now follows from Proposition 4.1.5. (|

Remark 4.2.19 It should be stressed that Proposition 4.2.17 is not directly employed in what
follows. We decided to present it here, since it sheds some light on specific technical problems arising
in the context of modeling dependent default times through an equivalent change of a probability
measure (see Kusuoka [100]).

Example 4.2.20 Kusuoka [100] presents a counter-example based on the two independent random

times 71 and 7 given on some probability space (Q,G,P). We write M} = H} — OMTi vi(u) du,

where Hj = 1{4>,} and ; is the deterministic intensity function of 7; under P. Let us set dQ|g, =
L;dP|g,, where L; = Lgl)L]EQ) and, for i = 1,2 and every t € R,

L =1+ / LY (O aMi =&, ( / ¢ dM;)
0 0
for some G-predictable processes ¢V, i = 1,2, where G = H' v H?. We set F = H' and H = H?.

Manifestly, the immersion holds under P. Moreover, in view of Proposition 4.2.17, it is still valid
under the equivalent probability measure P* given by

|, =& [ o au2) aels.
0
It is clear that P* = P on F, since
Ep(L{Y | Fi) = Es <5t (/ ¢ dM3> ‘Ht1> =1, VteR,.
0

However, immersion is not necessarily valid under Q if the process ¢V fails to be F-adapted. In
Kusuoka’s counter-example, the process ¢(1) was chosen to be explicitly dependent on both random
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times, and it was shown that immersion does not hold under Q. For an alternative approach to
Kusuoka’s example, through an absolutely continuous change of a probability measure, the interested
reader may consult Collin-Dufresne et al. [36].

4.3 Successive Enlargements

4.3.1 Immersion

Proposition 4.3.1 Let 71 < 72 a.s., H' be the filtration generated by the default process Hf = 1,,<4,
and G =F Vv H' v H2. Then, the two following assertions are equivalent:

(i) F is immersed in G

(ii) F is immersed in FV H' and FV H! is immersed in G.

PROOF: (this result was obtained by Ehlers and Schénbucher [47], we give here a slightly different
proof.) The only fact to check is that if F is immersed in G, then F Vv H! is immersed in G, or that

P(my > t|F; VHE) = P(ro > t|Foo VHL)
This is equivalent to, for any h, and any A € Fuo
E(Asch(T1)Lry>e) = E(Asch(m1)P(r2 > tF, V Hy))
We split this equality in two parts. The first equality
E(Aooh(1) Ly, 541r,5¢) = E(Asch(T1) 1y 5¢P(72 > | F V HY))

is obvious since 1,541~y = Lpy sy and Ly < P(1o > t|F VHL) = 1>
Since I is immersed in G, one has E(A|Gt) = E(Aw|Ft) and it follows (WHY?) that E(Aw|G:) =
E(Ax|F: V H}), therefore
E(Acch(Ti)lr,5t2m) = E(E(Ac|Ge)M(11) L7, >127,)
= EE(Ax|F VH)(T1)Lry500r)
= E(E(Ax|F: Vv H;)E(h (7—1)]172>t>71‘]:tv,H%))
= E(AE(h(r)lrysi>m [Fe V Ht))

Exercise 4.3.2 Prove that H',i = 1,2 are immersed in H' vV H? if and only if 75,5 = 1,2 are
independent. <
4.3.2 Various immersion

Lemma 4.3.3 LetF be generated by a Brownian motion. Assume that F is immersed in G* = FVH!
and in G = FV H'V H? and that there exists an F predictable increasing process A such that
M} = H} — A}, is a G martingale. Then G' is immersed in G

PROOF: Any G' martingale admits a decomposition as Y; = y + fg ysdWs + fg ysdM}. The result
follows since W and M! are assumed to be G martingales (Il

This result extends to the case of an arbitrary filtration F. Indeed, for X € bFr and h bounded
Borel function

BCXH(IG!) = h(n) <B(XIH) + Licr 7 BOX [ (w)aFF)

can be written as a sum of stochastic integrals wrt M! and to some F martingales (note that, from
immersion E(X|G}) = E(X|F).
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4.3.3 Norros’ lemma

Lemma 4.3.4 Norros Lemma.
Let ;i =1,--- ,n be n finite-valued random times and Gy = F; N Hi V -+ -V HP. Assume that

(Z) P(TZ‘ :’Tj) = 07VZ' 75]

11) there exists continuous increasing processes A? such that M} = H — A, _ are G-martingales
t t tAT;
then, the r.v’s AZT are independent with exponential law.

Al .
tA7;  solution of

PROOF: For any ji; > —1, the processes Li = (1 + y;)ie "

AL} = Li_ dM;
are uniformly integrable martingales. Moreover, these martingales have no common jumps, and are
orthogonal. Hence E(]],(1 + pi)e "%7) = 1, which implies

E(H e—mAii) — H(l +,Ufi)71

[ %

hence the independence property. O

Application: Let us study the particular case of Poisson process. Let 71 and 75 are the two first
jumps of a Poisson process, we have

e Mfors <t
G(t,s) = { e 1+ Ns—t)) fors >t

with partial derivatives

—de Mfort>s Ofort>s
G, s) = { e Mfors>t 02G(t ) = { —A2e (s —t) for s >t

and

1fort>s 0fort>s
h(t,s) = { Lfors>t O1h(t,s) = { Lfors>t
Ofort>s 0fort>s
k(t’ S) - { 1— e—)\(s—t) for s >t ) an(t’ S) - { )\e—)\(s_t) for s >t
Then, one obtains A;, =71 et A, =70 — 7y

4.3.4 Several Defaults in a Cox model

Proposition 4.3.5 Let 7; := inf{t : Al > O,}, where the ©;’s are independent from F and A*’s
are F adapted increasing processes. Let H' be the natural filtration of H, where H{ = 1,,<; and
G=FVH'V---VH" be the full observation filtration. Then F is immersed in G.

PROOF: Observe that, G C FV ¢(©!) V...V ¢(O") and that, from the independence hypothesis,
obviously F is immersed in FV o(©!) V.-V o(O"). O

Corollary 4.3.6 In the case where ©F are independent, G* :=FVH! V...V H’ is immersed in G
and the G* intensity of 7; is the G intensity. The filtration F* := F Vv H* is immersed in G and the
F intensity of 7; is the (F,G) intensity.
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PROOF: FVH! V.-V H is immersed in FV o(©!) V.-V o(O"). O

It is important to note that in the case of Proposition 4.3.5, the (F,G') intensity of 7; is not
equal to its (F,G) intensity. In other terms, G* is not immersed in G in that general setting.

We can extend the characterization of Cox model with immersion property as follows. We keep
the notation of the previous Proposition.

Proposition 4.3.7 We assume that P(r; = 7;) = 0 for i # j. If, for any i = 0,...,n, G is
immersed in G and if there exists F-adapted processes A' such that M{ := Hj — A}, are G'

martingales, then, there exist independent random variables ©%, independent from F such that 1; =
inf{t : Al > ©}.

PRrOOF: The fact that © := A;, are independent follows from Norros’lemma. The ©" are inde-
pendent from F from the single default case. Note that our hypothesis implies that M are F v H’
martingales and G martingales and that, from Corollary 4.3.6, F vV H? is immersed in G. |

4.3.5 Kusuoka counter example

Kusuoka [100] presents a counter-example of the stability of H hypothesis under a change of proba-
bility, based on two independent random times 71 and 7o given on some probability space (2,G,P)
and admitting a density w.r.t. Lebesgue’s measure. The process M}! = H} — fg/\n A1(u) du, where
H} =145,y and \; is the deterministic intensity function of 7; under P, is a (P, H’) and a (P, G)-
martingale, where G =

hh*VH?2. (Recall that \;(s)ds = ]g(fiidj)) ). Manifestly, immersion hypothesis holds under P between
H! and G. Let us set dQ|g, = L dP|g,, where

¢
L,=1 +/ Lyt dM}
0
for some G-predictable process x satisfying x > 1 (WHY?). We set F = H! and H = H?. Let
- tATL N
M} = H} - / A1 (u) du
0
_ tATL
M! = H} - / A (w)(1 4+ ky) du
0

where X(u)du = Q(m1 € du)/Q(m1 > u) is deterministic. It is easy to see that, under Q, the

process M1 is a (Q, H')-martingale and M is a (Q, G) martingale. The process M? is not a (Q, G)-
martingale (WHY?), hence, immersion does not hold under Q.

Exercise 4.3.8 Compute Q(7; > t|H?). <

4.3.6 Ordered times

Assume that 7;,7 = 1,...,n are n random times. Let 0;,7 = 1,...,n be the sequence of ordered
random times and G*) = FVH® ...vH®) where H® = (Hgi) = o(tAoy),t > 0). The G®¥)-intensity
of oy, is the positive G()-adapted process A\¥ such that (Mt(k) =Ny <y — fg Neds, t > 0)is a G-
martingale. The G*)-martingale M *) is stopped at o}, and the G*)-intensity of o}, satisfies A =0
on {t > o1 }. The following lemma shows the G®)-intensity of o}, coincides with its G(™)-intensity.

Lemma 4.3.9 For any k, a G -martingale stopped at o, is a G -martingale.
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PROOF: We prove that any G(V)-martingale stopped at o1 is a G(®)-martingale. The result will
follow. Let X be a G(")-martingale stopped at o1, i.e. X; = Xino, for any t. For s < t,

E[Xtno, Ufacos}|GS]

IE[*th/\a |g§2)] =1 09<s XO' +1 s<o
1 {o02<s} 1 {s<o2} P(S P 0_2|g£1))

It remains to note that
IE[)(t/\al ]1{5<02}|g§1)] = ]1{5<0'1}E[Xt/\0'1 |g§1)] + n{dlﬁs}E[XUl ]1{8<0’2}|g.§1)} :

Since o3 > s on {01 > s}, we obtain I, ;P(s < 02|g§1)) = l{s<0,}- The martingale property of
X yields to
Il{s<m}IE[Xt/\cf1|g§1)] = Il{s<c71}Xs/\01

It is obvious that
1o, <)E[Xo Liacoy [GV] = 1y, <) X0, P(s < 0|GIV).

The result follows. O

The following is a familiar result in the literature.

Proposition 4.3.10 Assume that the G intensity \* of oy, exists for all k € ©. Then the intensity
of the loss process Y p_, 1,,<¢ is the sum of the intensities of oy, i.e.

M= Z)\k, a.s.. (4.3.1)
k=1

PROOF: Since (15, <} — fg Meds, t > 0) is a G*)-martingale stopped at oy, it is a G(™)-martingale.
We have by taking the sum that (L; — fg S Meds, t > 0) is a GU-martingale. So \F = 371 AF
for all ¢t > 0. O



Chapter 5

Bridges and utility maximization

The first applications of enlargement of filtration in Finance concerns an insider who has, at time 0,
some information about the value of the asset’s price at some date in the future.

5.1 The Brownian Bridge

Rather than studying ab initio the general problem of initial enlargement, we discuss an interesting
example. Let us start with a BM (By,t > 0) and its natural filtration FZ. Define a new filtration

as ]-'t(Bl) = FB v a(By). In this filtration, the process (B;,t > 0) is no longer a martingale. It

is easy to be convinced of this by looking at the process (E(Bﬂ}'t(Bl)),t < 1): this process is
identically equal to Bj, not to By, hence (B;,t > 0) is not a G-martingale. However, (B, t > 0) is
a F(BU)_semi-martingale, as follows from the next proposition 5.1.2.

Before giving this proposition, we recall some facts on Brownian bridge.
The Brownian bridge (b:,0 <t < 1) is defined as the conditioned process (B, t < 1|By = 0).
Note that B; = (B; — tBy) + tB; where, from the Gaussian property, the process (B; — tBy,t < 1)

and the random variable B; are independent. Hence (b;,0 < ¢ < 1) law (By —tB1, 0 <t <1). The
Brownian bridge process is a Gaussian process, with zero mean and covariance function s(1—t), s < t.
Moreover, it satisfies bg = by = 0.

We can represent the Brownian bridge between 0 and y during the time interval [0, 1] as
(By —tBy +ty; t <1).

More generally, the Brownian bridge between x and y during the time interval [0, T'] may be expressed
as

t t
(1:+BtTBT+T(yx); th),

where (B;t < T) is a standard BM starting from 0.
Exercise 5.1.1 a) Prove that the Riemann integral fg M B i:? =(ds is absolutely convergent.
b) Prove that, for 0 < s <t <1, E(B; — Bs|B1 — B,) = =2(B; — By) <

S

5.1.1 Decomposition of the BM in the enlarged filtration F(51)

Proposition 5.1.2 Let ft(Bl) = Ne>0Ftte V 0(B1). The process

tAl
By — B

Bt ::Bt—/ e
0 1-s

75
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is an FBY) -martingale, and an FBY) Brownian motion. In other words,

tAL
By, — B;
Bo=p- [ P las
0 — S

is the decomposition of B as an FPV -semi-martingale.
PROOF: Note that the definition of F(P1) is done to satisfy the right-continuity assumption. We

shall note, as a short cut, ]-"t(Bl) :=F:Vo(By) =F:Vo(By— Bt). Then, since F; is independent of
(Bs+n — Bs,h > 0), one has, for s < t:

t—s

E(B, — B,|F{®)) = E(B, — Bi| By — B)) = T—(B1 - By).
—s
For s <t <1,
E( th |FB)) = tLE(B — B,|B, — B,)d
A u|S g = e 1 u|D1 s)au
!
= / = (B = B ~E(B, — B,|B) ~ By)) du
t
1 uU— s
= /Sl—u(Blle—s(BlBs)>du
1 K t—s
= 1_8(B17Bg)/st—1_s(BlfBg)
It follows that
E(8; — 5s|f§Bl)) =0
hence, f is an F(BY)-martingale (and an F(%1)-Brownian motion). O

It follows that if M is an F-local martingale such that fol \/ffsd|<M, B)|; is finite, then

tAl
— B, — B,
M, = M, — 2L (M, B,
1
0 — S

is a F(B) local martingale.

Comment 5.1.3 The singularity of % at t = 1, i.e., the fact that % is not square integrable

between 0 and 1 prevents a Girsanov measure change transforming the (P, F(51)) semi-martingale
B into a (Q,F(51)) martingale.

Comment 5.1.4 We obtain that the standard Brownian bridge b is a solution of the following
stochastic equation (take care about the change of notation)
by

dby = —1_tdt+th,0§t<1

bp = 0.

The solution of the above equation is b; = (1 — t) fg l—ides which is a Gaussian process with zero
mean and covariance s(1 —t),s < t.

Exercise 5.1.5 Using the notation of Proposition 5.1.2, prove that B; and f are independent.
Check that the projection of 3 on F? is equal to B.
<
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Exercise 5.1.6 Consider the SDE

1-1¢

X
{dXt = - @ttdw,;0<t<1
Xo = 0

1. Prove that

t
dW,
Xp=(1-1) ;0=t<1.
01

-5
2. Prove that (X;,t > 0) is a Gaussian process. Compute its expectation and its covariance.

3. Prove that lim;_,; X; = 0.

<

Exercise 5.1.7 (See Jeulin and Yor [85]) Let X; = fot psdBs where ¢ is predictable such that
f(f ¢2ds < oo. Prove that the following assertions are equivalent

1. X is an F(B)_semimartingale with decomposition

tAL B] _ BS

t
X = / wsdBs + s psds
0 0 -

1 B;—B,
2. [ oo BBl ds < oo

1 S
3. Jy Jkds < o

5.2 Poisson Bridge

Let N be a Poisson process with constant intensity A, ¥ = o(Ny,s < t) its natural filtration and
T > 0 a fixed time. The process M; = N; — At is a martingale. Let G = 0(Ng, s < t; Nr) be the
natural filtration of N enlarged with the terminal value Np of the process N.

Proposition 5.2.1 Assume that A = 1. The process

tAT MT _ ‘2\4S

:M—
e t 0 T—s

ds,

is a G*-martingale with predictable bracket, for t < T,

t
Np — N,
A= | —ds.
¢ o TIT'—s §

PROOF: For 0 < s <t < T,

t—s
T—s

E(Ny — Ns|G2) = E(Nt — Ng|Np — Ng) = (N7 — Ny)
where the last equality follows from the fact that, if X and Y are independent with Poisson laws
with parameters p and v respectively, then

n!

POX = kX +Y =) = e

Ckk(]. o a)nflc
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where a = ,
t t
NT_Nu du
E — |G = Nr — Ny — E(N, — N,|GZ
([ atg=r0) = [ 2 o (V. = N.IG2)
todu u—s
= Ny — N; — Nr — N,
/sTu( r Tfs( T )>
todu t—s
= Npr — Ng) = Npr — Ng).
/sTfs( T ) Tfs( T )
Therefore,
t Ny — N, t—s t—s
E(N; — N, — T u ——"du|GY) = T—s(NT_NS)_T—s(NT_NS)_O

S

and the result follows.

Comment 5.2.2 Poisson bridges are studied in Jeulin and Yor [85]. This kind of enlargement of
filtration is used for modelling insider trading in Elliott and Jeanblanc [52], Grorud and Pontier [66]
and Kohatsu-Higa and @ksendal [96].

Exercise 5.2.3 Prove that, for any enlargement of filtration the compensated martingale M remains
a semi-martingale. <

Exercise 5.2.4 Prove that any FV-martingale is a G*-semimartingale. <

Exercise 5.2.5 Prove that

tAT
Nr — N,
nt:Nt—/ ST R s — (- T)*,
0

T—-5s
Prove that Wy
(o= [ s -1
Therefore, (n:,t < T) is a compensated G*-Poisson process, time-changed by f K NT N =ds, i.e.,
N = M( Ot N:TF N: ds) where (M(t),t > 0) is a compensated Poisson process. <

Exercise 5.2.6 A process X fulfills the harness property if

X, - X, Xp— X,
o) (i S
( t—s fso]’[T> T — 59

for sg < s <t < T where fSO]v[T = o(Xy,u < sp,u > T). Prove that a process with the harness
property satisfies

T—1 t—s
E(Xt’fs]’[T) - T—SXSJFT—SXT7

and conversely. Prove that, if X satisfies the harness property, then, for any fixed T,
X —
MI =X, — / du=Et— " p T

is an Fy) p-martingale and conversely. See [3M] for more comments. <
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5.3 Insider trading

In this section, we study a simple case of insider trading. We assume, that, in a BLack and Scholes
model, an insider knows, at time 0 the value of the price at time 1. If the maturity of the market
is 1, there are obviously arbitrage opportunity. We show how this insider can increase his wealth if
the market terminates before date 1. We then study the same problem in a Poisson case.

5.3.1 Brownian Bridge

Let
dSt = St(,udt + O'dBt)

where p and o are constants, be the price of a risky asset. Assume that the riskless asset has an
constant interest rate r.

The wealth of an agent holding 9¥° shares of the savings account and ¥ shares of the underlying
risky process is X; = ¥0e" + 9;S;. The self financing condition is that

dXt = ﬂgde” + ﬁtdSt = ’I“Xtdt + 19t (dSt — ’I“Stdt)
With the change of notation 7, = 9;S;/X; (so that the wealth remains non negative) one has
dXt = ’I"Xtdt + WtUXt(th + th), X(J =T

Here ¢ is the number of shares of the risky asset, and 7 the proportion of wealth invested in the
risky asset. It follows that

T T

1

In(X7") =Inx —|—/ (r— 577?02 + Oms0)ds —|—/ omsdWs
0 0

Then, assuming that the local martingale represented by the stochastic integral is in fact a martin-
gale,

T
1
]E(ln(X;f@)) =Inzx +/ E (T — §7r302 + 07‘(‘50') ds
0

The portfolio which maximizes E(In(X}")) is w5 = g and
T,x 1 2
supE(In(X7")) =lnz+T | r + 59

Note that, if the coefficients r, u and o are F-adapted, the same computation leads to

T
1
supE(In(X7")) = Inx —l—/ E <7“t + 29?) dt
0

where 6; = ’“Tj”

We come back to the case of constant coefficients. We now enlarge the filtration with Sy (or

equivalently, with Bi. In the enlarged filtration, setting, for t < 1, oy = £ i:f t the dynamics of S

are

dSt = St((,u + O'Oét)dt + O'd/Bt) s

where (3 is defined in Proposition 5.1.2 and the dynamics of the wealth are

dX; = rXdt + mo X, (dfy + Opdt), Xo = =
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with 6; = B bop =5+ %. Assuming again that the stochastic integral which appears is

a martingale, the portfolio which maximizes E(In(X7")) is my = %.
Then, for T' < 1,

T 1~ T
In(X7"") = lna:+/ (r+§9§)ds—|—/ omsdfs
0 0

T T
E(ln(X7"") = 1nx+/ (r + %(92 + E(a?) + 20E(as))ds = Inz + (r + %92)T+%/ E(a?)ds
0 0

where we have used the fact that E(ay) = 0 (if the coefficients r, 4 and o are F adapted, « is
orthogonal to Fy, hence E(a6;) = 0). Let

Vi) = maxE(In(X7")); 7 is F adapted
VE(z) = maxE(In(X}")); 7 is G adapted

Then VE(z) = VF(z) + iE fOT a2ds =VF(z) —iIn(1-T).

If T'= 1, the value function is infinite: there is an arbitrage opportunity and there does not exist
an e.m.m. such that the discounted price process (e7"tS;,t < 1) is a G-martingale. However, for
any € €10, 1], there exists a uniformly integrable G-martingale L defined as

AL, =" T g <1 Lo=1,
g

such that, setting dQ|g, = L:dP|g,, the process (e~ "'S;,t <1 —¢) is a (Q, G)-martingale.

This is the main point in the theory of insider trading where the knowledge of the terminal value
of the underlying asset creates an arbitrage opportunity, which is effective at time 1.

It is important to mention, that in both cases, the wealth of the investor is X;e " = x +

fot msd(Sse~"%). The insider has a larger class of portfolio, and in order to give a meaning to the
stochastic integral for processes m which are not adapted with respect to the semi-martingale S, one
has to give the decomposition of this semi-martingale in the larger filtration.

Exercise 5.3.1 Prove carefully that there does not exist any emm in the enlarged filtration. Make
precise the arbitrage opportunity. <

5.3.2 Poisson Bridge
We suppose that the interest rate is null and that the risky asset has dynamics
dSt = St, (,Ltdt + O'th + (bth)

where M is the compensated martingale of a standard Poisson process. Let (X, ¢ > 0) be the wealth
of an un-informed agent whose portfolio is described by (), the proportion of wealth invested in
the asset S at time ¢. Then

dXt = Wtth(lLLdt + O'th + ¢th) (531)

Then,

t t 1t t
X; = zexp (/ s(p — dN)ds + / omedWy + 3 / o?mids + / In(1+ Wsd))st)
0 0 0 0

Assuming that the stochastic integrals with respect to W and M are martingales,

T
E[n(Xr)] = In(x) +/0 E(pumy — %a%g + A(In(1 + ¢7s) — ¢ms)ds .
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Our aim is to solve
V(z) = supE (In(X77™))

We can then maximize the quantity under the integral sign for each s and w.
The maximum attainable wealth for the uninformed agent is obtained using the constant strategy
7 for which

wp+ AIn(l 4+ 7¢) — 7p| — %7?202 = sup[rp + A[In(1 + 7¢) — 7| — %WQUQ] .

Hence
1

2 2

3075 (16 = X = 0" £ /(6 = X =07 4070 ) .

The quantity under the square root is (g — ¢\ + 02)? + 402¢?\ and is non-negative.

The sign to be used depends on the sign of quantities related to the parameters. The optimal 7 is

the only one such that 1+ ¢7 > 0. Solving the equation (5.3.1), it can be proved that the optimal

wealth is X; = 2(L;) ! where dL; = Li_(—o7dW, + (W —1)dM;) is a Radon Nikodym density
T

of an equivalent martingale measure. In this incomplete market, we thus obtain the utility equivalent

martingale measure defined by Davis [38] and duality approach (See Kramkov and Schachermayer).

7~T:

We assume now that the informed agent knows Np from time 0. Therefore, his wealth evolves
according to the dynamics

dX} = X7 [(u+ ¢(Ay — N)]dt + odW; + ¢dM;]

where A is given in Proposition 5.2.1. Exactly the same computations as above can be carried out.
In fact these only require changing u to (u+ ¢(A; — A)) and the intensity of the jumps from A to A;.

The optimal portfolio 7* is now such that g — Ap + PA] ] —7*0% =0 and is given by

1+76
75 = 5z (10— A= 0 £ V(b= PR+ PP+ 0%,
The optimal wealth is X; = 2(L;)~! where
dLy = Lj_(—omidW; + (TM: —1)dM).

Whereas the optimal portfolio of the uninformed agent is constant, the optimal portfolio of the
informed agent is time-varying and has a jump as soon as a jump occurs for the prices.
The informed agent must maximize at each (s,w) the quantity

7w+ As(w) In(1 4+ w¢p) — Argp — %77202 .
Consequently,
sgp i+ AsIn(l + 7)) — Amrgp — %77202 >au+ AsIn(l+7¢) — A — %fr202
Now, E[A] = A, so

T
1
supE(In X7) = Inz+ sup/ E(mp + AgIn(1 4+ w¢p) — A — 577202)d5
™ ™ 0

T
1 ~
> Inz+ / T(p+ An(l + 7¢) — Ao — 5fr%?)ds = E(In X7)
0

Therefore, the maximum expected wealth for the informed agent is greater than that of the un-
informed agent. This is obvious because the informed agent can use any strategy available to the
uninformed agent.

Exercise 5.3.2 Solve the same problem for power utility function. <
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5.4 Drift Information in a Progressive Enlargement in a Brow-
nian Setting

We assume in this part that W is a Brownian motion with natural filtration F and G is a filtration

larger than F and that there there exists an integrable G-adapted process u® such that dW, =

dWE + ufdt where W€ is a G-BM. We study a financial market where a risky asset with price S (an

F-adapted positive process) and a riskless asset S° = 1 are traded is arbitrage free. More precisely,
we assume w.l.g. that S is a (P,F) (local) martingale, dS; = SiodW;.

Let X be the wealth process associated with a G predictable strategy
dX; = 0,dS; = 9,5,dW,; = m; X dW; = 1, X, (dWE + S dt)

(where the change of parameter is due to the fact that we restrict our attention to positive wealth)

so that
t 1 [t t
X, =xexp </ ﬂ‘gdWéG — 7/ ﬂfds Jr/ ﬂ'suf’ds)
0 2 /o 0

Our goal is to solve sup(E(ln X7), 7 € F) and sup(E(In X7), 7 € G). It is then easy to see that the
optimal 7 is 7* = u€ and that

t 1 t
In X} :lnx—|—/ 77;*de+§/ (1%)2ds
0 0

so that, assuming that E (fg(,u(g’)st) < 00, one finds

1 t
supE(ln X7) =lnz < supE(In X7) =Inz + E (/ (uf’)zds)
welR TeG 2 0

Note that, if L; := £(—u®W®); is a martingale, NFLVR holds, and if L is a local martingales,
the No arbitrages of the first kind holds (see Section 1.5.1).



Chapter 6

Initial Enlargement

In this chapter, we study initial enlargement, where the enlarged filtration is ]—'t(L) = F Vo(L)
for a random variable L. The goal is to give conditions such that F-martingales remain F(*)-semi-
martingales and, in that case, to give the F(X)-semi-martingale decomposition of the F-martingales.

More precisely, in order to satisfy the usual hypotheses, define
F = Neso {Fiae Va(L)} .

In this chapter, we study the (H’) hypothesis between F and F(%)

e We give Jacod’s criteria

e We present Yor’s methodology in a Brownian setting

e We give some examples

6.1 General Facts

We denote P(F) the predictable o-algebra (see Subsection 1.1.3).

Proposition 6.1.1 One has

(i) Every .Ft(L)-measumble r.v. Yy is of the form Yi(w) = y(w, L(w)) for some Fy @ B(R)-measurable
random variable (y:(w,u),t > 0).

(ii) Every FX) -predictable process Y is of the form Yy (w) = y(w, L(w)) where (t,w,u) — yy(w,u) is
a P(F) ® B(R)-measurable function.

PrROOF: The proof of part (i) is based on the fact that ft(L)—measurable random variables are

generated by random variables of the form X;(w) = x;(w)f(L(w)), with ; € 7; and f bounded
Borel function on R.

(ii) It suffices to notice that processes of the form X; := x;f(L), ¢ > 0, where x is F-predictable
and f is a bounded Borel function on R, generate the F(X)-predictable o-field. O

We shall now simply write y;(L) for y;(w, L(w)).

6.2 An absolute continuity result

We recall that there exists a family of regular conditional distributions P;(w, dz) such that P;(-, A)
is a version of P(L € A|F;).

83
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6.2.1 Jacod’s criterion

In what follows, for y(u) a family of martingales and X a martingale, we shall write (y(L), X) for
(y(u), X)lu=r-

Proposition 6.2.1 (Jacod’s Criterion.) Suppose that, for each t > 0, Pi(w,dx) << v(dx) where
v is the law of L. Then, every F-semi-martingale (X, t <T) is also an F(E) _semi-martingale.
If X is an F-martingale, the process

~ Yd(p.(L), X
Xt:Xt_/ d<p( )7 >S,t<T
0 Ps- (L)
is an FE) -martingale. In other words, the decomposition of the FE) -semi-martingale X is

¥ ! d<p‘(L)vX>s
Xt_XtJr/o ps- (L)

PROOF: In a first step, we show that, for any 6, the process p(f) = (p:(d),t > 0) is an F-
martingale. One has to show that, for a bounded r.v. {5 € Fs and s <t

E(pt(g)gs) = E(ps (H)CS)

This follows from
E(E(]l‘r>9|]:t)CS) = ]E(E(I]'T>9|'FS)<S) .

In a second step, we assume that F-martingales are continuous (condition (C)), and that X and
p are square integrable. In that case, (p.(L), X) exists. Let Fs be a bounded F,-measurable random

variable and h : RT — R, be a bounded Borel function. Then the variable F,h(L) is F) measurable
and if a decomposition of the form X; = X;+ fot dK, (L) holds, the martingale property of X should

imply that E (Fsh(L) ()?t - )?)) = 0, hence

B (1) (%, - X) =B (Ft) [ dk(0)).
We can write:

E (Fsh(L) (X; — X))

B (F.06-x) [ nomown)

— 00

/R h(O)E (Fy (Xepe(0) — Xops(0))) v(d6)

[no (x| t 40X, ) vla)

where the first equality comes from a conditioning w.r.t. F;, the second from the martingale property
of p(#), and the third from the fact that both X and p(f) are square-integrable F-martingales.

Moreover:
E (Fsh(L) / t dKU(L)> E (F /R ho) / t de(H)pt(Q)Z/(dG))

_ /R h(O)E (F / t pv(e)de(9)> v(d6)

where the first equality comes from the definition of p, and the second from the martingale prop-
erty of p(6). By equalization of these two quantities, we obtain that it is necessary to have

dK,(0) = d(X,p(0)), /pu(). -

For the general case, we refer the reader to Jacod. If Pi(w,dz) = p(w, z)v(dz), the process p(L)
does not vanish on [0, T.
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Remark 6.2.2 Of course, if for each t < T, Pi(w,dz) << v(dx) where v is the law of L, every
F-semi-martingale (X,,t < T) is also an F(*)-semi-martingale. In many cases, the hypothesis is not
satisfied for T' (see the Brownian bridge case).

Definition 6.2.3 We shall say that L satisfies absolutely continuity hypothesis if
P(L € dx|F:) = Pi(dz) = pi(z)v(dz)

The stability of absolutely continuity hypothesis under a change of probability is rather obvious.

Corollary 6.2.4 Let Z be a random variable taking only a countable number of values. Then every
F semimartingale is a F(%) semimartingale.

PROOF: If we note
Z P(Z 2, (dz)

where d,, (dx) is the Dirac measure at xy, the law of Z, then P (w,dz) is absolutely continuous
with respect to n with Radon-Nikodym density:

= $k|Ft)
E |
IP) = l'k T=Tk

Now the result follows from Jacod’s theorem.[]

Exercise 6.2.5 Assume that IF is a Brownian filtration. Then, check directly that E( f ! M | F%)
is an F-martingale. <

6.2.2 Regularity Conditions

One of the major difficulties is to prove the existence of a universal cadlag martingale version of the
family of densities, which is important in order to avoid difficulties with negligible sets. Fortunately,
results of Jacod [75] or Stricker and Yor [126] help us to solve this technical problem. See also [9] for
a detailed discussion. We emphazise that these results are the most important part of enlargement
of filtration theory.

Jacod ([75], Lemme 1.8 and 1.10) establishes the existence of a universal cadlag version of the
density process in the following sense: there exists a non negative function pi(w,6) cadlag in ¢,
optional w.r.t. the filtration F on Q = Q x RT, generated by F; ® B(R™), such that

e for any 6, p () is an F-martingale; moreover, denoting (¢ = inf{t : p;_(§) = 0} A T, then
p.(0) >0, and p_(#) > 0 on [0,¢%), and p.(#) = 0 on [¢?,T). Furthermore, (¥ =T, P-a.s.

e For any bounded family (Y;(w,#),t > 0) measurable w.r.t. P(F) ® B(R"), the F-predictable
projection of the process Y;(w, L(w)) is the process Yt(p) = pi—(0)Y:(0)v(dh).

o If (w,t,0) —)Yi(w, 0) is non negative and O(F)) ® B measurable, the optional projection of the
process Y (L) is [ Y;(0)p:(0)v(d6).

e Let m be a local F-martingale. There exists a predictable increasing process A and a F-
predictable function k£ such that

t
(O m)e = [k (O)p.-(6)dA.
0
If m is locally square integrable, one can chose A = (m).

Exercise 6.2.6 Prove that if there exists a probability Q* equivalent to P such that, under Q¥
the r.v. L is independent of F.., then every (P,F)-semi-martingale X is also an (P, F("))-semi-
martingale. See Chapter 9 for a more exhaustive study. <
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6.3 Yor’s Method

We follow here Yor [135] (see also [134]). We assume that F is a Brownian filtration. For a bounded
Borel function f, let (A:(f),t > 0) be the continuous version of the martingale (E(f(L)|F:),t > 0).
There exists a predictable kernel \;(dz) such that

() = / N(dz) f(z).

From the predictable representation property applied to the martingale E(f(L)|F;), there exists a
predictable process A(f) such that

~

t
M) =BUW) + [ R(5)dB.
0
Proposition 6.3.1 We assume that there exists a predictable kernel Xt(dx) such that
dt a.s., M(f) = / Ne(dz) f ().
R

Assume furthermore that dt x dP a.s. the measure Xt(dx) 1s absolutely continuous with respect to
Ae(dx) = p(t, z)Ae(de) .

Then, if X is an F-martingale, there exists a FE) -martingale X such that
t
X=Xt [ pls Dl B
0

SKETCH OF THE PROOF: Let X be an F-martingale, f a given bounded Borel function and F; =
E(f(L)|F:). From the hypothesis

Then, for A, € Fg, s < t:
E(a, f(L)(Xy = X)) = E(lla, (F X — FoXy)) = E(ILa, ((F, X): — (F, X)5))

= E(]IAS /:d<X,B>uXu(f)>
= = (1w [axm [ @ @)

Therefore, V; = [} p(u, L) d(X, B), satisfies
E(La, f(L)(Xe — X)) = B(La, f(L)(Ve — V5)) -
It follows that, for any G, € F'&,
E(lg, (Xt — Xy)) = E(Lg, (V: — Vs))

hence, (X; — V;,t > 0) is an F(Y)-martingale. O

Let us write the result of Proposition 6.3.1 in terms of Jacod’s criterion. If A\¢(dz) = pi(z)v(dz),
then

M(f) = / () f (@) (dz)



6.4. EXAMPLES 87

Hence,
AN B) = M)t = [ daf(e) dulp. (o), B):
and J 5
Rulde) = . (o), B)s = LN )i
therefore,
Ne(d)dt = Mxt(dm) .

pe(z)

In the case where \;(dz) = ® (¢, z)dz, with & > 0, it is possible to find 1 such that

O(t,x) = ©(0,x) exp (/Ot P(s,x)dBs — ;/Ot @[Jz(s,x)ds)

and it follows that A;(dz) = (¢, z)A(dz). Then, if X is an F-martingale of the form X; = z +
fg zsdBs, the process (X; — fot dszs1(s,L),t > 0) is an F(X)-martingale.

6.3.1 Faux amis

Theorem 6.3.2 Let X be an F-local martingale with representation X; = Xy + fot psdBs for an
F-predictable process ¢ satisfying fo @2ds < oo a.s. Then, the following conditions are equivalent:
a) the process X is an Fo(B1) _semimartingale;

b)f0| ©s |Bl Blds<ooIP’as

c) fo \l/%ds < oo P-a.s.

If these conditions are satisfied, the 7PV _semimartingale decomposition of X is

tAal tAl
By — B,
X =X +/ psdfBs +/ cpslids. (6.3.1)
0 0 1—s

This is an example where hypothesis (') fails: some F-martingales are F7(51)_semimartingales, but
not all of them.

6.4 Examples

We now give some examples taken from Mansuy & Yor [108] in a Brownian set-up for which we use
the preceding. Here, B is a standard Brownian motion.
See Jeulin [82] and Mansuy & Yor [108] for more examples.

6.4.1 Enlargement with B;.

We compare the results obtained in Subsection 5.1 and the method presented in Subsection 6.3. Let
L = B;. Note that,we can not apply directly Jacod’s results, since, at time ¢ = 1, the conditional
law of By given Fj is not absolutely continuous w.r.t. the law of By. From the Markov property

E(g(B1)|Ft) = E(9(B1 — By + By)|Fy) = Fg(By, 1 — t)

where Fy( g(z)P(1 — t;y,x)dr and P(s;y,r) = —2— exp @9} 1t follows that
\V27s 2s
)\t(diﬂ) = ﬁexp ( (x( Bt) ) dr. Then
1 —z2/2
At(dx) = pe(z)P(B; € dz) = pi(x) e dx

2w
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with ( 2 )
1 Tr — Bt X )
)= ———=exp|———— + — | .
R — p( R

From Itd’s formula,
Tr — Bt

1-1¢

(This can be considered as a partial check of the martingale property of (p:(z),t > 0).) It follows
that d(p(z), B); = pi(z) %5t dt, hence

1
~ * B, — B,
Bt:Bt+/ ——ds.
0

dipe(z) = py(x) dB; .

1—s

Note that, in the notation of Proposition 6.3.1, one has

- _z—DB L (z — Bi)*
Alde) = 5= =1 <_2(1t)> "

6.4.2 Enlargement with M” = sup, , B,.

From Exercise 1.6.1,

where MP = sup,<; Bs with

b—a 00
F(Sa a, b) = \/Z (f(b)/ 67“2/(2S)du -+ A f(u)e(ua)2/(25)du>
0

and, denoting by d, the Dirac measure at ¥,

Ae(dy) = ﬁ {éy(MtB) /OMtB_Bt exp (—2(1“20) du+ 1Ly pypy XD (—W) dy} .

Hence, by applying Itd’s formula

~

It follows that

xTr — Bt 1 q)l T — Bt
p(t,x) = H{I>]Wt3}17_t + L —ay i <\/1 =

with ®(z) = \/gfoz e~ 5 du.

6.4.3 Enlargement with [~ 285" s

Consider A% = fot 2B ds where B = B, + uit, yu being a positive constant. Matsumoto and Yor
109] have established that A((;“) — Al +623§7”)/ng“) where Z&g“) is independent of F;, with the
¢

same law as Ag“). The law of AS;“) is proved to be the law of 1/(2v,,), 7, being a Gamma random
variable with parameter p, i.e., admits the survival probability of Y(z) = ﬁ 01/(2w) Y le Vdy,

where I' is the Gamma function. Then, one obtains

0 — A(*#)
G+(0) = P(AE;“) > 0| F;) = T(TEM)HH>A(*#) + 10<A(7u)-
e + t —“7t
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This gives a family of martingale survival processes G with gamma structure. It follows that, on
{0> 47"}
1

_ —3Z:(0) Iz
- Q;L—II“(M)B 2 (Zt(a)) dB;

dG,(6)

(=)
where Z;(0) = % (to have light notation, we do not specify that this process Z depends on
4t

11). One can check that Gy(-) is differentiable w.r.t. 6, so that G¢(6) = [, g:(u)du, where

1

+1,-3Z,(w)—2B{ M
1u>A§f“) QALF(M)(Zt(u))M e 2 .

gi(u) =

6.4.4 Enlargement with L := fooo f(s)dBs

Let B be a Brownian motion with natural filtration F and L = fooo f(s)dBs where f is a deterministic
function such that fooo f?(s)ds < oo and ftoo f?(s) # 0. The above method applies step by step: it
is easy to compute \; (dz), since conditionally on F;, L is Gaussian, with mean m; = fot f (s)dBs,

and variance o%(t) = [ f?(s)ds. Since P(L < z|F) = ‘I)(z 7(;;%); where @ is the cumulative
o

distribution function of a standard gaussian law, the absolute continuity requirement is satisfied
with:

1 T — my

pe(z)v(de) =

where ¢ is the density of a standard Gaussian law, and v the law of Z (a centered Gaussian law
with variance 02(0)). Note that, from It6’s calculus,

dpi(w) = py (x)i;—(?;”‘)tdmt

But here, we have to impose an extra integrability condition. For example, if we assume that

")
/0 o(s) ds < 00,

then B is a F(")-semimartingale with canonical decomposition:

fGs) ([~

02(8) < f (u) dBu ’

As a particular case, taking care of the fact that o vanishes after to, we may take L = B, for some
fixed ty and we recover the results for the Brownian bridge.

t
Btth+/ ds
0

6.4.5 Enlargement with S, = sup, NV,

We start with a generalization of the result presented in Exercise 1.6.2.
Proposition 6.4.1 Azéma-Yor formula Let N be a local continuous martingale and Sy = sup,<; N;.

Let f be a locally bounded Borel function and define F (x) = fom dyf (y). Then, X; := F(S;) —
f(Sy) (St — Ny) is a local martingale and:

F(St) — £(S0) (St — Ny) = /0 F(S.)dN, +F (So). 6.4.1)
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Proor: If F is C?,
F(S)—F(S)(Se—N) = F(S)— / £ (S.)dSs + / F(S.)dN,
+/0 (Ss — Ns) f'(Ss)dSs

The last integral is null, because dS' is carried by {S — N = 0} and fg f(Ss)dSs = F(St) — F(So).
For the general case, we refer the reader to [115]. O
The result can be extended to the case where N be a local martingale with a continuous running
maximum (see [115]).

Let N be a positive continuous local martingale such that N; goes to 0 when t — oo. Let us
introduce .Ft(S“) = F: Vo(Sx)) and set g = sup{t: Ny = So}. Obviously, the random variable g
is an F(S=)_stopping time. Consequently F C .7-}(3“)

Proposition 6.4.2 For any Borel bounded or positive function f, we have:

s = s (1) [ er(2)

PROOF: In the following, U is a random variable, which follows the standard uniform law and which
is independent of F;, and S* = sup s > tN,. Then, from Lemma 1.1.13,

E(f(Se) [ Ft) = E(f(SeVS)|F)
= E(f(S) s, 55031 F) +E(f (S°) Lys, <5031 F2)
= f(S)P (St > St‘]‘—t) +E (f (St) ]1{St<St}|-Ft)
= (St) (U < |]:t) (f (??) H{U<1;’:}]:t)

N, N/S¢ N,
— F(S) (1 - S) +/0 daf (x) .
O

We now show that E (f (Se) |Ft) is of the form (6.4.1). A straightforward change of variable in the
last integral also gives:

B¢ = fs)(1-5)+n [ ol

Sy ,
B R () B < fly)  f(S)
- s [l ([ w-)
Hence,
E(f (Sec) |F2) = H (1) + H (S) — h (5¢) (S¢ — Ni)
with © t)
— Y
H@=a [ &l
and

h(x):m);/“dyﬂg) @ :/wd—iﬂf(y)—f(x)).

Y T Y
Moreover, from the Azéma-Yor type formula (6.4.1), we have the following representation of E (f (Ss) | Ft)
as a stochastic integral:

E(f (Swo) [F2) = E(f (Sw0)) + /0 h (S.) dN..
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Moreover, there exist two families of random measures (X; (dx)),~, and (At (d:v)) o’ with
> >

Nt dzx
<1 — &) 651, (diﬂ) -+ Nt]]'{$>st}ﬁ

. 1 dx
A¢ (dx) = *55& (dz) + Tizs9,3

)\t (d:c)

R
2

such that
E(f (Sx) |F) = M (f) = / N (dz) f (x)
() = / o (dz) f ().

Finally, we notice that there is an absolute continuity relationship between \; (dz) and A (dz); more
precisely, )
At (dw) = Ay (dz) p (,1)
with
(2,1) -1y + 1y
T,l)=Gq =T N, t<Tj*
p St_Nt {s } N, {Si<z}
Theorem 6.4.3 Let N be a positive continuous local martingale in the class Co with Ng = 1. Then,
any F martingale X is an F5<) -emimartingale with canonical decomposition:

X,N)s /t d(X,N),

t

~ d<

Xt = Xt +/ 1 sy T AT 1 <s} o ar
0 {g>s} N,_ 0 {9< }Soo — No_

where X is a F(S=) _jocal martingale.

PRrROOF: We can first assume that X is in H'; the general case follows by localization. Let K, be
an Fs measurable set, and take ¢t > s. Then, for any bounded test function f, A; (f) is a bounded
martingale, hence in BM O, and we have:

E (g, f(S0) (Xi = Xo)) =

But we also have: 1 1
Soot) = ———T¢g _ —1 .
p( 0 ) St . Nt {St=5x} + Nt {S:<Sw}

It now suffices to use the fact that S is constant after g and g is the first time when So, =S¢, or in
other words:

Wiso>sy = Lygsey, and Tyg —g,3 = Tyg<yy.
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Chapter 7
Filtering

In this chapter, our goal is to show how one can apply the idea of change of probability framework to
a filtering problem (due to Kallianpur and Striebel [89]), to obtain the Kallianpur-Striebel formula
for the conditional density (see also Meyer [111]). Our results are established in a very simple way,
in a filtering model, when the signal is a random variable, and contain, in the simple case, the results
of Filipovic et al. [57]. We end the section with the examples of the traditional Gaussian filtering
problem and of disorder.

7.1 Change of probability measure

One starts with the elementary model where, on the filtered probability space (2, 4,F,P), an A-
measurable random variable X is independent from the reference filtration F = (F;)¢>0 and its law
admits a density probability gg, so that

P(X > 0|F) =P(X >0) = /900 go(u)du .

We denote by FX) = F v ¢(X) the filtration generated by F and X.
Let (Bi(u),t € IRy) be a family of positive (P, F)-martingales such that Sy(u) = 1 for all u € IR.
Note that, due to the assumed independence of X and F, the process (8;(X),t > 0) is an F(X)-

martingale and one can define a probability measure Q on (£2, .E(X)% by dQ = B:(X)dP. Since F is
a subfiltration of F(X), the positive F-martingale

my = B0 = [ " Bulu)go(w)du

is the Radon-Nikodym density of the measure Q, restricted to F; with respect to P (note that
mg = 1). Moreover, the Q-conditional density of X with respect to F; can be computed, from the
Bayes’ formula

1

UX € B2 = g, m07)

E(15(X)5.(X)| ) = # /B B (w)go(w)du

where we have used, in the last equality the independence between X and F, under P. Let us
summarize this simple but important result:

Proposition 7.1.1 If X is a r.v. with probability density go, independent from F under P, and if
Q is a probability measure, equivalent to P on FV o(X) with Radon-Nikodym density B:(X),t > 0,
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then the (Q,F) density process of X is

g2 (u)du = Q(X € du|F,) = # Be(uw)go(u)du (7.1.1)

where mP is the normalizing factor mf = ffooo Bi(u)go(w)du. In particular

Q(X € du) =P(X € du) = go(u)du.

The right-hand side of (7.1.1) can be understood as the ratio of 8;(u)go(u) (the change of probability
times the P probability density ) and a normalizing coefficient m/’. One can say that (8;(u)go(u), t >
0) is the un-normalized density, obtained by a linear transformation from the initial density. The
normalization factor mf introduces a nonlinear dependence of g?(u) with respect to the initial

density.

Remark 7.1.2 We present here some important remarks.

(1) If, for any t, mtﬁ =1, then the probability measures P and Q coincide on F.

(2) Let G = (Gi)1>0 be the usual right-continuous and complete filtration in the default framework
(i.e. when X = 7 is a non negative r.v.) generated by F; Vo (7 At). Similar calculation may be made
with respect to G;. The only difference is that the conditional distribution of 7 is a Dirac mass on
the set {t > 7}. On the set {7 > ¢}, and under Q, the distribution of 7 admits a density given by:

1

Q(7 € du|G;) = ﬁt(U)QO(U)Wdu

(3) This methodology can be easily extended to a multivariate setting: one starts with an elementary
model, where the 7,4 = 1,...,d are independent from F, with joint density g(u1,...,uq). With a
family of non-negative martingales 3(61,...,60;), the associated change of probability provides a
multidimensional density process.

7.2 Filtering theory

The change of probability approach presented in the previous Section 7.1 is based on the idea that,
in order to present modesl with a conditional density, one can restrict our attention to the simple
case where the random variable is independent from the filtration and use a change of probability.
The same idea is the building block of filtering theory as we present now.

Let W be a Brownian motion on the probability space (£2,.4,P), and X be a random variable
independent of W, with probability density gg. We denote by

the observation process, where a and b are smooth enough to have a solution and where b does not
vanish. The goal is to compute the conditional density of X with respect to the filtration F¥. The
way we shall solve the problem is to construct a probability Q, equivalent to P, such that, under
Q, the signal X and the observation FY are independent, and to compute the density of X under
P by means of the change of probability approach of the previous section. It is known in nonlinear
filtering theory as the Kallianpur-Striebel methodology [89], a way to linearize the problem.
Note that, from the independence assumption between X and W, we see that W is a F
FY V ¢(X)-martingale under P.

(X)) =

7.2.1 Simple case

We start with the simple case where the dynamics of the observation is

dY; = a(t, X)dt + dW, .
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We assume that a is smooth enough so that the solution of
dB(X) = —=Bu(X)a(t, X)dWy, Bo(X) =1

is a (P, FX))-martingale, and we define a probability measure Q on f,g(X) by dQ = (;(X)dP. Then,
by Girsanov’s theorem, the process Y is a (Q, F&X ))—Brownian motion, hence is independent from

IF[()X) = o(X), under Q. Then, we apply our change of probability methodology, writing

1
dP = ——dQ =: 4;(X)d
B (%) Q =: £(X)dQ
with
dly(X) = le(X)a(t, X)dYs, Lo(X) =1;
in other words, ¢;(u) = ﬁt}u) exp (fo s,u)dYs — 5 fo (s,u ds) From Proposition 7.1.1, we
obtain that the density of X under P, with respect to FY, is g;(u), given by

1
P(X e du|]—'ty) = gi(u)du = Wgo(u)&(u)du

t

where mf = Eq(6(X)|FY) = [72_ £(u)go(u)du. Using the fact that

dmf = (/ Ly (w)a(t, u)go(u )du) dY; =m! (/_O; gt(u)a(t,u)du> dY;

o0

ay := E(a(t, X)|FY) = / gr(u)a(t,u)du,

—0o0

and setting

Girsanov’s theorem implies that the process B given by
dBt = d}/t — Zitdt = th + (Cl(t, X) — Zit) dt

is a (P, FY) Brownian motion (called the innovation process). From Itd’s calculus, it is easy to show
that the density process satisfies the nonlinear filtering equation

) = o) (at) ~ o [~ dyamatt i) ) as,

t J—oo

= gi(u) (a(t,u) —a;)dB;. (7.2.2)

Remarks 7.2.1 (a) Observe that conversely, given a solution g¢(u) of (7.2.2), and the process
w solution of duy = prardYy, then hy(u) = pegi(u) is solution of the linear equation dhi(u) =
he(u)a(t, u)dY;.

(b) It is interesting to compare this methodology of change of probability measure with the one used
in Chapter 9

7.2.2 Case with drift coefficient

Using the same ideas, we now solve the filtering problem in the case where the observation follows
(7.2.1). Let 3(X) be the F(X) local martingale, solution of

dBy(X) = Bu(X)ou(X)dWi, Bo(X) = 1

with o (X) = — “gf(’fg}f)(). We assume that a and b are smooth enough so that 8 is a martingale. Let

Q be defined on F) by dQ = B,(X)dP
From Girsanov’s theorem, the process W defined as

—~ 1
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is a (Q, GX)-Brownian motion, hence W is independent from G = o(X). Being FY-adapted, the
process Wisa (Q, FY)-Brownian motion, X is independent from F¥ under Q, and, as mentioned in
Proposition 7.1.1, admits, under Q, the probability density go.

We now assume that the natural filtrations of Y and W are the same. To do so, note that it is
obvious that FY C FY. If the SDE dY; = b(t, Y,'g)th has a strong solution (e.g., if b is Lipschitz,
with linear growth) then FY C FW and the equality between the two filtrations holds.

Then, we apply our change of probability methodology, with FY as the reference filtration, writing
dP = £,(X)dQ with dl,(X) = —£4(X)op (X )th (which follows from ¢;(X) = Bt(X)) and we get that

the density of X under P, with respect to FY is g;(u) given by

gu(u) = nifgo(u)ft(u)

with dynamics

) = o) (w0 = 2 [t ) i

t J—o0

B a(t, Yy, u) 1 e

B a(t, Y, u) a;
— gt(u)< Y _b(t,Yt)>dBt' (7.2.3)

Here B is a (P,FY) Brownian motion (the innovation process) given by

B a(t,Yt,X) ay
dBt‘dW”( bLY,) bl m)dt

where a@; = E(a(t, Yy, X)|FY).

Proposition 7.2.2 If the signal X has probability density go(u) and is independent from the Brow-
nian motion W, and if the observation process Y follows

dY; = a(t,Yy, X)dt + b(t, Yy)dWy
then, the conditional density of X given FY is
1
P(X € du|FY) = gi(u)du = —7 90 (u)li(u)du (7.2.4)
m

t

where ly(u) = exp( (f ‘2(25(:/;13 dYs — 5 fot abz(fsyys‘) ds) , mf = [T 4y(u)go(u)du, and its dynamics
is given in (7.2.3).

7.2.3 Case where X has a Conditional Law

Assume now that X has a non trivial conditional law w.r.t. the Brownian motion driving the
observation process. We assume that

o0

P(X > u\ftw) :/ pt(v)dv

u

and that the observation is
dY; = a(t, Yy, X)dt + b(t,Y:)dW;

Then, the process
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— "d(p.(0), W)slo—x
By =W, +/0 X

is a F" V ¢(X) Brownian motion, independent of X. It follows that

d{p.(0), W)ilo=x
pe(X)

dy, = (a(t,Yt,XW —b(t,Y7) ) + (¢, Y )dB,

and we can apply the previous results.

7.2.4 (Gaussian filter

We apply our results to the well known case of Gaussian filter. Let W be a Brownian motion, X a
random variable (the signal) with density probability go a Gaussian law with mean mg and variance
Y0, independent of the Brownian motion W and let Y (the observation) be the solution of

dY; = (ap(t,Y:) + a1 (¢, Yy) X)dt + b(t, Y3)dWr,
Then, from the previous results, the density process g;(u) is of the form

1 "ag(s,Ys) + au(s, Yy)u 1 (" (ag(s,Yy) + ai(s, Yo)u
b E dY - ) & ) < d
mf </o 02(s, Ys) t 2/0 (s, Ys) oot

The logarithm of g;(u) is a quadratic form in v with stochastic coefficient, so that g:(u) is a Gaussian
density, with mean m; and variance 7; (as proved already by Liptser and Shiryaev [104]). A tedious
computation, purely algebraic, shows that

ai(s, Vs
= ?32(8 v o T o +/ s bl(( Y)) dBs
L+ [y gy 9 0 s

with dB; = dW, + %0 (X — E(X|FY))dt.

v'TO BE MODIFIED
In the case where the coefficients of the process Y are deterministic functions of time, i.e.,
dY; = (ag(t) + a1 () X)dt + b(t)dW,

the variance +(t) is deterministic and the mean m is an F¥ -Gaussian martingale

t
0
t) = , My =m —|—/ s)a(s)dBg
10 = g e [ e

where a = a; /b. Furthermore, FY = FB.
Filtering versus enlargement: Choosing f(s) = W(Sb)&l)(s) in the example of Section 6.4.4 leads

to the same conditional law (with mo = 0); indeed, it is not difficult to check that this choice of
parameter leads to [, f%(s)ds = o%(t) = 7(t) so that the two variances are equal.

The similarity between filtering and the example of Section 6.4.4 can be also explained as follows. Let
us start from the setting of Section 6.4.4 where X = [;° f(s)dB; and introduce FX) =FB v o(X),
where B is the given Brownian motion. We have seen that

Wt = Bt + A %f(s)ds

is an F(X)-BM, hence is a G-BM independent of X. So, the example presented in Section 6.4.4
is equivalent to the following filtering problem: the signal X is a Gaussian variable, centered, with
variance v(0) = [ f?(s)ds and the observation

dY; = f(t)Xdt + < / h f2(s)ds) dWy = f(t) X dt + o (t)dW; .
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7.2.5 Disorder

Classical case: the signal is independent of the driving Brownian motion

Let W = (Wy)i>0 be a Brownian motion defined on the probability space (©2,G,P), and 7 be a
random time, independent of W and such that P(7 > t) = e~ for all ¢ > 0 and some \ > 0 fixed.
We define Y = (Y});>0 as the solution of the stochastic differential equation

dY, = (a+bllgsry) dt + Yo dW, .

Let FY = (FY,t > 0) be the natural filtration of the process Y (note that FY is smaller than
FY v o(r)). From Y; = 2 + fot(a +bllgesry)ds + fot o dWs, it follows that (from Exercise 1.6.4)

dYy = (a+b(1— Gy)) dt + dmart

Here, G = (G¢)i>0 is the Azéma supermartingale given by G; = P(7 > t|F;). Identifying the
brackets, one has dmart = odW; where W is a martingale with bracket ¢, hence is a BM. It follows
that the process Y admits the following representation in its own filtration

AV, = (a+b(1—Gy))dt+ odW;.

Here W = (W;)¢>0 is the innovation process defined by

t

- b [t b
Wt = Wt + *\/ (]].{S>.,.} — (]. - GS)) ds = Wt — 7\/ (]].{T>s} — Gg) ds
g Jo g Jo

and is a standard F-Brownian motion. Using the previous results with a(¢,Y:, 7) = a + bll;~,, one
obtains easily

a 1 a?
b(u) = exp(U2Yt2U2t> =7Z; u>t
7 a+b 1 (a+b)? b 1,v*  2ab
- (02 Voo -Vt a(mt g
Zy
= 2y, u<t
U=
— LY+ 1 (2429 1 -\t
where U, = e~ 22 v T2'.2752/% gnd Gtzﬁe Z; where
t
t
my = Ae%yﬁ_%wjgﬁt/ efA“e_%?Y“"’%(%*‘%)“du—l—eiAtZt
0
Z t
= )\—t/ e M Uydu + e NZ,
Ut Jo
Moreover
gi(u) = Utt (]]-u>t€7)\uUt+]1t>uUu)
e MU 4 A [, e U, du
Zi [, 1 /t .
G = = P sy [ e UL
¢(u) Ty (6 + 1> U, /. e S

After some computation, we recover that the process G solves the stochastic differential equation

b _
dGy = —AGy dt + = Gy(1 — Gy) dW, . (7.2.5)
g
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Observe that the process n = (n);>o with n, = eM Gy admits the representation

b

g

d’l’Lt = d(e)‘t Gt) = e’\t Gt(l — Gt) th

and thus, n is an F-martingale (to establish the true martingale property, note that the process
(G¢(1—=GYy))i>0 is bounded). The equality (7.2.5) provides the (additive) Doob-Meyer decomposition
of the supermartingale G, while G; = (G e*) e~** gives its multiplicative decomposition. It follows
from these decompositions that the F-intensity rate of 7 is A, so that, the process M = (M;);>¢ with
M, =1,<; — At AT) is a G-martingale.

It follows from the definition of the conditional survival probability process G and the fact that
(GieM)i>p is a martingale that the expression

P(r > u| F;) = E[P(T > u| Fy) | Fi] = E[Gy e | Fi]e ™ = Gy MW
holds for 0 < ¢ < u. One can easily extend the results to the case
dYy = (a(t,Yy) +b(t,Ys) Lysr) dt + o(t,Yy) dWy .

Using the previous results with a(t,Y:, 7) = a(t,Y:) + b(¢, Yz) N4> := ar + bs 14>, one obtains easily

t 2
exp(/ anYS—lasds) =Z; u>t
2
0o Os ag

" ag 1a2 " as + by "1 (as + bs)?
= exp(/ a—des— fa—;ds—l—/ a—z dYs—/ (a—’;)ds) u<t
0o Os 0 205 u a u2 Og

S

gt (U)

and G; = ﬁe‘”Zt where
t

t t 2 t
S bS ]' S bS — —
mt = Aexp(/a+ dn/(a—i_)d8>/e>‘“Uudu+e Mg,
t 2 2
0 O 0o 2 Os 0
Zy [t
)\—/ e MU du + e M Z,
U Jo

with U, = exp (— fou g—%dY; + % fou L% + 2“;—?*0!8)
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Chapter 8

Progressive Enlargement

In this chapter, we study the case of progressive enlargements of the form F; V o(7 A t) for a non
negative random variable 7. More precisely, we assume that 7 is a finite random time, i.e., a finite
non-negative random variable constructed on a filtered probability space (2, G, F,P), and we denote
by G the right-continuous filtration

Gt = Neso{Frre Va(TA(t+6))} .
We define, as before, the right-continuous process H, called the default indicator as
Hy =<y -

We denote by H = (H;,t > 0) its natural filtration (after regularization). With the usual abuse
of notation, we write G = H V F for the right-continuous progressively enlarged filtration. Note
that 7 is an H-stopping time, hence a G-stopping time. (In fact, H is the smallest right-continuous
filtration making 7 a stopping time, and G is the smallest right-continuous filtration containing F
and making 7 a stopping time).

We recall the result obtained in Subsection 2.2.1: if Y is a G-adapted process, there exists an
F-adapted process YT, called the predefault-value of Y, such that Lyper Ve = ]1{t<T}YtF.

For a general random time 7, it is not true that F-martingales are G-semi-martingales. Here
is an example: due to the separability of the Brownian filtration, there exists a bounded random
variable 7 such that Fo, = o(7). Hence, F],, = Fu,Vt so that the G-martingales are constant after
7. Consequently, F-martingales are not G-semi-martingales.

In this chapter, we study

e the G semi-martingale decomposition of F martingales stopped at 7
e pseudo honest times
e Honest times and the G semi-martingale decomposition of F martingales

e Arbitrage opportunities

The study of initial and equivalent times is deferred to the following chapters. The study of the
particular and important case of last passage times is presented in Chapter 8.10.

We recall the two important conditions that we shall sometimes assume (see Lemmal.4.9)
(C) All F-martingales are continuous
(A) 7 avoids F-stopping times, i.e., P(7 = ¢) = 0 for any F-stopping time .

101
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We recall our notation

FCG=FVHCF" =FVo(r)

8.1 Two Important Supermartingales

We introduce the Azéma supermartingale Z; = P(7 > t|F;) and call it sometimes the conditional
survival process. The process Z is a super-martingale of class (D). Therefore, it admits a Doob-
Meyer decomposition. We recall that the process AP = AP'F is the F-predictable compensator of H,
see Definition 1.4.6.

Lemma 8.1.1 Let 7 be a positive random time and
Zt :]P)(T>t‘]:t) :/J/t—A?

the Doob-Meyer decomposition of the super-martingale Z. Then, for any F-predictable positive pro-

cess 'Y,
([ )
0
T T
E(Y:licr<r|F:) = E (/ YudAZLFt) =-E </ YudZu|]-'t>
t t

PROOF: The first equality is a consequence of the definition of dual projection (see Proposition
1.4.7).
For any caglad process Y of the form Y, = y, 15 4(u) with ys € bF, one has

E(Y7) = E(ys1ys,4(7)) = E(ys(Ar — As)) -
The result follows from MCT. O

E(Y;)

Another important F-supermartingale is
Z ::P(th ’ ]-‘t). (8.1.1)
The supermartingale Z is right-continuous with left limits and coincides with the F-optional pro-

jection of Tjg -, while Z admits right limits and left limits only and is the F-optional projection of
1j9,,7- An optional decomposition of Z leads to an important F-martingale m, given by

m = Z + A%F (8.1.2)

where A°F is the [F-dual optional projection of H. The supermartingales Z and Z are related through
Z =7+ AAF and Z = Z_ + Am.

The following results (see Lemma 1.4.9 and [113] ) will be important
o If assumption (C) or (A) is satisfied, then Z = Z.

e Under assumptions (C) and (A), the supermartingale Z = Z is a continuous process.

e Under (C), AP = A°
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Note that m; = E(A%F
Indeed, one has

F:) and, for any F uniformly integrable martingale n, E(n,) = E(neoMoo)-

(oo}
E(n,)=E (/ nsdAg’F) = E(n0o (A%F) = E(noemao)
0
where the second equality comes from Yoeurp’s lemma 1.2.11.

If R:=inf{t : Z =0}, then R =inf{t : Z, =0} = inf{t : Z_ =0} and 7 < R.

Comment 8.1.2 The process p is a square integrable martingale. Indeed, from Doob-Meyer de-
composition, since Z is bounded, pu is a square integrable martingale.

8.2 General Facts

For what concerns the progressive enlargement setting, the following result is analogous to Proposi-
tion 6.1.1. This results can be found in Jeulin [82, Lemma 4.4].

Proposition 8.2.1 One has
(i) A random variable Yy is Gi-measurable if and only if it is of the form

)/t(w) = ?jt(w)ﬂt<7(w) + yt(wa T(w))]]ﬂ'(w)gt

for some Fy-measurable random variable §; and some family of F; @ B(RT)-measurable random
variables §¢ (-, u),t > u.

(ii) A process Y is G-predictable if and only if it is of the form
}/t(w) = gt(w)ﬂtg‘r(w) + @t(wv T(w))]lr(w)<t7t >0,

where § is F-predictable and (t,w,u) — §:(w,u) is a P(F) @ B(RT)-measurable function.

Proor: For part (i), it suffices to recall that G;-measurable random variables are generated by
random variables of the form X,(w) = z(w)f(t A 7(w)), with z, € F; and f a bounded Borel
function on RT.

(ii) It suffices to notice that G-predictable processes are generated by processes of the form
Xi = Ny<r + &0 f(7)Lr <y, t > 0, where z, & are F-predictable and f is a bounded Borel function,
defined on R*. 0

Such a characterization result does not hold for optional processes, in general. We refer to Barlow
[18, Remark on pages 318 and 319], for a counterexample (see also Example 8.8.10). See Song [125]
for a general study.

Proposition 8.2.2 For any G-predictable process Y, there exists an F-predictable process y such
that Yill i<y = Yyl yy<y. Under the condition Vt,P(1 < t|F;) < 1, the process (ys,t > 0) is unique.

PROOF: We refer to Dellacherie [45] and Dellacherie et al. [41, p.186]. The process y may be recov-
ered as the ratio of the F-predictable projections of Y31 ;<-y and Ty<ry. O

Lemma 8.2.3 Key Lemma: Let X € Fp be an integrable r.v. Then, for anyt < T,

E(X1L(rer}|Ge) = 1 pary BEZEED
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PROOF: On the set {t < 7}, any G; measurable random variable is equal to an F;-measurable random
variable, therefore
E(X1rery|G) = Liraryye

. . s . E(Yt]l{t<‘r}|]:t)
where y; is Fi-measurable. Taking conditional expectation w.r.t. F;, we get yy = ———————-

P(t < T|.7:t)
(it can be proved that P(¢ < 7|F:) does not vanish on the set {t < 7}, see the following Exercise
8.2.5.) O
Exercise 8.2.4 Prove that, if 7 is an F stopping time, G = F. <
Exercise 8.2.5 Prove that
{r>t}c{Z: >0} (8.2.1)
(where the inclusion is up to a negligible set). <

Proposition 8.2.6 The G-adapted process Y
Vi =yellicr + (7)<t

is a martingale if for any u, (y:(u),t > u) is a martingale and if E(y:|Ft) is a F-martingale.

See [8].

8.3 Before 7

It is proved in Yor [133] that, if X is an F-martingale, then the processes (Xinr,t > 0) and (X¢(1 —
H;),t > 0) are G semi-martingales. Furthermore, the decompositions of the F-martingales in the
filtration G are known up to time 7 (Jeulin and Yor [83]).

Proposition 8.3.1 Under (CA), every F-martingale X stopped at time 7 is a G-semi-martingale
with canonical decomposition

T tAT d<X3 /u’>5
Xt :X;G‘i’fo T

where X© is a G-local martingale.

PROOF: Let Yy be an Gs-measurable random variable. There exists an Fz;-measurable random
variable ys such that Y1,y = ysl{s<ry, hence, if X is an F-martingale, for s <,

IE(sz()(t/\r - XS/\T)) = E<sz]1{s<'r} (Xt/\‘r - Xs/\‘r))
= ]E(yS]]-{S<T}(Xt/\T - Xs/\r))
= E (yS(ﬂ{S<TSt}(XT - XS) + ﬂ{t<‘r}(Xt - Xs)))

From the definition of Z (see also Definition 1.4.6 and Lemma 8.1.1),

t
E (ysll{s<‘r§t}X7') =-E (ys/ XudZu> .

From integration by parts formula (taking into account the continuity of Z and X)

t t
/ XudZy = —X, 7+ Z, X, —/ ZudXy — (X, Z)s + (X, Z)s
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We have also

E (ys]l{s<'r§t}Xs> = E (ySXS(ZS - Zt))
E(ysﬂ{Kr}(Xt _XS)) = E(ysZe(Xi — X5))
hence, from the martingale property of X

E(Y.(Xinr — Xonr)) = Eys (X, e — (X, )

TR —
o] ) -2 [ 252

The result follows. O

The general result is more delicate:

Proposition 8.3.2 Fvery F-local martingale X stopped at time 7 is a G-semi-martingale with
canonical decomposition

d{X,m)

X7 — XG tAT
t + f Zs—

where XC is a G-local martingale.

In other terms,

tAT
(X, 1) + dJ,
0 s—

where J is the F-dual predictable projection of the process AX; [, o[- Another interesting decom-
position is (see Aksamit [2]). Let us introduce the F-stopping time R R := inf{t : Z; = 0} and

R = R{ZR:0<ZR,}’ where R4 = Rl 4 + coll 4. Then, if X is an F-local martingale, the process

tAT 1
Xg—/ Ldim, Xy + (DX U 0, £20
0 Zg

is a G-local martingale.

This result remains valid for any filtration G that coincide with F before 7.

8.4 Basic Results

We recall the results obtained in Proposition 2.2.7:

Proposition 8.4.1 a) The process

t/\'rdAp
Mtth—/ Z“, t>0
0 u—

is a G-martingale.
b) For any bounded G-predictable process Y, the process

tAT Y
Yol o 7/ SldAT, £20
0 s—

is a G-martingale.
¢) The process Ly := (1 — Hy)/Zy, t>04s a G -martingale.



106 CHAPTER 8. PROGRESSIVE ENLARGEMENT

Definition 8.4.2 In the case where the process AP is absolutely continuous w.r.t. Lebesgue’s mea-
sure, i.e., dAY = a,dt, the process \y = Zaf, is called the F-intensity of T, the process \Y = T, )\
is the G-intensity, and the process

tAT t t
za—/‘ &mzdﬂ—/k1—ﬂg&@:4a—/;€@,tzo
0 0 0
is a G-martingale.

We also recall

Lemma 8.4.3 The process \ satisfies

X\ = lim 1Pt <7 <t+h|F)
PTaS0h Pt < T|F)

The converse is known as Aven’s lemma [15].

Lemma 8.4.4 Let (2,G,P) be a filtered probability space and N be a counting process. Assume
that E(Ny) < oo for any t. Let (h,,n > 1) be a sequence of real numbers converging to 0, and

o1
v = 7 ENen, — NelGr)

Assume that there exists A and y non-negative G-adapted processes such that
(i) For any t, lim Yt(") =N\
(ii) For any t, there exists for almost all w an ng = ng(t,w) such that

|Ys(n)(w) - )‘S(w)‘ < yS(w) , s<t,n=> nO(t7w)
) fot ysds < 00, Vt, a.s.
Then, Ny — fot Xsds is a G-martingale.

Suppose from now on that a second filtration Fis given, with }"t C F; and define the associated
o-algebra G; = F; V H, and the F Azéma super-martingale

Z; =P(t < 7|F) = B(Z| Fy).

Let Z; = py — A? be the F-Doob-Meyer decomposition of the F- supermartlngale Z and assume
that AP is absolutely continuous with respect to Lebesgue s measure: AY = fo asds. The process A
defined as A, := E(A|F;) is an F-submartingale and its F-Doob-Meyer decomposition is denoted

Ay =7y + 0y

where 7 is the F-martingale part and, from Exercise 1.6.4, &; = fg E(as|ﬁs)ds. Hence, setting

[iy = E(1| F;), the super-martingale Z admits a F-Doob-Meyer decomposition as
Zy = i — i — &
where 1 — n is the ?—martingale part. It follows that

tAT tAT T

d E S S

[ﬁ—/ Ht./ Elasl ) 4o 150
0 Zs 0 Zs
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is a G-martingale and that the F-intensity of 7 is equal to E(as |.7-'S) / Z,, and not "as one could think"
to E(as/Zs|Fs).

This result can be proved directly thanks to Brémaud’s following result (a consequence of Exercise
1.6.4): if H; — fot ACds is a G-martingale, then H; — fot E(A¢|G,)ds is a G-martingale. Since

Tioer _
%E(n{sg}ﬂm)
]1 s<T -~ 11 s<T ~
= LS RZFF) = SEESU (g, F)
Z Z

S S

E(AE|F,) = E(L1s<n |G

tAT

it follows that H; — [; E(ay|F,)/Zsds is a G-martingale, and we are done.

Exercise 8.4.5 Prove that if X is a (square-integrable) F-martingale, X L is a G -martingale, where
L is defined in Proposition 8.4.1. <

Exercise 8.4.6 We consider, as in the paper of Biagini et al. [23] a mortality bond, a financial

instrument with payoff Y = OTAT Zsds, where Zs = P(1 > s|Fs) where F is a continuous filtration.

We assume that Z is continuous, admits a Doob-Meyer decomposition as Z = u — A and does not
vanish.

1. Compute, in the case r = 0, the price Y; of the mortality bond. It will be convenient to
introduce N; = E(fOT Z2ds|F;). Is the process N a (P, F) martingale? a (P, G)-martingale?

2. Determine the processes «, 8 and v so that

1 1
d}/;g = Oétht + Bt(dNt — 7d<N, Z>t> + ’Yt(dZt — 7d<Z>t)
t t

3. Determine the price D(t,T') of a defaultable zero-coupon bond with maturity 7', i.e., a financial
asset with terminal payoff ... Give the dynamics of this price.
4. We now assume that F is a Brownian filtration, and that a risky asset with dynamics

dS’t = St(bdt + O'th)

is traded. Explain how one can hedge the mortality bond.

8.5 Multiplicative Decomposition of the Azéma supermartin-
gale

Lemma 8.5.1 Assume that (CA) holds and that the super-martingale Z does not vanish. Then, Z
admits a multiplicative decomposition as Z; = Nye'* where I' is an increasing F-predictable process
and N a local F-martingale. Moreover (Hy — T'inr, t > 0) is a G-martingale.

PROOF: The proof was done in Lemma 1.1.17 ]

Lemma 8.5.2 Assume that the super-martingale Z does not vanish and let Z; = NyD; its multi-
plicative decomposition. Then, Hy — M- is a G-martingale, where Ay = fot D%_th‘
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PROOF: We start with the result in the proof of Lemma 1.1.17, and deduce from (1.1.3) that

CZ‘EJ = D—Lth. Note that, if we write D = e™T, then

dDy = —D;_ (—dl'y + (e 2T — 1 — ATY)) .

See Kardaras for a useful optional decomposition of Z.

8.6 Construction of Random Time with Given Intensity

In this section, we are interested with the following problem: let A be a given continuous increasing
process. The Cox process modeling provides a construction of 7 such that A is the compensator
of H. Is it possible to have a different construction with the same property? We can do that, as
soon as one can construct a random time 7 such that the multiplicative decomposition of the Azéma
supermartingale is Nye~*¢. We shall give some constructions and we refer the reader to [80] where
there are infinitely many possibilities enjoying the property that P(7 > t|F;) = e **. The same
problem is studied in Li and Rutkowski [103]. The case where A is not continuous is studied in Song
[124].

In a first step, using a change of probability measure framework, a local martingale N and an
absolutely continuous increasing process A being given (such that 0 < Nie™®* < 1 for t > 0 and
No = 1), and 7 being constructed as in the Cox process model with intensity A, we construct a
probability Q, equivalent to P such that Q|7 = P|z, and Q(7 > t|F;) = Z; = Nye~*¢. This will
imply that the Q intensity of 7 remains A, but immersion fails to hold under Q.

Proposition 8.6.1 Let (2, F,P) be a given filtered probability space, where F is a Brownian fil-
tration. Assume that N is a continuous (P,F)-local martingale and A an absolutely continuous
F-adapted increasing process such that 0 < Nye ™™ <1 fort >0, Ng=1. Let 7 := inf{¢t : A; > O}
where © is a unit exponential r.v. independent form F. Then, there exists a probability Q, equivalent
to P, which satisfies Q|7, = P|x,) and Q(1 > t|F;) = Nye M.

PrROOF: Let Ay = fot Aydu. We are looking for conditional probabilities with a particular form
(the idea is linked with the results obtained in Subsection 7.2.5). From the Cox construction,
P(r > t|F;) = e M.

We shall prove that there exists a G-martingale L of the form

Ly =01 cr +0,(7)1 <4

and satisfying the condition of Proposition 8.2.6 such that, setting dQ = LdP
() Q. =Plr,
(ll) Q(T > t‘ft) = Nt€7At

It is not difficult to check that L is a G-martingale if m} := E(L:|F;) is an F martingale and,
for any w, £(u) is a family of F martingales: indeed, in that case, for s < ¢
E(Lt‘QS) = E(Ztﬂ{r>t}|gs) + E(Zt(T)]l{s<'r§t}|g8) + E(Et(T)HTSSWS) =L+ 1L+

For I, and I, we apply the Key Lemma, and we set Z, = e~

1 1
Il + -[2 = 17>57 E(étZtL]:s) + HT>S? E(et(T)IIS<TSt|‘7:S)7

whereas for I3, we obtain

I3 = E(gt('r)ﬂ‘rSSWS) = ]ITSSE(&(U”}—S)u:T = ]ITSS]E(ES(U)‘}—S)u:T = 117-5555(7'),
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where the first equality holds under the H-hypothesis and the second follows from the martingale
property of £(u).
It remains to prove that I; + I = {1~ . Since

t
E(Lt|ft) = ]E(EtZt + Et(T):“-TStLFt) = tht + / ft(u))\ue_A“du
0
is a martingale, we see that

E(lZ|Fs) + Bl (T)Lr<i| Fs) — E(ls(T)Lr<s|Fs) = s Zs.
Therefore,
1
Lt I = Loy (G2, + B (T) = () Ly <ol ) ) = oo,
where the last equality holds since

E((ES(T) - gt(T»]lTSSU:S) = HTSSE«EL@(“) - Kt(u))u:s)u:q— =0.

For the last equality in the formula above, we have again used the martingale property of £(u).
(This result is a particular case of Proposition 9.3.2)
The condition (i) is satisfied if 1 = E(L¢|F;). Then

Q(r > t|Fy) = E(Wyni Le|Fy) = E(Nrs iy Ft) = €424

is equal to NZ if (and only if) £ = N. We chose ¢;(t) = ¢; (this is a particular choice). We are now
reduced to find a family of martingales ¢;(u),¢ > u such that

t
ly(u) = Ny, 1= Nee ™ + /O G (u)Aue ™ du

We restrict our attention to families ¢ of the form
Et(u) = XtYu7 t Z u

where X is an F martingale such that
t
Xt}/t = Nt, 1= Nte_At + Xt/ Yu/\ue_A“du.
0

It is easy to show that
t
1
Y, =Y, +/0 eA“d(—Xu)

In a Brownian filtration case, there exists a process v such that dN; = v, N;dW; and the positive
martingale X is of the form dX; = x; X;dW;. Then, using the fact that integration by parts implies

1
d(X4Yy) = Y,dX, — eAtdet = 24(X,Y; — eM)dW, = dN,,
t

we are lead to choose
w2y
Ty =

C Zi—1

We now present a more general methodology presented in [80]. We construct a family of martin-
gales G¢(u), valued in ]0, 1], such that G¢(t) = Z; = Nye=*t and G(-) is decreasing. Then, one can
construct a probability Q on a product space such that Q|z, = P|£, and Q(7 > u|F:) = G¢(u). From
the conditional probability, one can deduce a density process, hence one can construct a random
time admitting G¢(u) as conditional probability. See also [103] for related results.
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Proposition 8.6.2 Let 0 < 0 < oo be fized and consider the process defined for 0 <t < oo

G(0) = (1— Zt)exp{—/et stSdAs}

Then, the process (G(0),0 <t < 00) is a (P,F) uniformly integrable martingale.

PROOF: Applying the integration by parts formula on G(0), for § <t < oo, one gets

L Z, dA
dG(0) = —exp{—/ d }eA*dNt
0 1—2Z,

hence, G(0) is a (P,F) local martingale on [f, 00). Being clearly positive and bounded by 1, it is a
uniformly integrable martingale on [f, oo]. O

It is then possible to construct a random time 7 admitting G¢(u) as conditional probability.
We illustrate this construction in the Gaussian example presented in Section 6.4.4 where we

set V; = mt;(g(t). The multiplicative decomposition of the supermartingale Z; = P(r > t|FP) is

Zy = Ny exp (— fot )\Sds) where

e(Y2)
N, = N,——~ 1 =
d t ta(t)cI)(Y;)dmt’ At

Using the fact that Z; = ®(Y%), one checks that the basic martingale survival process satisfies

dGi(0) = (1 — Gy LWEOY) yp 0 Gue) = a(ve)

o(t)D(—Yy)

which provides a new example of martingale survival processes, with density process

t _Zs VAP
91(0) = (1= Zp)e™ Jo =oheds 2020 g <
1— 2y
Other constructions of martingale survival processes having a given survival process can be found
in [80], as well as constructions of local-martingales N such that Ne~ is valued in [0, 1] for a given
increasing continuous process A.

8.7 Pseudo-stopping Times

As we have mentioned, if F is immersed in G, the process (Z;,t > 0) is a decreasing process. The
converse is not true. The decreasing property of Z is closely related with the definition of pseudo-
stopping timnotion developed by Nikeghbali and Yor [114], from D. Williams example (see Example
8.7.3 below).

Definition 8.7.1 A random time T is a pseudo-stopping time if, for any bounded F-martingale M,
E(M,) = E(My).

Proposition 8.7.2 The random time T is a pseudo-stopping time if and only if one of the following
equivalent properties holds:

(i) For any local F-martingale M, the process (Miar,t > 0) is a local G-martingale

(i) AL, =1,

(iii) pe =1, Vt >0,

(iv) The process Z is a decreasing F-predictable process.
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PROOF: The implication (iv) = (i) is a consequence of Jeulin result established in Theorem 8.3.1.
The implication (i) = (i7) follows from the properties of the compensator A7: indeed

E(M,) = E( /0 " ModAP) = B(Mo A7) = mo

implies that A2 = 1. We refer to Nikeghbali and Yor [114]. O

Example 8.7.3 The first example of a pseudo-stopping time was given by Williams [129]. Let B
be a Brownian motion and define the stopping time 77 = inf{¢t : B; = 1} and the random time
¥ =sup{t < Ty : By =0}. Set

T=sup{s< 6 : B, =B}

where B* is the running maximum of the Brownian motion. Then, 7 is a pseudo-stopping time. Note
that E(B,) is not equal to 0; this illustrates the fact we cannot take any martingale in Definition
8.7.1. The martingale (Biar,,t > 0) is neither bounded, nor uniformly integrable. In fact, since the
maximum By (=B,) is uniformly distributed on [0, 1], one has E(B,) = 1/2.

Pseudo stopping times are not stable by change of probability. See Aksamit [2] and Kreher [97]
for a related study.

Example Let W be a Brownian motion and let 7 = sup {t <1 : W; — 2W; = 0}, that is the
last time before 1 when the Brownian motion is equal to half of its terminal value at time 1. Then,

{Tgt}:{KiHQQWSZWl ZO}U{ sup 2W, < Wq SO}.

t<s<l1
» The quantity

P(r <t, W, >0|F,) =P <t<i“£12WS > W > 0]—})

can be evaluated using the equalities

. 8 , A
> > = - > = —W,>—
{ty;ilws 23 2 0} {K“zil(Ws W)z —Wez Wt}
_ Wiy Wi
o {0<11L%f1—t Wu) = 2 2 = _Wt}’

where (ﬁ//u = Witw — Wi, u > 0) is a Brownian motion independent of F;. It follows that

W
]P’< inf W, > 71 20|]-‘t> =01 —t,W,),

t<s<l1

where

W
U(s,z) = 1@( inf W, > —;C>—x>:IE”<2MS—WS<;,WS<x)
X

I
=
7/ N
[N}
E
|
E
N
IS

» The same kind of computation leads to

P ( sup 2W, < W, < o;t) =U(1—t,—W,).

t<s<1
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» The quantity ¥(s, z) can now be computed from the joint law of the maximum and of the process at

time 1; however, we prefer to use Pitman’s theorem (see [3M]): let U be a r.v. uniformly distributed
n [—1,+1] independent of Ry := 2M; — W1, then

PQM, -~ Wy <y Wi <y) = PR <y UR <y)
1 [t
= 5/ P(Ry < y,uR; <y)du.
-1
For y > 0,
1/t 1/t
5/ P(R; <y,uR; <y)du = 5/ P(R; <y)du=P(Ry <vy).
-1 1
For y <0
1
/ P(Ry <y,uR; <y)du=0.
-1
Therefore
W,
P(r < t|F) =01 —t,W,) +U(1 —t,—W;) = ( |1 tt>
where

2 (Y,
ply) =P(R1 <y) = */ e 2da.
T Jo

Then Z; = P(1r > t|F;) =1 — p(\l/vfé) We can now apply Tanaka’s formula to the function p.
Noting that p/(0) = 0, the contribution to the Doob-Meyer decomposition of Z of the local time of

W at level 0 is 0. Furthermore, the increasing process A of the Doob-Meyer decomposition of Z is

given by
1 | W2 ) 1 1 ( | Wil ) (Wi
Ay = | 50" + 50 dt
t <2p (w/l—t 1—¢ 2" \Vizi) Ja_op

1
Wl 67Wt2/2(17t)dt.
1—t V1-—

We note that A may be obtained as the dual predictable projection on the Brownian filtration of
the process Ang), s < 1, where (Agx), s < 1) is the compensator of 7 under the law of the Brownian
bridge ]P’o o

Comment 8.7.4 Note that the random time 7 presented in this subsection is not the end of a
predictable set, hence, is not honest. However, F-martingales are semi-martingales in the progressive
enlarged filtration: it suffices to note that F-martingales are semi-martingales in the filtration initially
enlarged with Wj.

We now follow the same idea and define another random time, more appropriate to Finance. Let
S be defined through dS; = 05;dW;, where W is a Brownian motion and ¢ a constant.

Let 7 =sup {t <1 : 5] —25; = 0}, that is the last time before 1 when the price is equal to half
of its terminal value at time 1.

Proposition 8.7.5 In the above model NA holds before T. There are classical arbitrages after T.

PROOF: Note that

S, _ S1
< = > =
{r <t} { 1nf 25’ S} = {t<m£125t N
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Ss

Since 5

s>t and % are independent from F;, therefore

. SS Sl o . o
P(tglglgl 25 > E'ft) = ]P)(tglglil 284> 51_4) =2(1—1)

where ®(u) = P(inf,<, 255 > S,). It follows that the Azéma super-martingale is a deterministic
decreasing function, hence, 7 is a pseudo-stopping time and S is a G martingale up to time 7 and
there are no arbitrages up to 7.

There are obviously arbitrages after 7, since, at time 7, one knows the value of S; and S7; > S;. In
fact, for ¢t > 7, one has S; > S, and the arbitrage occurs at any time before 1. O

Remark 8.7.6 It is not difficult to prove that (') hypothesis holds for that example, even if 7 is
neither honest(see Section 8.8), does not admit a positive density (see Hypothesis ??7) and immersion
is not satisfied.

8.8 Honest Times

There exists an interesting class of random times 7 such that F-martingales are G-semi-martingales,
called honest times, introduced by Meyer [112] and studied by Barlow [18] and Jeulin [82] among
others.
8.8.1 Definition
Definition 8.8.1 A random time 7 is honest if for s <t

{r <s}=Fs nN{r <t}, for some Fs, € Fy

or equivalently, if T is equal to an Fy-measurable random variable on T < t.

Examples 8.8.2 (i) Let B a Brownian motion and set 7 = g; where g, = sup{s <t : B; = 0}.
Then, for t <1, g1 = g on {g1 < t}, and g; is F;-measurable.
(ii) Let X be an adapted continuous process and X* = sup X, X; = sup,; Xs. The random time

T =sup{s : X;=X"}

is honest. Indeed, on the set {r < t}, one has 7 = sup{s : X, = X}}.
(iii) An F-stopping time is honest: indeed 7 =7 At on 7 < .

If 7 is honest,
Gi={A€ Fo,: A= (A n{r <t}) U (A, N{r >t}) for some A;, A, € F;}

This filtration is continuous on right.
Exercise 8.8.3 Let 7 be an honest time. Prove that
BUIF) = F(7)(1 - 20 +B( | J(s)di7)
<

Exercise 8.8.4 Prove that Gi := {A € Foo : A= (A,N{r <t}) U (A4,N{r > t}) for some A;, A, €
F:} defines indeed a filtration (i.e., the increasing property holds). <
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8.8.2 Martingales

Proposition 8.8.5 Let X be a cadlag G-adapted integrable process. Then X is a G martingale if
and only if

(i) (E(X¢|F:), t > 0) is an F-martingale

(i1) For s < t, E(Lr<sX¢|Fs) = E(L,<s X5|Fs).

PROOF: This easy proof is left to the reader. O

8.8.3 Stability

Let 7 and 7* be two honest times. We show in the following lemma that 7V 7* is an honest time.

Lemma 8.8.6 Let 7 and 7* be two honest times, then TV T* times. We show in the following lemma
that TV T* is an honest time.

PROOF: The random time 7 and 7* are honest, this implies that for every ¢ > 0 there exist F;
measurable random variables 7 and 7;° such that

* *
Tl =7l and 7 1wy =7 Lpeey
holds. Let us consider the random time 7V 7*.
* * * *
TVT Myt =TV T oy ot =T VT Lpcp it = 7 V13 Lpyre <4,

which proves that it is in fact honest time. ([l

8.8.4 Properties

Lemma 8.8.7 (Azéma) Let T be an honest time which avoids F-stopping times. Then:

(i) A% has an exponential law with parameter 1.

(i1) The measure dAY is carried by {t : Z, =1}

(iii) T = sup{t : 1 — Z, =1}

()AL, = A7
In particular, under (CA), A; = Ot dz i = AP (we have used (ii) above) and A, has an exponential
law.

Proposition 8.8.8 ( Jeulin [82] ) A random time T is honest if and only if one of the equivalent
assertions hold

(a) There exists an optional set T' such that T(w) = sup{t : (t,w) € T'} (it is the end of an optional
set) on {1 < 00}

(b) Z. =1 on {r < oo}

(¢c) T =sup{t : Z; =1} on {1 < oo}

(d) A7 = Afx,.

In particular, an honest time is F,-measurable. If X is a transient diffusion, the last passage
time A, (see Proposition 8.10.1) is honest.

Lemma 8.8.9 The process Y is G-predictable if and only if there exist two F predictable processes
y and y such that

Y = yelli<r + 4y s
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Let X € L'. Then a cadlag version of the martingale X; = E[X|G;] is given by:

1
Xi= Bl | Fe) Vs + ——

Zt 1 — E [gltZ‘r‘ft} 1t27’~

Every G optional process decomposes as
Lljo,r( + Jhry + Klljr o,

where L and K are F-optional processes and where J is a F progressively measurable process.
See Jeulin [82] for a proof.

Example 8.8.10 We give Barlow’s counterexample to prove that an G optional process can not be
decomposed as
Lo o+ Ky oo,

where L and K are F-optional processes. Let B be a Brownian motion and ¢ = inf{¢ : |B;| = 1}
and 7 = sup{t : B = 0}. The process X defined as X; = 1;>,sgn(B,) is a G-martingale and is an
optional process. Obviously, if (H, K exist, then H = 0 and one can choose K predictable. Then
AX,; = K, would be G,_ measurable, which contradicts the martingale property of X.

8.8.5 Progressive versus initial enlargement

Proposition 8.8.11 If 7 is honest, any F martingale is a F(™) (and a G )-semi-martingale

8.8.6 Decomposition

Proposition 8.8.12 Let 7 be honest. We assume (CA). Then, any F-local martingale M is a G
semi-martingale with decomposition

tAT TVt
7 d(M, 1) / d(M, 1)
M, =M A Ps A s
L= +/0 Z, o T1-2z,

where M is a G-local martingale

PROOF: Let M be an F-martingale which belongs to H! and G, € G,. We define a G-predictable
process Y as Y, = llg, Ij,4(u). For s < t, one has, using the decomposition of G-predictable
processes:

E(lg,(M; — M) = E </O°O YudMu>

E(/OTyudMu) +E</Too§udMu> :

Noting that fot YudM, is a martingale yields E ([~ g,dM,) =0,

E(lg, (M, — M) = E( /T(yu ﬂu)dM)

([ o o 50).

By integration by parts, setting N; = fo Yu — Yo )dM,,, we get

E(Le, (M; — M.)) = E(No AZ,) = E(Nocjioe) — E ( / " e — )M, u>u) |
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Now, it remains to note that

* (L), A(M. ).
. < /v <Zu_]1{“§7} ~ 1oz, M)
(M, g - (M, ),
</0 (Zlu T {u<sr}y = Yu 1— Z,_ {u>7}

B ([ (0~ 1))

B ([ -aosu.)

to conclude the result in the case M € H'. The general result follows by localization. |

The general version is given in Jeulin [82, Chapitre 5]

Proposition 8.8.13 Let 7 be honest. Then, any F-local martingale M is a G semi-martingale with

decomposition
tAT TVt
— d<M’m>s d(M,m>s
M, = M, ok i A L b i ')
t=Met /0 Z. /T 1- 2,

where M is a G-local martingale

Example 8.8.14 Let W be a Brownian motion, and 7 = g1, the last time when the BM reaches 0
before time 1, i.e., 7 = sup{t <1 : W; = 0}. Using the computation of Z/* = P(g, > t|F;) (see the
following Subsection 8.10.3) and applying Proposition 8.8.12, we obtain the decomposition of the
Brownian motion in the enlarged filtration

e k @’ |Ws| Sgn(Ws)
W, = W,— [ 1. d
t t /0 [0,](5)1_(1)( /71_s> s S

Lo W
+lr<ty Sgn(Wl)/ <I>( |1 _S> ds

T

where ®(z) = \/%fom exp(—u?/2)du.

Exercise 8.8.15 Prove that any F-stopping time is honest <

Exercise 8.8.16 Prove that, under (CA)

tAT d<M /1'> TVt d<M M>
E/ , si/ s 2
T )

is an F-local martingale, without using the previous Proposition 8.8.12. <

8.8.7 Predictable Representation Theorem

Theorem 8.8.17 If there exists a family of continuous F martingales M?® which enjoys the PRT in
F, then any continuous G-martingale is a sum of stochastic integrals w.r.t. M*.

8.8.8 Multiplicative Decomposition

This section is a part of [115]. For N be a local martingale which belongs to the class (Cp), with
No = x, we set St = sup,<, Ns. We consider the last time where NNV reaches its maximum over [0, o0],
i.e., the last time where N equal S:

g = sup{t>0: Ny =8,}=sup{t>0: S;— N, =0}. (8.8.1)

Without loss of generality, we restrict our attention to the case z = 1.
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Proposition 8.8.18 The supermartingale Zy = P (g >t | Fi) admits the multiplicative decomposi-
tion Z; = 5, t>0.

PROOF: We have the following equalities

{g>t} = {Fu>t: Sy=N,}={Fu>t: S <N,}
= {SupNu > St} = {St > St}
u>t
Hence, from (1.1.2), we get: P(g >t | Ft) = ]g—tf O

Lemma 8.8.19 Any F-local martingale X is a F9 semi martingale X with decomposition

X,N)s /t d(X,N),

~ t d(
Xy =Xt+/ Ligosy—— O el
0 {g>s} N, 0 {g< }Soo — N,

where X is an F9-local martingale.

PROOF: Let X be an F-martingale which is in H'; the general case follows by localization. From
results given in Section 6.4.5

X,N)s /t d(X,N)s

t

~ d<

XtZXt—i-/]l g <s ;
o WTITN, o USTS N,

where X denotes an F(S=) martingale. Thus, X , which is equal to:

¢ d(X,N) t d(X,N)
X ([ o 5 = e G50 ).
t (0 {9>s} N, 0 {QS}SOO_NS

is F9 adapted (recall that Fy C ]—'t(s‘x’)), and hence it is an F9-martingale.

These results extend to honest times:
Theorem 8.8.20 Let 7 be an honest time. Then, under the conditions (CA), the supermartingale

Zy = P (1 > t|F:) admits the following additive and multiplicative representations: there exists a
continuous and nonnegative local martingale N, with Ng = 1 and lim;_, o Ny = 0, such that:

Zt = MUt — Af

where these two representations are related as follows:

Ydps 1 [T d(u)s
N, = exp</0 o[ ) S = exp (A7)

thS
pe = 1+ [ Tt =BlogSn | F), A= logS.
0 S

8.9 Classical Arbitrages for Honest Times

Throughout this section, we consider a finite honest time (see Aksamit [2] for a generalization) and
we consider a financial market, with a savings account with null interest rate and a risky price
process S. We assume that (S,F) is a complete market.
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The first papers dealing with arbitrages related to honest times are Imkeller [72] and Zwierz
[136]. They consider the case of arbitrages occurring after 7 under (C). More recent papers are from
Fontana et al. [64] and Aksamit et al. [4] and Acciaio et al. [1].

Note that, in Dellacherie et al. [41], the authors had the intuition that there are arbitrages.
Studying a case similar to 7 = inf{s : Sy = S*} where S was a geometric Brownian motion, they
wrote: Tous les spéculateurs cherchent a connaitre 7 sans jamais y parvenir, d’ott son nom de v.a.
honnéte !

We make use of the standard definitions on classical arbitrages recalled in Section 1.5.1.

8.9.1 Existence of Classical Arbitrages

In a first step, we consider the case where conditions (CA) hold, and we assume that F is a Brownian
filtration, as in [64].

Theorem 8.9.1 Assuming that F is a Brownian filtration, that (A) is satisfied, and that (S,TF) is
a complete market, then there are classical arbitrages on the time interval [0,7] and on the time
interval |, 00|

PROOF: From the multiplicative decomposition of Z = N/S we see that Z, =1, so that N, > 1. It
remains to use Proposition 1.5.1. (]

The following theorem represents our principal result in the general framework.

Theorem 8.9.2 If 7 is a finite honest time which is not an F stopping time there are classical
arbitrages before T for (S,G) and classical arbitrages after T for (S, G).

PROOF: (a) From m = Z+A° and Z, = 1, we deduce that m, > 1. Since 7 is not an F stopping
time, one has P(A2_ > 0) > 0. The result follows from Proposition 1.5.1.

(b) From m = Z + A° and the fact that A° does not increase after 7, one obtains that, for ¢t > 7,
my —m, = Zy — Z; > —2. On the other hand, using m = 7+ A° | one obtains that, for ¢t > 7,
me —m, = Zt — 1+ AA2. Consider the following G-stopping time

~ 1—-AA°
vi=inf{t >7:7; < TT} (8.9.1)

Then,
~ AA° —1
my—mTzZ,,—1+AA2§TT§0,
and, as 7 is not an F-stopping time,
P(m, —m,; <0) =P(AA? <1) > 0.

Hence — f:AV psdSs = myas — Myp, is the value of an admissible self-financing strategy with initial
value 0 and terminal value m, —m, > 0 satisfying P(m, —m, > 0) > 0. This ends the proof of the
theorem.

O

We now reproduce some examples, given in [3].

1We provide an English translation for the convenience of the reader: “ Every speculator strives to know when T
will occur, without ever achieving this goal. Hence, the name of honest random variable”.
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8.9.2 Classical arbitrage opportunities in a Brownian filtration
Throughout this subsection, we assume given a one-dimensional Brownian motion W and F is its

augmented natural filtration. The market model is represented by the savings account whose process
is the constant one and one stock whose price process is given by

1
Sy = exp(oWy — 50215), o > 0 given.

It is worth mentioning that in this context of Brownian filtration, for any process V with locally
integrable variation, we have VoF = yp.F,

For some honest times 7, we compute explicitly the arbitrage opportunities for both before and
after 7. For other examples of honest times, and associated classical arbitrages we refer the reader
to [64].

Last passage time at a given level
Proposition 8.9.3 Consider the following random times

Ti=sup{t : Sy=a} and v:i=if{t>7]| < g},

where 0 < a < 1. Then, the following assertions hold.
(a) The model (ST,G) admits a classical arbitrage opportunity given by the G-predictable process

1
gﬂ{5<a}l]]0,'r]]~

(b) The model (S — S7,G) admits a classical arbitrage opportunity given by

1
*Eﬂ{s<a}f]]r,y]]~

PRroOOF: It is clear that 7 is a finite honest time, is not a stopping time. Thus 7 fulfills the
assumptions of assertions of Theorem 8.9.2. We now compute the predictable process ¢ such that
m=14¢.S. Using [81, exercise 1.2.3.10], we obtain

1-Z, =P (r < t|F) :P(supSu §a|]:t> :P(supgu < ;|}}) :<I>(a>
u t

t<u St

where S, = exp(aWu — o), W independent of F; and O(z) =P (Supu S, < x) =P(; <) =
P(L <U) = (1-2)% (where U is a random variable with uniform law (See Proposition 1.1.13)).
Thus we get Z; = 1 — (1 — £)* (in particular Z, = Z.=1), and

1 1
dZt - H{St<a}EdSt - %dég
where /¢ is the local time of the S at the level a. Therefore, we deduce that

m =14 @.S.

This ends the proof of the proposition. O
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Last passage time at a level before maturity

Our second example of random time, in this subsection, takes into into account when one is working
in finite horizon. In this example, we introduce the following notation

H(zy,s) = e N (ZS\/—§2/> + YN (—zs\/g—y) and V;:=a+ %t—Wt =(a—X:)/o, (8.9.2)

where A (z) is the cumulative distribution function of the standard normal distribution.

Proposition 8.9.4 Consider the following random time (an honest time)
7 i=sup{t <1: 5 =b}

where b is a positive real number, 0 < b < 1 . Then the G-predictable process
Pt = oS, t4]0,m11>

is an arbitrage opportunity for the model (S™,G), and —ply., ] is an arbitrage opportunity for the
model (S —S™,G). Here § is given by

o
Bri= eV (YH(3, [Vil, 1 = 1) = sgn(Vi) Hy (v, [Vil, 1= 1)), v = =5,
V and H are defined in (8.9.2), and v is defined in (8.9.1).

PROOF: The proof of this proposition follows from Theorem 8.9.2 as long as we can write the
martingale m as an integral stochastic with respect to S. This is the main focus of this remaining
part of this proof. The time 77 is honest and finite. Let X; = In .Sy — %O'Zt + oW; and a = Inb. We
assume ¢ > 0. Then,

1 = sup{t<1:X;=a}
= sup{t<1:yt+Wy=a}

where v = —30 and a = (a — x)/0 with z = In Sj.

Setting To(V) = inf{t : V; = 0} where V is given by (8.9.2), we obtain, using standard compu-
tations (see [3M])

1-2;= ]P)(Tl < t‘ft) = (1 - 6VVtH(73 |‘/t‘7 1- t))]]'{To(V)St}a

where H is given in (8.9.2). In particular Z, = ZT = 1. Using It6’s lemma, we obtain the decompo-
sition of 1 — e"*H (v, |V;|,1 — t) as a semi-martingale.

The martingale part of Z is given by dm; = S;dW, = %Stﬂtdst where

Be = &V (H(y,|Vil, 1~ 1) —sgn(Vi) Hy (v, [Vi|, 1~ 1)) .

8.9.3 Arbitrage opportunities in a Poissonnian filtration

Throughout this subsection, we suppose given a Poisson process N, with intensity rate A > 0, and
natural filtration F. The stock price process is given by

dSt = St—det; SO = ]., Mt = Nt - )\t, (893)
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or equivalently S; = exp(—A¢t + In(1 + ) N;), where ¢ > —1. In what follows, we introduce the
following notations

AP
In(1+ v)

so that S; = exp(—1In(1 + ¢)Y;). To the process Y, we associate its ruin probability, denoted by
U(x) given by

1
a:=In(l+v¢) >0, a:=——Inb, W= and Y; := ut — Ny, (8.9.4)
o

U(z) =P(T° <o0), with TP =inf{t:2+Y; <0} and x>0. (8.9.5)

We set 0 = % — 1, and deduce that ¥(0) = (1 +6)~! (see [14]).

Below, we describe our first example of honest time and the associated arbitrage opportunity.

Last passage time
Proposition 8.9.5 For 0 < b < 1, consider the following random time
T:=sup{t: S > b} =sup{t:Y; <a}l. (8.9.6)

Suppose that ¥ > 0, then the following assertions hold.
a) T is a honest time.
b) The process

1

<P5:¢T

(Y- —a— Dy sq01y — UV —a)lpy_ >0 + Ty cat1y — Ly <a}) 5

is an arbitrage opportunity for the model (S7,G), and —ply., is an arbitrage opportunity for the
model (S —S7,G). Here ¥ is defined in (8.9.5) and v is defined in the same manner as in (8.9.1).

PROOF: Since ¥ > 0, one has u > A so that Y goes to +00 as t goes to infinity, and 7 is finite. The
Azéma supermartingale associated with the time 7 is

Zy =P(r > t|F) = V(Y — a)l{y,>a) + Livi<a)y = L+ Lynay (V(Y: —a) — 1),

where U is defined in (8.9.5). We obtain Z, = ﬁle <1

Define ¢; = inf{t > 0 : Y; = a} and then, for each n > 1, ¢, = inf{t > J,_1 : Yz = a}. It can
be proved that the times 9, are predictable F-stopping times, and [r] C U,[0,]. For any optional
increasing process K, one has

B(K;) = B() Mg, Ky,) = BE() B(ll,—y, |Fy,)Ks,)

and E(1,—y, | Fy,) = P(T° = 00) = 1 — ¥(0). It follows that the dual optional projection A° of the
process 1, ) equals

. 0
A7= 1+0§n:ﬂ[”"’°°>'

Note that Z, = Z, + AA2 =1+ (¥(0) — 1) + 1% =1, hence 7 is honest.

As a result the process A° is predictable, and hence we have Z = m — A° is the Doob-Meyer
decomposition of Z. Thus we can get
Am =7 - ?Z

where PZ is the predictable projection of Z. To calculate PZ, we write the process Z in a more
adequate form. To this end, we first remark that

Niy>ay = gy 5041} AN+ (1 -AN)yy 50y and Iyyco) = Iy corp AN+ (1-AN) Iy <43
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Then, we obtain easily
Am = (U(Y_ —a— Dy sap1y — YV —a)lyy_ >0 + Igy a1y — Iy <ay) AN
=YPS_pAM = pAS.

Since the two martingales m and S are purely discontinuous, we deduce that m — mg = ¢ . S.
Therefore, the proposition follows from Theorem 8.9.2. (]

Time of supremum on fixed time horizon

The following example requires the following notations

Sy =supSs, Y(z,t):=P(S; > x), $(t) =P(supSs <1), P(z,t) :=P(supSs < z) (8.9.7)

s<t s<t s<t

Proposition 8.9.6 Consider the random time T defined by
T=sup{t <1:S; =5/}, (8.9.8)

where S = sup,<; Ss. Then, the following assertions hold.
a) T is a honest time.
b) For ¢ > 0, the G-predictable process

S; St ~
Dt = I]-{t<l} |:\IJ (max(m, ].)7 1-— t) —-v (SZ_ s 1-— t>:| + ]]'{S:,<St—(1+w)} @(1 — t)

+ [ﬂ{max(s;_,sl,(uw)):so} - ]l{max(Sf_,Sl,):So}:| Tge—1y

is an arbitrage opportunity for the model (S7,G), and —ply., is an arbitrage opportunity for the

model (S — S7,G). Here ¥ and ® are defined in (8.9.7), and v is defined similarly as in (8.9.1).
¢) For —1 < ¢ < 0, the G-predictable process

1 ~ 1 St St
= Nygs— O(—— 1 —t)+ ¥ (—At—— 1 —t) = V(=1 — ¢
orim s (Vs Bl - 04 Bt wEh - ),

is an arbitrage opportunity for the model (S7,G), and —ply., is an arbitrage opportunity for the
model (S — S7,G).

ProOF: Note that, if —1 < < 0.5, < SF = sup,¢jo1]5: on the set (7 < 1) and S, = S7_ =
SUPe(o,1] S, and the process S* is continuous.
If >0, S-— < S7_ <supep,1) St on the set (7 < 1).

Define the sets (E,)%2, with

Ey={r=1} and  E,={r=T,} with n>1

This defines a partition of Q. Then, 7 =1g, + > -, T, 1g,.
Note that 7 is not an F stopping time since E,, ¢ Fr, for any n > 1.

The Azéma supermartingale associated with the honest time 7 is
5.5 5;
Zy =P(r > t|F;) =P( sup Sy > sup S|F) =P( sup S5 > - |F) = Npe)¥(5,1—1),
se€(t,1] s€[0,¢] s€[0,1—1] St Sy

with S an independent copy of S and ¥(z,t) is given by (8.9.7).
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As{r=T,} c{r <T,} C {Zr, <1}, we have
Ze =Ny Zo+ Y UpeoryZrn, <1, and {Z=0<Z_}=0.

n=1

In the following we will prove assertion b). Thus, we suppose that ¢ > 0, and we calculate

AP =P(r = 1|F) sy + Y P(r = Tl Fr, ) Lo,y

= Lgsp=so) L1y + Z ﬂ{Tn<1}11{5;,L,<ST”}P(365[11{P1[Ss < St | Fr ) Le>m)

= lysr—goy Mpes1y + Z Igr, <1yllys; <Sp,—(1+4)} (1 - T) L1,y

with ® is given by (8.9.7). As before, we write

A7 = Us;—sp Uiy + ) LsanyIgs:_<s.vun 21— $)AN,

s<t
tAl R .
= lysr=50) L{e>1y + /0 Iise <s. (14y)r ©(L—5)dM, + /\/O Igse <5, (1)} ©(1— s)ds.

Remark that we have
Lisr=s,} = [ﬂ{nlax(s;;,sl,(1+¢))=so} - ﬂ{ynax(s;;,sl,)zso}] AMy + Lnax(s:_,5,_)=50}
and
Am=AZ +AA = Z — P(Z) + AA° — P(AA”).

Then we re-write the process Z as follows

S* S*
Z = ]].[071[\1/ (max(s_(l_i_w), 1), 1-— t) AM + (]. - AM)I[[OJ[[\I/ <S_’ 1-— t> .

This implies that

Z— P(Z) =1 {\1/ (max(s(fa_w), 1),1— t) - (2— 1- tﬂ AM.

Thus by combining all these remarks, we deduce that
Am=7— P(Z)+ AA° — P(AA°) = pAS.

Then, the assertion b) follows immediately from Theorem 8.9.2.
Next, we will prove assertion c¢). Suppose that —1 < ¢ < 0, and we calculate

Ay =P(r =1|F) g1y + Y P(r =T, | Fr, ) Lisr,)

= Lgsp=siy >y + Z ﬂ{na}ﬂ{S;ﬁsﬂﬁ}IF’(SES[ITIP”Ss <51, Fr) L,y

ST,

= lys;=s5,3i>1y + Z Ly, <y lysy _ST,L,}‘I’( ST 1 =T)lg>1,y,

with ®(z, t) is given by (8.9.7). In order to find the compensator of A°, we write

Af = Tys:= sl}]l{t>1}+211{s<1}]1{s s, }®(~——.1—5) AN,

s<t

tA1 1 tAl
=lysr=s,3 L e>1y +/ Lyse=s,_ }‘I)(1 +1/) —s8)dM; +>\/ Bygr=s,_ }q)(
0 0

1
1+’

110 ,1—s)ds.
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As a result, due to the continuity of the process S*, we get

~ 1
Ag - p(AO)t - I{S::Sti}é(m’ 1 - t)AMt,
S¢ S
_ P — s 2 _ _ t _
Z— "7, [W(St_(1+¢),1 t) V(g t)] AN,.

This implies that

Amt = Zt — ;DZt + A? — p(Ao)t

~ 1 S S
Irgecg, v O(—— 1 -t)+V(—"t_1-¢t]-" t),l—t}AN.
{¢ =g L=t (St(lwm ) (St t

Since m and S are pure discontinuous local martingales, we conclude that m can be written in the
form of

m:m0+@'57

and the proof of the assertion c) follows immediately from Theorem 8.9.2. This ends the proof of
the proposition. O

Remark 8.9.7 The fact that 7 is an honest time can be also obtained by the equivalent character-
ization that is is the end of a predictable set, namely the end of I' = [0,1] N (S_ = S*).

Time of supremum

Below, we will present our last example of this subsection. The analysis of this example is based on
the following three functions.

U(z) =P(S* >a) =P(sup S, > z), ®=P(supS, <1), and ®(z) =P(supSs < z). (8.9.9)

Proposition 8.9.8 Consider the random time T given by
T =sup{t:S; = S5;}. (8.9.10)

Then, the following assertions hold.
a) T is a honest time.
b) For i > 0, the G-predictable process

*

= Sy S;_
Nisr <5, (140 @+ ¥ (max(ist_(’uw) , 1) — \II(S:;)

S

Pt =

is an arbitrage opportunity for the model (S™,G) and —plj; .y is an arbitrage opportunity for the

model (S — ST,G). Here ¥ and d are defined in (8.9.9), and v is defined in similar way as in
(8.9.1).
¢) For —1 < 4 < 0, the G-predictable process

V(gtrry) = V(E5) + Lgg-—s 1 @(5)¥
vS- ’

is an arbitrage opportunity for the model (S™,G) and —@lj; .y is an arbitrage opportunity for the
model (S — ST, G), where again v is defined similarly as in (8.9.1).

p o=
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PROOF: It is clear that 7 satisfies the definition of an F-honest time.
Let us note that 7 is finite and, as before, if -1 <9 < 0 .S, < S8 = sup, S; and S* is continuous
and if ¢ > 0, S; = S = sup, S;.
The Azéma supermartingale associated with the honest time 7 is
g o S¢
Zy =P(r > t|F;) =P( sup Ss > sup Sq|F) =P( sup Sg > —|F) =¥(—
s€(t,00] s€[0,4] s€[0,00] St St

),

with S an independent copy of S and ¥ is given by (8.9.9). As a result, we deduce that Z, < 1.In
the following, we will prove assertion b). We suppose that ¥ > 0, denoting by T,, the sequence of
jumps of the Poisson process IV, we derive

ZP 7 =To|Fr, ) Lp>t,y = Z]l{s* _<Sm, }]P’( sup Ss < St |Fr,)lie>m,)

—ZH{S o <Sp,- @l ),

with ® = P(sup, Ss < 1) given by (8.9.9).

We continue to find compensator of A°

= 1s: s, (110} PAN,
s<t
t

t
:/ ﬂ{s:7<Ss,(1+¢)}@dMs+>\/ ]1{5:7<557(1+¢)}<I)d8.
0 0

Now as we did for the previous propositions, we calculate the jumps of m. To this end, we re-write

Z as follows
* * S*

Z= [\If (max(w, 1)) - xy(‘;_)} AM + 0 (7).

This implies that
S* S*
Z—-P7=|V — 1)) - V()| AM.
¢ (st ) ¥

Hence, we derive

~ S* S*
Am = [ﬂ{s:_<ss(1+w)}‘I> + v (max(w, 1)> - ‘I’(S)} AM.

Since both martingales m and M are purely discontinuous, we deduce that m = mg + ¢ ..S. Then,
the proposition follows immediately from Theorem 8.9.2.
In the following, we will prove assertion c¢). To this end, we suppose that ¥ < 0, and we calculate

= ZP(T = Tn|]:Tn)]1{t2Tn} = Z ]1{5’}7L:ST”7}P( b>117}3 SS < ST71—|an)]1{tZT,L}

St,
ZZH{S _sn 3 @( ST —)>1,3,

n

with ® () = P(sup, Ss < z). Therefore,

= ls:-s,_ }¢> w)A

s<t
1

t 1 t ~
/]1{5* =5, }(I)( +w)dM +>\/ ]1{55:557}(1)(
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Since in the case of ¥ < 0, the process S* is continuous, we obtain
Z—P7= @(L) - @(5*)} AN, A°— P(4°) = n{s*:S_}i(L)AM.
S_(1+41) S_ 1+
Therefore, we conclude that

S* S*

~ 1
Am=7—- P74+ A°—- P(A°) =V (-——) V¥ (=—) + Lige—g 1 O(—— AN.
m (49) = { W) - W) + Lysms s B 0 )
This implies that the martingale m has the form of m = 14¢-S, and assertion c) follows immediately
from Theorem 8.9.2, and the proof of the proposition is completed. O

8.10 Last Passage Times

We now present the study of the law (and the conditional law) of some last passage times for diffusion
processes. In this section, W is a standard Brownian motion and its natural filtration is F. These
random times have been studied in Jeanblanc and Rutkowski [78] as theoretical examples of default
times, in Imkeller [72] as examples of insider private information and, in a pure mathematical point
of view, in Pitman and Yor [117] and Salminen [120].

TY

We show that, in a diffusion setup, the Doob-Meyer decomposition of the Azéma supermartingale
may be computed explicitly for some random times .

8.10.1 Last Passage Time of a Transient Diffusion

Proposition 8.10.1 Let X be a transient homogeneous diffusion such that X; — +o0o when t — oo,
and s a scale function such that s(+00) =0 (hence, s(x) <0 for x € R) and Ay = sup{t : X; =y}
the last time that X hits y. Then,

s(X3)
s(y)
Proor: We follow Pitman and Yor [117] and Yor [135, p.48], and use that under the hypotheses

of the proposition, one can choose a scale function such that s(z) < 0 and s(+o00) = 0 (see Sharpe
[121]).

Observe that

AT,

Bo(Ay > UF) = Bo(inf X <y|F) =B sup(-s(X) > ~s(v) | F)
= th(igg(—S(Xu)) > —s(y)) = SS(();) :

where we have used the Markov property of X, and the fact that if M is a continuous local martingale
with My =1, M; > 0, and tlim M; =0, then
—00

law 1
sup My = —,
tzg i U
where U has a uniform law on [0, 1] (see Lemma 1.1.13). O

The time A, is honest: defining A} = sup{s <t : X, =y}, one has A, = A on the set {A, <t}.
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Lemma 8.10.2 The FX -predictable compensator A associated with the random time Ay is the pro-

1 . . .
cess A defined as Ay = —7Lt(y) (Y), where L(Y) is the local time process of the continuous

25(y)
martingale Y = s(X).
PROOF: From z Ay = x — (z — y)™T, Proposition 8.10.1 and Tanaka’s formula, it follows that

s(X3) 1

L s
ANl =M+ ——L}"V(Y)= M, + (X
) gy T M)
where M is a martingale. The required result is then easily obtained. ]
We deduce the law of the last passage time:
s(x) 1
P,(Ay, >1t) = (A1>+Ez (X
= —— AL+ —— [ dup)"(z,y).
(S(y s(y) Jo (#:3)
Hence, for z < y
dt (m) dt
P.(A, €dt) = ———p; (2,y) = ———F—pi(x,
a*(y)s'(y)
— L dt . 8.10.1
QS(y) pt(x7 y) ( )
For = > y, we have to add a mass at point 0 equal to
s(z) > s(z)
11— —A1)=1——<=P,(T, < ).
(56 sty) ~ =)

Example 8.10.3 Last Passage Time for a Transient Bessel Process: For a Bessel process of
dimension ¢ > 2 and index v (see [3M] Chapter 6), starting from 0,

Po(Ag <t) = Pg(igf; R, >a) =P)(sup R, % < a™?)
uz u>t

d R;2V —2v S 2v 2v 1) a2
= IEDO U <a :]P)O(a <URt ):]PO W<t .
1

Thus, the r.v. A, = ﬁi/u is distributed as 27(%‘;21)6 e 2;1(2) where y(v) is a gamma variable
‘1 v,1 v
with parameter v:
ufleft
Hence,
PS(A, € dt) =1 L (e Ve_“z/@t)dt (8.10.2)
0 =03y \ 2t ' o

We might also find this result directly from the general formula (8.10.1).

Proposition 8.10.4 For H a positive predictable process
E,(Ha, Ay = 1) = Eo(H| X, = y)
and, fory > x,

Yy

Ea:(HA, ) = / Ex(Ay S dt) Ea:(Ht|Xt = y)
0
In the case z >y,

(i) = Ho (1= 50 ) + [T B8, € a0 B X = ).
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PROOF: We have shown in the previous Proposition 8.10.1 that

s(Xy)

]P’I(Ay > t|ft) = s(y)

AT,

From Ito-Tanaka’s formula

(XD s [ X)L,
T S M e 45T L G00),

It follows, using Lemma 8.1.1 that

E(Hy) = o ( /O " H, d, L (s(X )))

38 ([ Bailx, =) 220 6(x) )
Therefore, replacing H, by H,g(u), we get

B (. g(0) = 5B [ o) B (LUK, =) 4LE0G00)) . (8103)
Consequently, from (8.10.3), we obtain

Po(hyedn) = LdiE, (L0 (5(X))
E. (Ha Ay =t) = E.(H|X;=vy).

Exercise 8.10.5 Let X be a drifted Brownian motion with positive drift v and Aj its last passage
time at level y. Prove that

P, (AY) € dt) =

1
exp (—Qt(a? —y+ Vt)2> dt,

v
V2t
and

1—e @Y for x>y

(U) — —
Pa(A, 0) { 0 for z<y.

Prove, using time inversion that, for z = 0,

() law 1
where
T® = inf{t : B, +bt =a}
See Madan et al. [105]. <

8.10.2 Last Passage Time Before Hitting a Level

Let Xy = =+ oW, where the initial value z is positive and o is a positive constant. We consider, for
0 < a < x the last passage time at the level a before hitting the level 0, given as g%, (X) = sup {t <
Ty : X; = a}, where

T() :To(X) :ll’lf{t 2 0 SXt :0}
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(In a financial setting, Tj can be interpreted as the time of bankruptcy.) Then, setting o = (a—2x) /0,
T_z/o(W)=inf{t : Wy = —x/o} and dff (W) = inf{s > ¢ : W, = a}

Py (9%, (X) < t|F) = P(df (W) > Ty /0 (W)|F2)
on the set {t <T_,,,(W)}. It is easy to prove that
P(dF(W) < T—)o(W)|Fi) = C(Winr_, ., (w), @, —2/0),
where the function ¥(-,a,b) : R — R equals, for a > b,
(a—y)/(a—b) for b<y<a,
W(y,a,0) = By(T(W) > T,(W)) = { 1 for o<y,
0 for y<b.

(See Proposition ?? for the computation of ¥.) Consequently, on the set {Tp(X) > ¢t} we have

P, (g% (X) < t|F) = (0= W)t _ (@=W)" _ (a=X)"

2o o . (8.10.4)

As a consequence, applying Tanaka’s formula, we obtain the following result.

Lemma 8.10.6 Let X; = x + cW;, where 0 > 0. The F-predictable compensator associated with

1
the random time g7, v is the process A defined as Ay = %L?AT_I/U(W)(W), where L*(W) is the

local time of the Brownian Motion W at level « = (a — x) /0.
8.10.3 Last Passage Time Before Maturity
In this subsection, we study the last passage time at level a of a diffusion process X before the fixed

horizon (maturity) 7. We start with the case where X = W is a Brownian motion starting from 0
and where the level a is null:

gr =sup{t <T : W; =0}.
Lemma 8.10.7 The F-predictable compensator associated with the random time gr equals
92 tAT dL
At = 7/ > )
V7 )y VT—s

where L is the local time at level 0 of the Brownian motion W.

PRrOOF: It suffices to give the proof for 7' = 1, and we work with ¢ < 1. Let G be a standard

Gaussian variable. Then
2

P<&>1t)<1>(\/|f|ﬁ),

2 .z 2 .

where ®(z) = 1/ = [; exp(—"%-)du. For t <1, the set {g; <t} is equal to {d; > 1}. It follows (see
T

[3M]) that

P(g1 <t|F) =@ (\XL_'J .

Then, the It6-Tanaka formula combined with the identity

2@ (z) + " (z) =0
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leads to

¢ Wil W] 1 [t ds | W
P(gy <t|F) = o (LY > 7/ <1>”< 2 )
(91 < #17%) /0 ( 1—5) (\/1—s)+2 o 1—s 1-—s

sgn(W,) b dLg ,( |W,| >
dW, )
) VvV1—3s + 0o V1I—s 1—s5

It follows that the F-predictable compensator associated with gy is

2 [t dr
A =1/= = (t<1).
! \/;/0 VvV1—s ( )

|
o\ﬁ
&
7N
Si=
|E
VA

]

These results can be extended to the last time before T' when the Brownian motion reaches the
level o, i.e., g% =sup{t <T : Wy = a}, where we set sup(l)) = T. The predictable compensator

associated with g% is
[2 [T dLe
At = */ 2 ’
™ Jo VI —s

where L® is the local time of W at level .

We now study the case where X; = x + pt + o Wy, with constant coefficients p and o > 0. Let

93 (X) = sup{t<1l: X;=ua}
= sup{t<1:vt+W,=a}

where v = /o and a = (a — z)/o. Setting
Vi=a—vt—Wy=(a—Xy)/o,
we obtain, using standard computations (see [3M])
P(g7(X) < t|F) = (1 — "V H(v, [Vi|, 1 = £)) gz, (vy <oy

where

o) = (28 o (22220

Using It6’s lemma, we obtain the decomposition of 1 — e”V*H (v, |V;|,1 — t) as a semi-martingale
Mt + Ct-

We note that C increases only on the set {t : X; = a}. Indeed, setting ¢$(X) = g, for any

predictable process H, one has
(oo}
E(Hy) =E (/ dCSHS>
0

o=t [Tan).
0

Therefore, dCy = kdL{(X) and, since L increases only at points such that X; = a (ie., V; = 0),
one has

hence, since X, = a,

Ry = H:/E(Z/,O,].*t) .
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The martingale part is given by dM; = m:;dW; where
me = eV (WH, Vil,1—t) — sgn(Vi) Ho(n, Vil 1 — 1)
Therefore, the predictable compensator associated with ¢¢(X) is

* H(v,0,1—5)
o eVsH(r,0,1— )

aLe.
Exercise 8.10.8 The aim of this exercise is to compute, for t < T < 1, the quantity E(h(Wr)1r<4,1|G:),

which is the price of the claim h(S7) with barrier condition IL7.g,3.
Prove that

E(W(Wr) 7<) = E(Wr)\F) — E(nwr)e (2L | 7).,

V1—-T
B(z) = \/z/o exp (-“j) du.

Define k(w) = h(w)®(|Jw|/v/1 —T). Prove that E(k(WT) ’]-'t> = k(t,W;), where

where

k(t,a) = E(k(WT,tJra))

|u (u—a)?
\/27r(1T7—t)/Rh(u)¢)< 1_T>exp<—2(T_t)>du.

8.10.4 Time When the Supremum is Reached

Let W be a Brownian motion, M; = sup,<, W, and let 7 be the time when the supremum on the
interval [0, 1] is reached, i.e.,

T=inf{t<1: Wy=M}=sup{t<1: M —W,=0}.

Let us denote by ( the positive continuous semimartingale

M, — W,
==t <1,
Gt —

Let F;, = P(r < t|F;). Since F; = ®((), (where &(z) = \/%for exp(—%)du, (see Exercise in
Chapter 4 in [3M]) using Ito’s formula, we obtain the canonical decomposition of F' as follows:

F

¢ 1/t du
(p/ udu = @// "
[ oo +s [ o

t t
(1) , dW, 2/ dM, (i) ~
= — [ d(C)— +4/= = U, + Fy,

/0 (C)\/lfu T Jo V1—u K K
here U, = _f()t (b/(cu)%

(i), we have used that z®' + ®” = 0; to obtain (ii), we have used that ®'(0) = y/2/m and also that
the process M increases only on the set

is a martingale and Fa predictable increasing process. To obtain

{we0,: M, =W,}={uel0,4:C =0}
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8.10.5 Last Passage Times for Particular Martingales

We now study the Azéma supermartingale associated with the random time L, a last passage time
or the end of a predictable set I, i.e.,

L(w) =sup{t : (t,w) eT'}.

Proposition 8.10.9 Let L be the end of a predictable set. Assume that all the F-martingales are
continuous and that L avoids the F-stopping times. Then, there exists a continuous and nonnegative
local martingale N, with Ng = 1 and lim;_,oo Ny = 0, such that:

Ny

t

where ¥y = supgs<; Ns. The Doob-Meyer decomposition of Z is

Zy=my — Ay
and the following relations hold
Ydms 1 [P d{m),
Ny = exp </ = — 7/ é)
' o Zs 20 22

Y = exp(A4)

Y dN,
my = 1+/ — E(In Sw|Fy)

0 s

PROOF: As recalled previously, the Doob-Meyer decomposition of Z reads Z; = m; — Ay with m and
A continuous, and dA; is carried by {¢t : Z; = 1}. Then, for t < Ty := inf{t : Z; =0}

Ydms 1 [Pd{m),
_1HZt——</O ZS —5/0 Zg >+At

From Skorokhod’s reflection lemma we deduce that

“dms 1 [*d(m)s
Ay = su / — 7/ )
' U<I:t)< 0o Zs 2 Jo z3

Introducing the local martingale N defined by

t t
dms 1 d{m)s
N¢ = exp (/ - */ ) ;
' o Zs  2J)o Z2

it follows that

and

“dms 1 [ d(m>s>> A
¥ = supN, =exp|su / 77/ = et
' USI:t) P <u<It) < 0 Zs 2 Jo Z52

The three following exercises are from the work of Bentata and Yor [22].

Exercise 8.10.10 Let M be a positive martingale, such that My = 1 and lim;_,,, My = 0. Let
a € [0,1] and define G, = sup{t : M; = a}. Prove that

P(G, < t|F) = (1 - Mt)+

a



8.11. NUPBR 133

Assume that, for every ¢ > 0, the law of the r.v. M; admits a density (m:(x),z > 0), and (¢,z) —
my(x) may be chosen continuous on (0,00)? and that d(M), = o2dt, and there exists a jointly
continuous function (¢,x) — 6,(x) = E(0?|M; = x) on (0,00)%. Prove that

M, 1
P(Ga € dt) = (1= —2)do(db) + Loy 5 be(a)me(a)dt

Hint: Use Tanaka’s formula to prove that the result is equivalent to d;E(L§(M)) = dtf.(a)m:(a)
where L is the Tanaka-Meyer local time. <

Exercise 8.10.11 Let B be a Brownian motion and

T inf{t : By+vt=a}
GW = sup{t: B, +uvt=a}

Prove that

(W), gyl (L1
a ’ a GE/U') I Tu(a)

Give the law of the pair (Téy)7 Gg’/)). <
Exercise 8.10.12 Let X be a transient diffusion, such that

P,(Thy <o0) = 0,z2>0
1l,x>0

P,(lim X; = o0)
t—o0
and note s the scale function satisfying s(07) = —o0, s(c0) = 0. Prove that for all z,t > 0,

1 m
Po(Gy € dt) = T(y)pg (@, y)dt

where p(") is the density transition w.r.t. the speed measure m. <

8.11 NUPBR

In this section, we study another kind of arbitrages in progressive enlargement. (See Section 1.5.2).
We do not present the full theory (for which we refer the reader to [7, 6, 4] and [1]).

8.11.1 Before 7

Let m be the G-martingale stopped at time 7 associated with m as in Theorem 8.3.1, on {t < 7}

. - b d(m,m)E
me == 1My —\/O Tg .

Case of Continuous Filtration

We start with the particular case of continuous martingales and prove that, for any random time 7,
NUPBR holds before 7. As a consequence, in the case of honest times, all the deflators are strict
local martingales

We recall that the continuity assumption implies that the martingale part of Z is continuous and
that the optional and Doob-Meyer decompositions of Z are the same.
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Proposition 8.11.1 Assume that all F martingales are continuous. Then, for any random time T,
NUPBR holds before 7. A deflator is given by L = E(—+ . m).

PROOF: Define the positive G local martingale L as dL; = —%dmt. Then, if SL is a G-local
martingale, NUPBR holds. Recall that, using 8.3.1 again, /

N tAT d<S m>[ﬁ‘
Sy = ST—/ 22 s
t t 0 Zs

is a G local martingale. From integration by parts, we obtain (using that the bracket of continuous
martingales is continuous and does not depend on the filtration)

d(LST)y = L;_dST+S;_dL;+d(L,S™)¢
mar 1 1 ~
art LtZd<S, m)¥ + ZLt_d<s, m)®

mar 1
e Ly (d{S,m); — d(S,m);) =0
t

where X ™"V is a notation for X — Y is a G local martingale. ]

Exercise 8.11.2 Prove that, if Z = N/N* is the multiplicative decomposition of Z, then L = %.Q

Case of a Poisson Filtration

We assume that S is an F martingale of the form d.S; = S;_:;dM;, where v is a predictable process,
satisfying ¢ > —1 and ¢ # 0, where M is the compensated martingale of a standard Poisson process.

In a Poisson setting, from PRP, dm; = v;dM; for some predictable process v, so that, on t < 7,

_ 1 1
ding = dmy; — Zd<m>t =dm; — Z)wfdt

Proposition 8.11.3 In a Poisson setting, for any random time 7, NUPBR holds before 7. Fur-

thermore,
1 v .
L= — M) = — .M
5( Z_+v m> 5( Z_+v )

is a G-local martingale deflator for S7.

PROOF: We are looking for a deflator of the form dL; = L;_rdm; (and v4ky > —1) so that L is
positive and STL is a G local martingale. Integration by parts formula leads to (on t < 7)

d(LS)t = Ltfdst + St,st + d[L, S]t

mar 1
art Ly Syt —d(M,m)s + Ly Sy ratpyrdN,
t—

mar 1 1
Zt Lt—St—thVtAdt + Lt_St_/ﬁltthtA(l + Tyt)dt

t— t—

1 1
= Lt_St_¢tVtA (Zt + Kt(l + Ztl/t)) dt.

Therefore, for xk; = — one obtains a deflator. Note that

_1
Zy_+vy?

1 —~
dL; = Ly_kydmy = —Ly_ ———— v d M,
t t— Rty t Zt_JthVt t
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is indeed a positive martingale, since ﬁyt < 1. This last equality follows from the fact that

ANy = dM, + Adt = dM, + A(1+ - )dt
t

is the Doob-Meyer decomposition of the submartingale IV, hence the predictable bounded variation
part (in G) part is increasing. It is also possible to note that

v — vAM Am Z_
. M — TS A .y <= = _1 —_— —1
) Z_ +vAM 7 + VA o

Lévy Processes

Assume that S = ¢ * (1 — v) where p is the jump measure of a Lévy process and v its compensator.
Here, ¢ % (n — v) is the process [, [4(z,s)(u(dz,ds) — v(dz,ds). The martingale m admits a
representation as m = ¢™ % (u — v). Then, the G compensator of u is v® where

VO (dt,dz) = ZL (Zy— + ™ (t,2)) v(dt, dz)

t—

i.e., S admits a G-semi-martingale decomposition of the form
S=1vx(p—v°) =t (-

Proposition 8.11.4 Consider the positive G-local martingale

wm
L= (C/‘ (—WI]]07T]] * (I/ — VG)> .

Then L is a G-local martingale deflator for ST, and hence S™ satisfies NUPBR.

PROOF: Our goal is to find a positive martingale L of the form
st = Lt_l*itd’l’/)’\lt

so that LS is a local martingale.

From integration by parts formula

d(SL) ™' L ¢x(v—v®) +d[S,L] = —L_thx (v — %)+ L ™k *
MLk (v — ) + Lok

- Ly (1 4+ wmn)zi 7+ wm)> xv

Hence the possible choice k = *ﬁ It can be checked that indeed, L is a positive martingale.
See [6] O
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8.11.2 After 7

We now assume that 7 is an honest time, which satisfies Z, < 1. Note that, in the case of continuous
filtration, and Z. = 1, NUPBR fails to hold after 7 (see [64]).

For any F local martingale X (in particular for m and .S)
N AT (X, m)E Eod(x,m)E
Xt = XT 7/ U S +/ Y S
! 0 Zs tAT 1—Z,
is a G local martingale.

We prove that, under the above conditions, NUPBR holds after 7. As a consequence, all the
deflators are strict local martingales

Case of Continuous Filtration

We start with the particular case of continuous martingales and prove that, for any honest time 7,
NUPBR holds after 7.

Proposition 8.11.5 Assume that T is an honest time, which satisfies Z, < 1 and that all F mar-
tingales are continuous. Then, for any honest time 7, NUPBR holds after 7. A deflator is given by

L ~
st = — 17tZt dmt.

PROOF: The proof is based on Itd’s calculus. Looking for a deflator of the form dL; = L;k.dmy, and
using integration by parts formula, we obtain that, for k = —(1 — Z)~!, the process L(S — S7) is a
G-local martingale. |

Case of a Poisson Filtration

We assume that S is an F martingale of the form dS; = S;_1;dM;, with v is a predictable process,
satisfying ¢ > —1.

The decomposition formula reads, after T as
¢ 1 ¢ 1
=(1 . —d =(1 . ——vhsSs_d
St ( J7,00] S)t + /t\/T 1—Z._ <S, m>s ( J7,00] S)t + )\/tVT 1— 7. Vs Ss_ds

Proposition 8.11.6 Let F be a Poisson filtration and T be an honest time satisfying Z, < 1. Then,
NUPBR holds after T. Furthermore,

1 . v —~
L=¢ <1_z_m> =¢ (_Z__Vn]f,oo[-M) ’
is a G-martingale deflator for S — S7.

PROOF: We are looking for a RN density of the form dL; = L;_r:dmi; (and ¢1x¢ > —1) so that L
is positive G local martingale and (S — S7)L is a G local martingale. Integration by parts formula
leads to

d(L(S—S™)) = Li_d(S—S")+(S;— —Sr_)dL; +d[L,S — S7],
mar 1
:t _ALtfstfl/twtﬁﬂ{t>T}dt + Ltfstfﬁtl/}tth{t>T}dNt
— Zy_
mar 1 1
:t —)\Lt_St_l/t’lpti]l{t>7—}dt + )\Lt—St—HtQ/)tVt]l{t>‘r}(1 - Vt)dt
1-27,_ 1-27

1 1
= AL Si bl <_1_Zt +ri(l = = 7 w)) dt.
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Therefore, for k; = %I/t, one obtains a deflator. Note that

1-Z¢—

. 1 s
st = Lt_ntdmt = Lt—myt]]‘{t>T}th

is indeed a positive martingale, since ﬁwANt > —1. This last fact can be proved using the

-z
same argument as before.

Lévy Processes

Assume that S = ¢ * (1 — v) where p is the jump measure of a Lévy process and v its compensator.

Then, the G compensator of y is ¥® where

1 1
vE(dt,dr) = (14 Ly — Y™ (6 2) — Lysry———y™ (8, @) | v(dt, dz)
Ty 1-27;_
i.e., S admits a G-semi-martingale decomposition of the form
S=1vx(p—v°) —tx(v-v°

Proposition 8.11.7 Assume that 7 be an honest time satisfying Z, < 1 in a Lévy framework.
Then, the positive G-local martingale

_ v _ G
L.g(l—Z_—w”LI]]T’OO[[*(V v ) s

is a G-martingale density for S — S7, and hence S — S™ satisfies NUPBR.
PROOF: Our goal is to find a positive martingale L of the form
st = Lt,:‘{tﬂ{t>7—}d7’/ﬁt

so that L(S — S7) is a local martingale.

From integration by parts formula

d(L(S—S7)) ™ _L_d(S—87)+d[S, L]

= —L_wl %Z ]1]7700[*V+L—fi¢¢m11]7,oo[*u
mart wm m G
= 7L,l/}1 — ]1]7.700[*1/+L,I<61/}’L/) ﬂ]7.7oo[*l/
= —L,t/}’l/)mﬂ] [\— + H(l — L ) *V
oo 1-Z_ 1-2Z_
Hence the possible choice k = ﬁ O

8.11.3 General Results

We give here some general results. We refer the reader [6, 7, 1] for the proof of the first result (before
7) and to [4] for the second result. We recall that a set A C Q x R is evanescent if the process
1 4 is indistinguishable from 0. A set A is thin if it is contained in the union of graphs of stopping
times.
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The following are equivalent:

(a) The thin set {Z =0& Z_ > 0} is evanescent.
(b) For any (bounded) X satisfying NUPBR(F), X™ satisfies NUPBR(G).
Suppose that 7 is an honest time such that Z, < 1. Then, the following assertions are equivalent.
(a) For any S satisfying NUPBR(F), the process S — S satisfies NUPBR(G).
(b) The thin set {Z =1 & Z_ < 1} is evanescent.



Chapter 9

Initial and Progressive Enlargements
with (£)-times

We consider a probability space (€2, A, P) equipped with a filtration F = (F}),- satisfying the usual
hypotheses of right-continuity and completeness, and where JFy is the trivial o-field. Let T be a finite
random time (i.e., a finite non-negative random variable) with law v, v(du) = P(7 € du).

We denote by P(F) (resp. O(F)) the predictable (resp. optional) o-algebra corresponding to F
on RT x Q. We consider the three nested filtrations

FcGcF®

where G and F(") stand, respectively, for the progressive and the nitial enlargement of F with the
random time 7.

In this chapter, our standing assumption is the following:

Hypothesis 9.0.8 (£)-Hypothesis
The F-(regular) conditional law of T is equivalent to the law of T. Namely,

P(r € du|F;) ~ v(du) for everyt >0, P—a.s.

We assume that v has no atoms and has Ry as support.

We shall call (€)-times random times which satisfy (£)-Hypothesis. This assumption, in the case
when ¢t € [0,7T], corresponds to the equivalence assumption in Follmer and Imkeller [60] and in
Amendinger’s thesis [9, Assumption 0.2] and to hypothesis (HJ) in the papers by Grorud and Pontier
(see, e.g., [66]). Under the (£)-Hypothesis, we address the following problems:

e Characterization of G-martingales and F(")-martingales in terms of F-martingales;
e Canonical decomposition of an F-martingale, as a semimartingale, in G and F(7);

e Predictable Representation Theorem in G and F(7).

This chapter is based on [9] and [31].

9.1 Preliminaries

The exploited idea is the following: assuming that the F-conditional law of 7 is equivalent to the
law of 7, after an ad hoc change of probability measure, the problem reduces to the case where 7
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and F are independent. Under this newly introduced probability measure, working in the initially
enlarged filtration is “easy”. Then, under the original probability measure, for the initially enlarged
filtration, the results are achieved by means of Girsanov’s theorem. Finally, by projection, one
obtains the results of interest in the progressively enlarged filtration (notice that, alternatively, they
can be obtained with another application of Girsanov’s theorem, starting from the newly introduced
probability measure, with respect to the progressively enlarged filtration).

The “change of probability measure” viewpoint for treating problems on enlargement of filtrations
was remarked in the early 80’s and developed by Song in [122] (see also Jacod [76, Section 5]).
This is also the point of view adopted by Gasbarra et al. in [65] while applying the Bayesian
approach to study the impact of the initial enlargement of filtration on the characteristic triplet of
a semimartingale. For what concerns the idea of recovering the results in the progressively enlarged
filtration starting from the ones in the initially enlarged one, we have to cite Yor [133].

Amongst the consequences of the (£)-Hypothesis, one has the existence and regularity of the
conditional density, for which we refer to Amendinger’s reformulation (see [9, Remarks, p. 17]) of
Jacod’s result [76, Lemma 1.8|: there exists a strictly positive O(F) @ B(R™)-measurable function
(t,w,u) = p(w,u), such that for every u € R, p(u) is a cadlag (P, F)-martingale and

P(r > 0|F) = / pr(w)v(du) for every t >0, P — a.s.
0

In particular, po(u) = 1 for every u € RT and fooo pe(u)v(du) = 1, Vt. This family of processes
p is called the (P,F)-conditional density of 7 with respect to v, or the density of 7 if there is no
ambiguity.

Furthermore, under the (£)-Hypothesis, the assumption that v has no atoms implies that the
default time 7 avoids the F-stopping times, i.e., P(7 = &) = 0 for every F-stopping time & (see, e.g.,
El Karoui et al. [49, Corollary 2.2]).

It was shown in [9, Proposition 1.10] that the strict positiveness of p implies the right-continuity
of the filtration F(7).

In the sequel, we will consider the right-continuous version of all the martingales.

Now, we consider the change of probability measure introduced, independently, by Grorud and
Pontier in [66] and by Amendinger in [9] (for an initial enlargement with a random variable L instead
of with a random time 7).

Lemma 9.1.1 Let L be the (P,F(7))-martingale defined as L; =

measure defined on F(7) as

ﬁ, t > 0, and P* the probability

dp* =L, dP ——dP

|77 7D p() |F

Under P*, the random time 7 is independent of F; for any t > 0 and, moreover

IED*']‘—t = Pl]'—f fOT any t >0, ]P)*\a'(‘r) = Plo‘(‘l’)‘
PROOF: In a first step, we prove that L is an F(")-martingale. We shall denote by Li(x) = ﬁw).
Indeed, ]E(Lt|]-"ST)) = L, if (and only if) E(L;h(1)As) = E(Lsh(1)As) for any (bounded) Borel
function h and any Fs-measurable (bounded) random variable Ag. From definition of p, one has

E(Lih(T)As) = I[“E(/]R Li(x)h(x)pe(x)v(dz)As) =IE(/ h(z)v(dz)As)

R
_ / h(z)v(de)E(A,) = E(A,) E(h(r))

The particular case t = s leads to E(Lsh(7)As) = E(h(7)
Note that, since po(z) = 1, one has E(1/p:(7 )|}"(T)) =1

VE(A,), hence]E(L h(T)Ay) = E(Lih(r)Ay).
/po(T) =
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Now, we prove the required independence. From the above,
Eq(h(1)As) = Ep(Lsh(7)As) = Ep(h(T)) Ep(As)

For h = 1 (resp. A; = 1), one obtains Eg(4s) = Ep(As) (resp. Eq(h(7)) = Ep(h(7))) and we are
done. O

Lemma 9.1.2 Let X be a (P,F) martingale. The process X (7) defined by X,(7) = X;/pi(7) is a
(P, F(7))-martingale and satisfies B(X,(T)|F;) = X;.

ProOOF: To establish the martingale property, it suffices to check that for s < ¢ and A € ]'"S(T),
one has Ep(X;(7)14) = Ep(X (7)1 4), which is equivalent to Eg(X:14) = Eg(Xs14). The last
equality follows from the fact that the (F,P) martingale X is also a (F, Q) martingale (indeed P and
Q coincide on F), hence a (IF(T), Q) martingale (by independence of 7 and F under Q. Bayes criteria
shows that m7) is a (P, F("))-martingale. Noting that E(1/p;(7)|F;) = 1 (take A, =1 and h = 1 in
the preceeding proof), the equality

EX(7)|F) = XeE(1/pe(7)|Fe) = my

ends the proof. O
Of course, the reverse holds true: if there exists a probability equivalent to P such that, under Q,
the r.v. 7 is independent to F., then (P, F)-martingales are (P, F("))-semi martingales.

The above properties imply that P*(r € du|F;) = P*(r € du), so that the (P*,F)-density of 7,
denoted by p*(u),u > 0, is a constant equal to one, P* ® v-a.s.

Remark 9.1.3 If one assumes only abssolute continuity Jacod’s hypothesis, the process 1/p;(7) is
well defined, but is no more a martingale. See [8].

Remark 9.1.4 The probability measure P*, being defined on F; for ¢ > 0, is (uniquely) defined
on Foo =V ¢>0Ft- Then, as 7 is independent of F under P*, it immediately follows that 7 is also

independent of F,, under P*. However, one can not claim that: “P* is equivalent to P on }"ég )”, since
we do not know a priori whether ﬁ is a closed (P,F(T))—martingale or not. A similar problem is
studied by Follmer and Imkeller in [60] (it is therein called “paradox”) in the case where the reference
(canonical) filtration is enlarged by means of the information about the endpoint at time ¢t = 1. In
our setting, it corresponds to the case where 7 € Fo, and 7 ¢ F,V t. In the Brownian bridge case,

the conditional law of By w.r.t. F; is the Dirac measure for ¢ = 1.

Notation 9.1.5 In this chapter, as we mentioned, we deal with three different levels of information
and two equivalent probability measures. In order to distinguish objects defined under P and under
P*, we will use, in this chapter, a superscript x when working under P*. For example, E and E*
stand for the expectations under P and P*, respectively. For what concerns the filtrations, when
necessary, we will use the following illustrating notation: x, X, X ™) to denote processes adapted to
F,G and F(7), respectively.

Let = (z4,t > 0) be a (P, F)-martingale. Since P and P* coincide on F, = is a (P*,F)-martingale,
hence, using the fact that 7 is independent of F under P*, a (P*, G)-martingale (and also a (P*, F(7))-
martingale). Because of these facts, the measure P* is called by Amendinger “martingale preserving
probability measure under initial enlargement of filtrations”.

Exercise 9.1.6 Prove that (Y;(7),t > 0) is a (P,F("))-martingale if and only if Y;(z)p:(z) is a
family of F-martingales. <
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Exercise 9.1.7 Let F be a Brownian filtration. Prove that, if X is a square integrable (P, F(7))-
martingale, then, there exists a function h and a process ¥ such that

X, = h(r) + / ,(7)dB,

9.2 Expectation and projection tools

9.2.1 Optional Projection, initial enlargement

Lemma 9.2.1 Let Yt(T) =y (1) be an fIET)-measumble random variable.
(i) If y:(7) is P-integrable and y:(7) = 0 P-a.s. then, for v-a.e. u >0, y:(u) =0 P-a.s.
(i) For s <t one has, P-a.s. (or, equivalently, P*-a.s.):
if yi (1) is P*-integrable and if y¢(u) is P (or P* )-integrable for any u > 0,
E* (y:(r)|F7) = E° (yt(u)lfs)’ L= E(yt(u)lfs)‘ ; (9-2.1)

u= u=T

if yi (1) is P-integrable

E(n(nIF) = - }

S

T)E(yt(U)pt(U)\fs)| : (9.2.2)

u=r

PROOF: (i) We have, by applying Fubini-Tonelli’s Theorem,

0 = E(y(n)]) = E(E(ln(n)l| 7)) = E( / o) ()

Then [ |y (u)|pe(u)v(du) = 0 P-a.s. and, given that p(u) is strictly positive for v almost every w,
we have that, for v-almost every u, y:(-,u) = 0 P-a.s.

(ii) The first equality in (9.2.1) is straightforward for elementary random variables of the form f(7)z,
given the independence between 7 and F;, for any ¢ > 0. It is extended to f,t(T)—measurable r.vs via
the monotone class theorem. The second equality follows from the fact that P and P* coincide on
Fy, for any t > 0.

The result (9.2.2) is an immediate consequence of (9.2.1), since it suffices, by means of (condi-
tional) Bayes’ formula, to pass under the measure P*. More precisely, for s < ¢, we have

E* t\T )P\ T fs(‘r)
(") = T P = )

lu=7"

where in the last equality we have used the previous result (9.2.1) and the fact that p(7) is a (P*, F(7)-

martingale. Note that if y,(7) is P-integrable, then E( [ |y (u)|p(u)v(du)) = E(|y(7)|) < oo, which
implies that E(|y:(u)|pt(u)) < 0. O

9.2.2 Optional Projection, progressive enlargement

The Azéma supermartingale associated with 7 under the probability measure P (resp. P*) is

Zy

P(r > t|lF) = /too p(uw)v(du), (9.2.3)

Z5(t) = Pr>tlF) =P (r>t)=P(r>t) = /OO v(du) = G(t). (9.2.4)
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Note, in particular, that Z is a (P, F) super-martingale, whereas Z*(-) is a (deterministic) continuous
and decreasing function. Furthermore, it is clear that, under the (£)-Hypothesis and the hypothesis
that the support of v is Ry, Z and Z* do not vanish.

Lemma 9.2.2 Let Y;(T) = y(7) be an ]-"t(T)—measumble, P-integrable random wvariable. Then, for
s <t
E(Y,71G:) = E(ur(1)[Ga) = G llacr + (r) s,

with
+oo
io= B[ wtmralR).
y = ! w)pe (U

PRrROOF: From the above Proposition 8.2.1, it is clear that E(y:(7)|Gs) can be written in the form
Usls<er + §s(7)L,;<5. On the set {s < 7}, we have, applying the key Lemma 8.2.3 and using the
(€)-Hypothesis,

E [E(yt(T)ﬂs<T|‘Ft)|fs]
Zs

1 oo 3
= ]]-s<7'7]E </ yt(u)pt(u)y(duﬂfs) = ]]-s<'rys~

Ils<‘rE’(yt(T) |gs) = lger

On the complementary set, we have, by applying Lemma 9.2.1,

1 <sE(ye(7)|Gs) = Lr<sE[E(ye(7)|G7)|Gs] = 1 E(yt(“)pt(u)l}—S) = Lr<s9s(7).

<g———
Tisps (7_)

u=T7

For s > t, we obtain E(Y, T)|gs =5 f v (u w(du)lser +ye (7)<

As an application, projecting the martmgale L (deﬁned earlier as L; = ptb) ,t >0) on G yields

to the corresponding Radon-Nikodym density on G:

dP* g, = {; dPg, ,

with
¢ E(L|G:) = 1 1/00 (du) + 1 L
= = = vV T —_—
t t1Yt t< Z ), u Stpt(T)
G(t) 1
= Ijer—>+ N —— .
<z TS

Proposition 9.2.3 The Azéma super- martingale Z, introduced in Equation (9.2.8), admits the
Doob-Meyer decomposition Zy = gy — fo pu(w)v(du),t > 0, where p is the F-martingale defined
as

pe=1- / (92 () — pu(u)) v(du)

The intensity of T is A\ = ptz(:)'

PROOF: From the definition of Z and using the fact that p(u) is martingale,

zi+ | ) {du) = / " puu)w(du) + / () = B / " pulwu(du)| )
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|
We now recall some useful facts concerning the compensated martingale of H. We know, from
the general theory (see Proposition 2.2.7), that denoting by H the default indicator process H; =
1,<¢t >0, the process M defined as

tAT
Mt = Ht - / AS I/(dS), t Z O, (925)
0

with A\ = ptZ(:), is a (P, G)-martingale and that

tAT
M} = H, — / N (s) v(ds), t>0, (9.2.6)
0

with A*(t) = %, is a (P*,G)-martingale. Furthermore, since A* is deterministic, M* (being H-
adapted) is a (P*, H)-martingale, too.

9.2.3 Predictable projections

We conclude this subsection with the following two propositions, concerning the predictable projec-
tion, respectively on F and on G, of a F(")-predictable process. The first result is due to Jacod [76,
Lemme 1.10].

Proposition 9.2.4 Let Y(7) = y(7) be an F(™) -predictable, positive or bounded, process. Then, the
P-predictable projection of Y7 on F is given by

o0

(P;F)(Y(‘r))t — / yt(u)pt_ (u)y(du) .
0

PROOF: It is obtained by a monotone class argument and by using the definition of density of 7,
writing, for “elementary” processes, Yt(T) =y f(7), with y a bounded F-predictable process and f a
bounded Borel function. For this, we refer to the proof in Jacod |76, Lemme 1.10 |. O

Proposition 9.2.5 Let Y(7) = y(7) be an F(™) -predictable, positive or bounded, process. Then, the
P-predictable projection of Y7 on G is given by
1

(p,G) (y(T)) _—
Zy_

e, / T e () (du) + Loyl

PROOF: By the definition of predictable projection, we know (from Proposition 8.2.1 (ii)) that we
are looking for a (unique) process of the form

(.G) (Y(T))t = gtl].tgfr + Qt(T)]]-T<tv t> 07

where ¢ is F-predictable, positive or bounded, and (¢, w, u) — §;(w,u) is a P(F) ® B(R*)-measurable
positive or bounded function, to be identified.

e On the predictable set {r < t}, being Y7 an F(")-predictable, positive or bounded, process
(recall Proposition 6.1.1 (ii)), we immediately find §(7) = y(7);

e On the complementary set {t < 7}, introducing the G-predictable process
Y .= @8y ()

it is possible to use Jeulin [82, Remark 4.5, page 64] (see also Dellacherie et al. [41, Ch. XX,
page 186]), to write

1 1
Yl =5 “O Y los) o = 5= @0 (P00 100) Lo
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We then have, being 1o ,7, by definition, G-predictable (recall that 7 is a G-stopping time),

1
Y]l]]o,r]] — 7 (p,F) (Y(T)ﬂ]]o,r]]>]1]]0,r]}»

where the last equality follows by the definition of predictable projection, being F C G. Finally,
given the result in Proposition 9.2.4, we have

+oo
) (yOy,,) / e (w)pe— (w)v(du)
t

t

and the proposition is proved.

9.3 Martingales’ characterization
The aim of this section is to characterize (P, (")) and (P, G)-martingales in terms of (P, F)-martingales.

Proposition 9.3.1 Characterization of (P,F("))-martingales in terms of (P, F)-martingales
A process Y = y(1) is a (P,F))-martingale if and only if (y:(u)p:(u),t > 0) is a (P,F)-
martingale, for v-almost every u > 0.

ProOF: The sufficiency is a direct consequence of Proposition 6.1.1 and Lemma 9.2.1 (ii).
Conversely, assume that y(7) is an F(")-martingale. Then, for s < ¢, from Lemma 9.2.1 (ii),

w(r) = E ((nIF) = —SBnp |7,

and the result follows from Lemma 9.2.1 (i). O

Passing to the progressive enlargement setting, we state and prove a martingale characterization
result, established by El Karoui et al. in [49, Theorem 5.7].

Proposition 9.3.2 Characterization of (P,G) martingales in terms of (P,F)-martingales
A G-adapted process Yy = Gllicr + §e(T) <t t > 0, is a (P, G)-martingale if and only if the
following two conditions are satisfied

(i) for v-a.e u, (§:(w)pe(u),t > u) is a (P,F)-martingale;

(i) the process m = (my,t > 0), given by

¢
my = E(Yi|Ft) = 924 +/ Je(uw)pe(u)r(du) , (9.3.1)
0
is a (P,TF)-martingale.

PROOF: For the necessity, in a first step, we show that we can reduce our attention to the case where
Y is wi.: indeed, let Y be a (P, G)-martingale. For any T, let YT = (Y;ar,t > 0) be the associated
stopped martingale, which is u.i. Assuming that the result is established for u.i. martingales will
prove that the processes in (7) and (i7) are martingales up to time 7. Since T  can be chosen as large
as possible, we shall have the result.
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Assume, then, that Y is a uwi. (P,G)-martingale. From Proposition 1.2.3, ¥; = IE(Y;(T)|gt)
for some (P, F(")-martingale Y (7). Proposition 9.3.1, then, implies that Yt(T) = y¢(7), where for
v-almost every u > 0 the process (yt(u)pt (u),t > O) is a (P, F)-martingale. One then has

Lo (7) = Lr<iV; = 1, B, 7|Gy) = B(1L,< Y, |Gy) = Lr<smn(7) ,

which implies, in view of Lemma 9.2.1(i), that for v-almost every u < ¢, the identity y:(u) = §:(u)
holds P-almost surely. So, (i) is proved. Moreover, Y being a (P, G)-martingale, its projection on
the smaller filtration F, namely the process m in (9.3.1), is a (P, F)-martingale.

Conversely, assuming (i) and (i), we verify that E(Y;|G,) = Y5 for s < t. We start by noting
that 1
?]E(}/tlls<r|]:s) + ]ITSSE(}/t]lTSS|gs) . (932)

We then compute the two conditional expectations in (9.3.2):

]E()/t|gs) = ]ls<7'

E(Y;Sﬂs<'r|fs) = E(YH]:S) - EOft:ﬂ-'rSs‘fs)
= E(my|Fs) — E(E(G(7)Nr<sl Fe) | Fs)

= mg— E(/OS Qt(u)pt(u)V(du)‘fS)
= UsZs+ /08 Js(uw)ps(w)v(du) — /OS Js(w)ps(w)v(du) = g Zs ,

where we used Fubini’s theorem and the condition (i) to obtain the next-to-last identity.
Also, an application of Lemma 9.2.2 yields to

E(thﬂrgs|gs) = E(?)t(T)ﬂrgslgs) = ]ITSS E(?jt(u)pt(uﬂ}—s)

1
Ds (7) lu=r
nTgsl%(T)@sv)ps(T) 1 (7)

S

where the next-to-last identity holds in view of the condition (7). O

9.4 Canonical decomposition in the enlarged filtrations

In this section, we work under P and we show that any F-local martingale x is a semi-martingale in
both the initially enlarged filtration F(7) and in the progressively enlarged filtration G, and that any
G-martingale is a F(")-semi-martingale. We also provide the canonical decomposition of any F-local
martingale as a semi-martingale in F(") and in G. Under the assumption that the F-conditional law
of 7 is absolutely continuous w.r.t. the law of 7, these questions were answered in Chapter 6, in the
initial enlargement setting, and in [49] and [77], in the progressive enlargement case. Our aim here
is to retrieve their results in an alternative manner.

We will need the following technical result, concerning the existence of the predictable bracket
(x,p.(u)). From [76, Theorem 2.5 a)], it follows immediately that, under the (£)-Hypothesis, for every
(P,F)-(local)martingale x, there exists a v-negligible set B (depending on z), such that (x,p (u)) is
well-defined for u ¢ B. Hereafter, by (z,p (7))s we mean (x,p (u))s|u=r-

Furthermore, according to [76, Theorem 2.5 b)], under the (£)-Hypothesis, there exists an F-
predictable increasing process A and a P(F) ® B(R™')-measurable function (¢,w,u) — k¢(w,u) such
that, for any u ¢ B and for all ¢ > 0,

(x,p,(u))t:/o ks(u)ps—(u)dAs a.s. (9.4.1)
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€ TWO processes an ependa on r, nowever, to Keep Simple notation, we do not write 5
the t A and k d d h to ki imple notati do not write A®)
nor k(®)).

Moreover,

t
/ |ks(T)|dAs < oo a.s., for any ¢ > 0. (9.4.2)
0

The following two propositions provide, under the (€)-Hypothesis, the canonical decomposition
of any (P, F)- local martingale 2 in the enlarged filtrations F(") and G, respectively. The first result
is due to Jacod [76, Theorem 2.5 ¢)]). Our proof is easier (mainly because we do not prove the
difficult regularity results obtained by Jacod), but less general. The interest is that we show the
power of the change of probability methodology.

Proposition 9.4.1 Canonical Decomposition in F(™)
Any (P, F)-local martingale z is a (P,F(7))-semimartingale with canonical decomposition

o= x (™ b d(x,p.(7))s
=X +/0 pe—(1)

where X7 is a (P, F()-local martingale.

PRrROOF: If z is a (P,F)-martingale, it is a (P*,F(7))-martingale, too (Indeed, since P and P* are
equal on F, z is a (P*,F) martingale, hence, using the fact that 7 is P* independant of F, it is a
(P*,G) martingale). Noting that dP = p,(7)dP* on G, Girsanov’s theorem tells us that the process
X () defined by

(1) _ g, _ [ dop()s
A /0 ps—(7)

is a (P, F("))-martingale. O

Now, any (P, F)-local martingale is a G-adapted process and a (P,F(7)) semi-martingale (from
the above Proposition 9.4.1), so in view of Stricker’s theorem in [127], it is also a G semi-martingale.
The following proposition aims to obtain the G-canonical decomposition of an F-local martingale.
We refer to [77] for an alternative proof.

The following lemma provides a formula for the predictable quadratic covariation process (z, G) =
(x, u) in terms of the density p.

Lemma 9.4.2 Let x be a (P,F)-local martingale and p the F-martingale part in the Doob-Meyer
decomposition of G. If kp_ is dA ® dv-integrable, where A is defined in (9.4.1), then

t 00
@ = [ dA. [ vldub(up.- (o) (9.4.3)
0 s
where k was introduced in Equation (9.4.1).

PRrOOF: First consider the right-hand-side of (9.4.3), that is, by definition, predictable, and apply
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Fubini’s Theorem

= A, [ bt tan)
= /0 t dA, / t kg (1) ps— (w)v(du) + /0 t dA, /t h ks(u)ps—(u)v(du)
_ /O ' (du) /O ke (u)pe (u)dA, + / ~ (du) /0 ku(w)pa (u)dA,
-/ (1) )+ / e, p () (du)
= [Tt vtan) + [ (o @)~ e )0 via).

To verify (9.4.3), it suffices to show that the process zu — £ is an F-local martingale (since & is
a predictable, finite variation process). By definition, for v-almost every u € RT, the process
(me(u) = z4pe(u) — (z,p.(uw))¢, t > 0) is an F-local martingale. Then, given that 1 = [ p;(u)v(du)
for every t > 0, a.s., we have

o — & = 2, / pr(w)w(du) — z, / (pe () — pu(u)) v(du)
- / (2, p.(w))e v(du) + / (@2 p. (W)t — (& p. (u))) w(du)
= ; my(u)v(du) —/0 (me(u) —my(u)) V(du)—l—xt/o pu(w)r(du) _/0 pu(w)x,v(du) .

The first two terms are martingales (this follows easily from the martingale property of m(u)).
As for the last term, using the fact that v has no atoms, we find

(o [ putwntan) = [ putuizaian)
_ ( /O t pu(u)u(du)> dar + zop (0 (dt) — p(t)z v (dE) = ( /0 t pu(u)y(du)> dat

and we have, indeed, proved that xp — £ is an F-local martingale. O

Proposition 9.4.3 Canonical Decomposition in G
Any (cadlag) (P,TF)-local martingale x is a (P,G) semi-martingale with canonical decomposition

where X is a (P, G)-local martingale.

PROOF: The proof follows from Theorem 8.3.1 and Proposition 9.4.1. See [8] or [31] for details. [

Exercise 9.4.4 Give a direct check of Proposition 9.4.3 in a Brownian filtration <

We end this section proving that any (P*, G)-martingale remains a (P*,F (T))—semimartingale, but it
is not necessarily a (P*, F("))-martingale. Indeed, we have the following result.

Lemma 9.4.5 Any (P*,G)-martingale Y* is a (P*,F(7)) semi-martingale which can have a non-null
bounded variation part.
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PROOF: The result follows immediately from Proposition 9.3.2 (under P*), noticing that the (P*,G)
martingale Y* can be written as Y;* = /1<, +3; (7)1 ,<;. Therefore, in the filtration F(7), it is the
sum of two F(™) semi-martingales: the processes 1;., and 1,<; are () semi-martingales, as well
as the processes ¢, §* (7). Indeed, from Proposition 9.3.2, recalling that the (P*,F)-density of 7 is a
constant equal to one, we know that, for every u > 0, (g}f (u),t > u) is an F-martingale and that the

process (§; G(t) + fot g5 (u)v(du),t > 0) is an F-martingale, hence §* is a G-semi-martingale.
]

As in Lemma 9.4.5, we deduce that any (P, G)-martingale is a (P, F("))-semi-martingale. Note
that this result can also be proved using Lemma 9.4.5 and a change of probability argument: a
(P, G)-martingale is a (P*,G)-semi-martingale (from Girsanov’s theorem), thus also a (P*, F(7))-
semi-martingale in view of Lemma 9.4.5. By another use of Girsanov’s theorem, it is thus a (PP, F(7)-
semi-martingale.

9.5 Predictable Representation Theorems

The aim of this section is to obtain Predictable Representation Property (PRP hereafter) in the
enlarged filtrations G and F(7), both under P and P*. We start by assuming that there exists a
(P, F)-local martingale y (possibly multidimensional), such that the PRP holds in (P,F). Notice
that y is not necessarily continuous.

Beforehand we introduce some notation: Mje.(P,F) denotes the set of (P, F)-local martingales,
and M?(P,F) denotes the set of (P, F)-martingales x, such that

E(z7) <oo, Vt>0. (9.5.1)
Also, for a (P,F)-local martingale m, we denote by L£(m,P,F) the set of F-predictable processes

which are integrable with respect to m (in the sense of local martingale), namely (see, e.g., Definition
9.1 and Theorem 9.2. in [67])

. 1/2
L(m,P,F) = {30 e P(F): (/ gogd[m]s> is P — locally integrable} .
0

Hypothesis 9.5.1 PRP for (P,F)
There exists a process y € Mioe(P,F) such that every x € Mo (P,F) can be represented as

t
0
for some p € L(y,P,F).
We start investigating what happens under the measure P*, in the initially enlarged filtration

F(m),

Recall that, assuming the immersion property, Kusuoka [100] has established a PRP for the
progressively enlarged filtration, in the case where F is a Brownian filtration.

Also, under the equivalence assumption in [0,T] and assuming a PRP in the reference filtration
F, Amendinger (see [9, Th. 2.4]) proved a PRP in (P*,F(") and extended the result to (P, F(7)), in
the case where the underlying (local) martingale in the reference filtration is continuous.

Proposition 9.5.2 PRP for (P*,F(7))
Under Assumption 9.5.1, every X(7) € Myoe(P*,F(7)) admits a representation

t
xM = x4 / T dy, (9.5.2)
0
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where ®7 € L(y,P* F(). In the case where X7 € M?(P*,F(7), one has E*(fot (@;)2d[y]s) < 00,
for allt > 0 and the representation is unique.

PROOF: From Theorem 13.4 in [67], it suffices to prove that any bounded martingale admits a
predictable representation in terms of y. Let X(™ € My.(P*,F(")) be bounded by K. From
Proposition 9.3.1, Xt(T) = z4(7) where, for v-almost every u € R*, the process (:ct(u),t > 0) is
a (P*,F)-martingale, hence a (P,F)-martingale. Thus Assumption 9.5.1 implies that (for v-almost
every u € R"),

m@=m@+£%@%,

where (¢¢(u),t > 0) is an F-predictable process.

The process X (") being bounded by K, it follows by an application of Lemma 9.2.1(i) that for
v-almost every u > 0, the process (x(u),t > 0) is bounded by K. Then, using the Ito isometry,

E*(/O e (u)dlyls) = E*(/(J s (u)dy,)?
= E*((zi(u) —z0(u))?) <E*(27(u) < K*.

Also, from [126, Lemma 2|, one can consider a version of the process [; ¢2(u)d[y]s which is measur-
able with respect to u. Using this fact,

E*[(/Ot ORI /OOO ”(du)(E*(/o

The process ®(7) defined by <I>§T) = (1) is F(™)-predictable, according to Proposition 6.1.1, it
satisfies (9.5.2), with XéT) = x0(7), and it belongs to L(y, P*,F(7)).
If X(M ¢ M2(P*,F(7), from Ito’s isometry,

t 1/2 oo
cdsl) " < [ K = k.

2

t t
E* ( / (<I>§T>>2d[y]s) —E ( / <I>£T>dys> =B (X7 - X{7)? < o0
0 0

Also, from this last equation, if X(7) = 0 then ®(7) = 0, from which the uniqueness of the represen-
tation follows. O

Passing to the progressively enlarged filtration G, which consists of two filtrations, G = F Vv H,
intuitively one needs two martingales to establish a PRP. Apart from y, intuition tells us that a
candidate for the second martingale might be the compensated martingale of H, that was introduced,
respectively under PP (it was denoted by M) and under P* (denoted by M*), in Equation (9.2.5) and
in Equation (9.2.6).

Proposition 9.5.3 PRP for (P*,G)
Under Assumption 9.5.1, every X € Mioc(P*,G) admits a representation

t t
X =Xo +/ D dys +/ U dM?
0 0

for some processes ® € L(y,P*,G) and ¥ € L(M*,P*,G). Moreover, if X € M?(P*,G), one has,

for any te0,
t t
E* d2d ) , E*( 50% d ) ,
([ @2aul.) <o [ wems)) <

and the representation is unique.
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PROOF: It is known that any (P*, H) local martingale £ can be represented as & = & + fot Ysd M7
for some process ¢ € L(M*,P*, H) (see, e.g., the proof in [33]). Notice that ¢ has a role only before
7 and, for this reason (recall that H = (#;),- is the natural filtration of the indicator process H),
1) can be chosen deterministic.

Under P*, we then have

e the PRP holds in F with respect to vy,
e the PRP holds in H with respect to M™*,

e the filtration F and H are independent.

From classical literature (see Lemma 9.5.4.1(ii) in [3M], for instance) the filtration G = F VH enjoys
the PRP under P* with respect to the pair (y, M*).

Now suppose that X € M?(P*,G). We find

2

t t
oo > EY(X,— Xo)?=E* (/ (Psdys—k/ \I/de;>
0 0

- ( / t @id[y]s) 1 2B ( / b.dy, / t q,de;) +E ( / t \PiA*(s)v(ds)),

where in the last equality we used the Itd isometry. The cross-product term in the last equality is
zero due to the orthogonality of y and M* (under P*). From this inequality, the desired integrability
conditions hold and the uniqueness of the representation follows (as in the previous proposition). [J

Remark 9.5.4 In order to establish a PRP for the initially enlarged filtration F(") and under P*,
one could have proceeded as in the proof of Proposition 9.5.3, noting that any martingale £ in the
“constant” filtration o(7) satisfies {; = & + 0 and that under P* the two filtrations F and o(7) are
independent.

Proposition 9.5.5 PRP under P
Under Assumption 9.5.1, one has:

(i) Every X7 € Mioe(P,F()) can be represented as
t
X7 = x57 + / ®{Vdy "
0
where y(7) is the martingale part in the F(7) -canonical decomposition of y and ® € L(y(™) P, F(7)).
(i) Every X € Mioc(P,G) can be represented as

t t
X, = X, +/ D,dY, +/ W, dM,,
0 0

where Y is the martingale part in the G-canonical decomposition of y, M is the (P,G)-
compensated martingale associated with H and ® € L(Y,P,G), ¥ € L(M,P,G).

PROOF: The assertion (i) (resp. (ii)) follows from Proposition 9.5.2 (resp. Proposition 9.5.3) and
the stability of PRP under an equivalent change of measure (see for example Theorem 13.12 in [67]).

For part (ii), it is important to note that, if y is a (P, F)-martingale, it is a (P*, G)-martingale,
too. Hence, by a Girsanov type transformation, Y defined as dZY; := dy; — ﬁd(y, Yy, Yo = yo, is
t_

a (P, G)-martingale, where ¢* := 1/( is a (P*,G)-martingale (in fact dP|g, = ¢; dP*|g,). From the
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uniqueness of the canonical decomposition of the (P, G)-semimartingale y (which is indeed special)
and from Proposition 9.4.3, it follows that the (P, G)-martingale Y is in particular given by

. T d<y7G>S ¢ d<yap(7—)>s
A e el el

This result is extended under absolute continuity Jacod’s hypothesis in [63].

9.6 Change of probability

In this section, we show how the various quantities associated with a random time 7 are transformed
under a change of probability. We recall that the intensity is the F adapted process A such that
H; — fot/\T \sds is a martingale and that the Azéma supermartingale factorizes as Gy = Nye .

Theorem 9.6.1 Let Y,F = Yillirsyy + (7)) Lir<4y be a positive G-martingale with Y =1 and let
YE =Gy + fot vt (u)pe(u)v(du) be its F projection.

Let Q be the probability measure defined on Gy by dQ = Y,CdP. Then,

(i) fort > 0 p(0) = pu(0) 452",

(ii) the Q-Azéma’s supermartingale is defined by G2 = Gt%
e ()

Yt—

(iii) the (F,Q)-intensity process is A\;"® = AF
(iv) NQ is the (F,Q)-local martingale

, dt- a.s.;

t
NEQ = NF% exp/ (ABQ — \Fyds
t 0

PROOF: From change of probability

1 1 1 o0
Q(r > 0|F) = WEP(YF’H»H\}}) = YTFEP(%(T)LMVQ = Yt]F/g Ye(u)pe(u)v(du)

The form of the survival process follows immediately by differentiation. The form of the intensity is
obvious. The form of N is obtained follows from the definition

Q _ AQ_—A% _ Yt AP
Gt—Nte t—Gtﬁe t

Girsanov’s tranform with Doléans Dade exponential

We restrict our attention to the case where 7 is constructed on a probability space (2, F,P) with
a given intensity A as in the Cox process model, where F is a Brownian filtration generated by W.
Any strictly positive martingale can be written as

st = Ltf(\I/tth + q)tht)
where ¥ and ¥ are G predictable processes, of the form

Uy = Pllycr + (1) ry
o, Gellicr + (7)<
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where ¢ and ¢ are F-predictable. It follows that

t 1 [t t _
exp </ PsdWy — 5/ 1/)5d$> exp (—/ )\s'ysds> =L, t<T
0 0 0

Lo | a1 [ (0u(r)Pds) = Lo (1420 D) 7 <

Ly

¢
where Yy (u) = exp (fi s (u)dWs — %fi(ws(u))zds) Let dQ = L{dP. Then, setting

t
by = E(L|Fy) = Lye —|—/ Lo(1 4 7)) YTe(u)Aye e du
0

1 [/~ b
Q(r > 0|FR) = A <LteAf Jr/ L,(1 Jr’Yu)Tt(u))\ueA“du)
0

t
It remains to differentiate w.r.t. 0

1

0&,5(9) = ft

Lo(1+70) Lo (0) Nge™ 2

Exercise 9.6.2 Prove that the change of probability measure generated by the two processes

Fy—1 po(0)
Zt = L s Zt 0) =
provides a model where the immersion property holds true, and where the intensity processes does
not change <

Exercise 9.6.3 Check that

T (X, G Ed(X, p())s
0 Gs* tAT Ds— (9) O=1
is an F-martingale.
Check that that . ( o)
d{X,p(0))s
B([ DB (g
o P O) oo

is a G martingale. <

Exercise 9.6.4 Let A\ be a positive F-adapted process and A; = fot Asds and © be a strictly positive
random variable such that there exists a family 7 (u) which satisfies P(© > 0|F;) = [~ v (u)du.
Let 7 = inf{¢t > 0: A; > ©}.Prove that the density of 7 is given by

pe(0) = Aoy (Ng) if t > 6 and p(0) = E[Aovo(Ag)| F2] if t < 6.

Conversely, if we are given a density p, prove that it is possible to construct a threshold © such that
7 has p as density. <

9.7 Applications to Finance

9.7.1 Defaultable Zero-Coupon Bonds

A defaultable zero-coupon with maturity 7" associated with the default time 7 is an asset which pays
one monetary unit at time 7" if (and only if) the default has not occurred before T. We assume that
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P is the pricing measure and that the interest rate is null. By definition, the risk-neutral price under

P of the T-maturity defaultable zero-coupon bond with zero recovery equals, for every ¢ € [0, 7],

P(r>T|F) 1 Ep(Nrpe ™7 | F)
Gt = L{r>t} Gt

where N is the martingale part in the multiplicative decomposition of G (see Proposition ). Using
(9.7.1), we obtain

D, T) :=P(r>T|G) = ljrop (9.7.1)

D, T) = P(r>T|G) Ep(Npe 7 | Fy)

— IL{T>t} m

However, using a change of probability, one can get rid of the martingale part IV, assuming that
there exists p such that

P(r > 0|F) = /900 pi(u)du

Let P* be defined as
dP*|g, = Z; dP|g,
where Z* is the (P, G)-martingale defined as

Zr=1 1 Ae M
¢ {t<r} T Lg>r3Are e

Note that
dP*| 7, = NidP|z, = NidP|g£,

and that P* and PP coincide on G,.
Indeed,

t
N,
Ee(Z{|F:) = G“L/ e =y (u)n(du)
0

pr(w)
t

= N M4 Nt/ )\uefA“n(du) = Nye ™ + N:(1— efAt)
0

Then, for ¢t > 6,

1 _r N
PO <7lFR) = FEe(ZLocr ) = Ee(licr + Luzrsaphre ™ = |7)

t
Ny
= — N,e’AUr/ A —Lpy(u dU)
Ny < ! 0 pt(u)pf( )
= —_— (NteiAt —+ Nt(€7A6 — 67At)) = 671\6

which proves that immersion holds true under P*, and the intensity of 7 is the same under P and
P*. Tt follows that

* 1 e
Ep(XWr<r}|Ge) = E* (XN {1<7}[Gt) = Dr<ry p v (e X|F)

Note that, if the intensity is the same under P and P*, its dynamics under P* will involve a change
of driving process, since P and P* do not coincide on F..
Let us now study the pricing of a recovery. Let Z be an F-predictable bounded process.

Ep(Z: 1 1<r<r}Gr)

1 T
]l{t<.r}atE[P(—/t ZudGu|ft)
1 T
— ]l{tq}—Ep(/ Zu Ny e e du| Fy)
Gt t
= EY(Z-ger<rylGe)

T 7 _
= ]]_{t<T}e_7At]E (/t Zu>\ue Audu‘ft)
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The problem is more difficult for pricing a recovery paid at maturity, i.e. for X € Frp

1
Ep(X1,<7|Gr) = Ep(X|G:) — Ep(X15r|Gr) = Ep(X|G:) — Lirspy N A Ep (X Nre ™ | F)
t

1
Ep(X|Gt) — Liropy Py vy E* (XG_AT |]:t)
Since immersion holds true under P*

1
E (X1 <r|G) = E*(X\gt)—11{7>t}—E*(XNTe—AT|ft)

E*(X|F;) — 11{7>t} B (XNpe 27| F)

If both quantities Ep(X 1, <7|G;) and E* (X1, .7|G;) are the same, this would imply that Ep(X|G;) =
E*(X|F:) which is impossible: this would lead to Ep(X|G;) = Ep(X|F;), i.e. immersion holds under
P. Hence, non-immersion property is important while evaluating recovery paid at maturity ( P* and
P do not coincide on Fi).

9.7.2 Forward intensity

By using the density approach, we adopt an additive point of view to represent the conditional
probability of 7: the conditional survival function G(8) = P(r > 6| F;) is written in the form

0) = [,° pt(u)v(du). In the default framework, the “intensity” point of view is often preferred,
and one uses the multiplicative representation G¢(6) = exp(— fo At(w)v(du)). In the particular case
where v denotes the Lebesgue measure (in that case, the law of 7 is po( ) and we shall ), the family
of Fi-measurable random variables \¢(6) = —9p In Gt(ﬁ) is called the “forward intensity". We shall
discuss and compare these two points of view further on.

We now consider (G¢(6),t > 0) as in the classical HIM models where its dynamics is given in
multiplicative form. By using the forward intensity A\;(6) of 7, the density can then be calculated
as pt(0) = A\ (0)G(0). Tt follows that the forward intensity is non-negative. As noted before, A(6)
plays the same role as the spot forward rate in the interest rate models.

Proposition 9.7.1 Let dG¢(0) = Z.(0)dW; be the martingale representation of (G¢(0),t > 0) and
assume that the processes (Z(0);t > 0) are dzﬁerentmble in the following sense: there exists a

family of processes (z(0),t > 0) such that Z(0 fo zi(u ), Z:(0) = 0. Then, under regularity
conditions,

1) the density processes have the following dynamics dp(0) = —z,(0)dWy where z(0) is subjected
to the constraint [ z(0)v(d) =0 for any t > 0.

2) The survival process G evolves as dGy = —au(t)v(dt) + Z(t)dWy.

8) With more reqularity assumptions, if (Jpp:(0))e=t is simply denoted by Ogpy(t), then the process
pi(t) follows :

PROOF: 1) Observe that Z(0) = 0 since G(0) = 1, hence the existence of z is related with some
smoothness conditions. Then using the stochastic Fubini theorem , one has

t 0 t
GL(0) = Go(6) + /0 Z,(0)dW, = Go(6) + /O V(dv) /O (W)W,

So 1) follows. Using the fact that for any ¢ > 0,

1= /000 pr(u)v(du) = /OOO v(du) (Po(u) — /Ot zs(uw)dW,) =1 — /Ot dWs /000 zs(u)v(du)
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one gets [ z¢(u)v(du) =0
2) By using Proposition ?? and integration by parts,

- | (1) — pu () (ds) = / ' (du) / ()1, = / . [ atntaw).

which implies 2).
3) We follow the same way as for the decomposition of G, by studying the process

t

t t
pt) = [ @) (e(ds) = pi0)+ | @up)wlds) ~ [ (@upo)(s)wds)

0 0 0
where the notation 9pp:(t) is defined in 3). Using the martingale representation of p;(#) and inte-
gration by parts (assuming that smoothness hypothesis allows these operations), the integral in the
RHS is a stochastic integral,

[ (@w0s) - @) >) @)=~ [ viasont [ =@y

= /Ot v(ds) /St Opzy(s)d / aw, / (ds)Opzu(s) = / AW (zu(u) — 24(0))

The stochastic integral fo 2,,(0)dW,, is the stochastic part of the martingale p;(0), and so the property
3) holds true. O
Classically, HIM framework is studied for time smaller than maturity, i.e. ¢ <T. Here we consider
all positive pairs (t, ).

Proposition 9.7.2 We keep the notation and the assumptions in Proposition 9.7.1. For any t,0 >
0, let \I/t(H) = éigg% We assume that there exists a family of processes v such that U.(0) =

fo Y(u)v(du). Then
1) Gi(0) = Go(6) exp (fg U, (0)dW, — L [ |\115(9)|2ds),-
2) the forward intensity A(0) has the following dynamics:

M) =20(0) = [ w0+ [0 0w @)is (9.7.2)

9) Si = exp (= fy Xov(ds) + o Wa()AWs = § Jy [W.(s)Pds)

PROOF: By choice of notation, 1) holds since the process G(#) is the solution of the equation

dGy(6)
G(9)

=, (0)dW,,  Vt,0>0. (9.7.3)

2) is the consequence of 1) and the definition of A(6).
3) This representation is the multiplicative version of the additive decomposition of G in Proposition
9.7.1. We recall that A} = p;(t)G;*. There are no technical difficulties because G is continuous. [J

9.7.3 Multidefault

Lemma 9.7.3 Assume thatP(r; > t;,i=1,...,n|F) = ftl . ft ge(u1, ... up)duy ... du,. Prove
that F is immersed in G if and only if g:(t1,...,tn) = gu(t1, ..., tn) for u >t > max(t;)
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In the multi-dimensional case, that is when 7 = (71,...,74) is a vector of finite random times,
the same machinery can be applied. More precisely, under the assumption

P(T1 edby,...,7q € d9d|]:t) NP(T1 edby,...,7q € d@d)

one defines the probability P* equivalent to P on ft(T) =FVo(n)V---Vo(rg) by

ap 1
dP \.7-'57) a pt(Tl,...,Td)’

where p;(71, ..., 74) is the (multidimensional) analog to p;(7), and the results for the initially enlarged
filtration are obtained in the same way as for the one-dimensional case.

As for the progressively enlarged filtration G = F; Vo (11 At)V---Va(T4At), one has to note that,
in this case, a measurable process is decomposed into 2¢ terms, corresponding to the measurability
of the process on the various sets {r; <t < 75,4 € I, j € I°} for all the subsets I of {1,...,d}.

See many applications in El Karoui et al [50, 48], Jiao and Li [87, 88].

9.7.4 Concluding Remarks

e In this study, honest times are automatically excluded, as we explain now. Under the probabil-
ity P*, the Azéma supermartingale associated with 7 being a continuous decreasing function,
it has a trivial Doob-Meyer decomposition G* = 1 — A* with A} = f(f v(du). So, A%, =1 and,
in particular, 7 can not be an honest time: recall that in our setting, 7 avoids the F-stopping
times and therefore, from a result due to Azéma [16], if 7 is an honest time, the random vari-
able A% should have exponential law with parameter 1, which is not the case (note that the
notion of honest time does not depend on the probability measure).

e Under immersion property and under the (£)-Hypothesis, p;(u) = p,(u),t > u. In particular,
as expected, the canonical decomposition’s formulae presented in Section 9.4 are trivial, i.e.,
the "drift" terms vanish.

e Predictable representation theorems can be obtained in the more general case, where any
(P, F)-martingale z admits a representation as

¢
xt:xo—i—/ /gp(sﬁ)ﬂ(ds,d@%
0o JE

for a compensated martingale associated with a point process.

9.8 Conditional Laws of Random Times

In this section, we are interested in models for the conditional law of a random time 7: more precisely,
our goal is to give examples of processes g(u) so that one can construct a random time 7 satisfying
Gi(0) = P(r > 6|F) = [,° ge(u)du. The process g(u) is called the (un-normalized) density. ( the

density being p(u) such that P(r > 0|F;) = [, pi(u)v(du), where v is the law of 7, i.c., py(u) = %

where go = fooo Go(u)du). We recall the classical construction of default times as first hitting time of
a barrier, independent of the reference filtration, and we extend this construction to the case where
the barrier is no more independent of the reference filtration. It is then natural to characterize the
dependence of this barrier and the filtration by means of its conditional law.
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9.8.1 General thresholds

In the classical model, the barrier © as an A-measurable random variable independent of F, and to
consider

T:=1inf{t : Ty > O}. (9.8.1)

The F-conditional law of T is
P(1>0|F) =GO(Ty), 6 <t

where G® is the survival probability of © given by G®(t) = P(© > t). We recall that in this
particular case, P(1 > 6|F;) = P(7 > 0|Fo) for any 6 < ¢, which means that the H-hypothesis
is satisfied and that the martingale survival processes remain constant after 6 (i.e., G¢(0) = Gy(9)
for t > ). This result is stable by increasing transformation of the barrier, so that we can assume
without loss of generality that the barrier is the standard exponential random variable — log(G® (©))

If the increasing process I' is assumed to be absolutely continuous w.r.t. the Lebesgue measure
with Radon-Nikodym density v and if G® is differentiable, then the random time 7 admits a density
process given by

9(0) = —(G®)(To)ve = go(0), 0 <t (9.8.2)
= E(go(0)F1), 0 > t.

In the widely used Cox process model, the independent barrier © follows the exponential law
and I'; = fot ~sds represents the default compensator process. As a direct consequence of (9.8.2),

g:(0) = ’yge*F", 0<t.

We now relax the assumption that the threshold © is independent of F,. We assume that the
barrier © is a strictly positive random variable whose conditional distribution w.r.t. F admits a
density process, i.e., there exists a family of F; ® B(R)-measurable functions p;(u) such that

G9(0) := P(© > 0|F) = /Oo pe(u)du . (9.8.3)
0

We assume in addition that the process I' is absolutely continuous w.r.t. the Lebesgue measure, i.e.,
I = fot vsds. We still consider 7 defined as in (9.8.1) and we say that a random time constructed
in such a setting is given by a generalized threshold.

Proposition 9.8.1 Let 7 be given by a generalized threshold. Then T admits the density process
g(0) where
91(0) = vope(Tp), 0 < 1t. (9.8.4)

PROOF: By definition and by the fact that I' is strictly increasing and absolutely continuous, we
have for ¢ > 6,

oo

Gi(0) = P(r > 0|F) = P(© > Ty|F) = GO(Ty) = /

pe(u)du = / pe(Tu)vudu,
Ty 0

which implies g;(0) = vgp:(Tg) for t > 0.

Obviously, in the particular case where the threshold © is independent of F,, we recover the
classical results (9.8.2) recalled above.

Conversely, if we are given a density process g, then it is possible to construct a random time 7
by a generalized threshold, that is, to find © such that the associated 7 has g as density, as we show
now. It suffices to define 7 = inf{¢t : ¢ > ©} where © is a random variable with conditional density
pt = g¢. Of course, for any increasing process I', 7 = inf{¢ : 'y > A} where A := I'g is a different
way to obtain a solution!



9.8. CONDITIONAL LAWS OF RANDOM TIMES 159

9.8.2 Dynamic Gaussian Copula

This example, despite its simplicity, will allow us to construct a dynamic copula, in a Gaussian
framework; more precisely, we construct, for any ¢, the (conditional) copula of a family of random
times P(7; > t;,4 = 1,...,n|F;) and we can chose the parameters so that P(r; > t;,i = 1,...,n)
equals a given (static) Gaussian copula. To the best of our knowledge, there are very few explicit
constructions of such a model.

In Fermanian and Vigneron [56], the authors apply a copula methodology, using a factor Y. However,
the processes they use to fit the conditional probabilities P(r; > t;,4 = 1,...,n|F; V o(Y)) are not
martingales. They show that, using some adequate parametrization, they can produce a model so
that P(7; > t;,i = 1,...,n|F;) are martingales. Our model will satisfy both martingale conditions.
In [32], Carmona is interested in the dynamics of prices of assets corresponding to a payoff which
is a Bernoulli random variable (taking values 0 or 1), in other words, he is looking for examples of
dynamics of martingales valued in [0, 1], with a given terminal condition. Surprisingly, the example he
provides corresponds to the one we gave in Section 6.4.4, up to a particular choice of the parameters
to satisfy the terminal constraint.

Let ¢ be the standard Gaussian probability density, and ® the Gaussian cumulative function.
We recall the results obtained in Section 6.4.4.

Let B be a Brownian motion and consider the random variable X := fooo f(s)dBs where f is a
deterministic, square-integrable function. For any real number 6 and any positive ¢, one has

P(X>9|]:tB):P(mt>9—/oof(5)dBS|]:tB)

where m; = fg f(s)dB, is FP-measurable. The random variable ftoo f(s)dBs follows a centered
Gaussian law with variance 02(t) = [, f?(s)ds and is independent of 7. Assuming that o(t) does
not vanish, one has

m¢ — 0 )
o(t)
In other words, the conditional law of X given FP is a Gaussian law with mean m; and variance

o%(t). We summarize the result in the following proposition, and we give the dynamics of the
martingale survival process, obtained with a standard use of Itd’s rule.

P(X > 0|FP) = <1>( (9.8.5)

Proposition 9.8.2 Let B be a Brownian motion, f an L? deterministic function, m; = fot f(s)dBs
and o*(t) = [ f?(s)ds. The family

my — 0
o(t) )

is a family of FB-martingales, valued in [0, 1], which is decreasing w.r.t. . Moreover

fo(e):@(

my — 0 f(t)
dG¥(0) = —2dB;.
e () ‘P( o (1) )a(t '
We obtain the associated density family by differentiating GX (9) w.r.t. 6,

(me — 9)2>

1
50) = o= e (= o

and its dynamics

dgi (0) = —gi (9)027(_t)f(t)d3t~ (9.8.6)
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In order to provide conditional survival probabilities for positive random variables, we consider
7 = (X)) where v is a differentiable, positive and strictly increasing function and let h = 1)~1. The

conditional law of 7 is h)
my —

We obtain ( h(0))?
1 my —
)= —h (@) exp | - ————2
90) = 7" ®) o 202(1) )
and
my — h(6)\ f()
dG,(0) = 90(7) LY,
' a(t) Jo(t)
—h(9) f(t)
dg(0) = —g ()t — g
g:(0) g+(0) L
Introducing an n-dimensional standard Brownian motion B = (B%,i = 1,...,n) and a factor
Y, independent of FB, gives a dynamic copula approach as we present now. For h; an increasing
function, mapping IR into IR, and setting 7; = /1= p? fo fi(s)dBi+p;Y), for p; € (—1,1),

an immediate extension of the Gaussian model leads to

o T 1 i hilti) —pY
P(r; > t;,Vi = 1,...,n|]-'tB Vao(Y)) —g@ (O’i(t) <mt - m))

where m! = fo fi(s)dBi and o (t) = [ fZ(s)ds. It follows that

> - ; hi(ti) —pi
P(r; > t;,¥Vi=1,...,n|FF) :/ II® (U_l(t) (mi - W)) Ty (y)dy.
—00 =1 v R

Note that, in that setting, the random times (;,4 = 1,...,n) are conditionally independent given
FB v (YY), a useful property which is not satisfied in Fermanian and Vigneron model. For ¢ = 0,
choosing f; so that 0;(0) = 1, and Y with a standard Gaussian law, we obtain

P(ri>t,Vi=1,..., / ( (t) M) e(y)dy

VI-p}

which corresponds, by construction, to the standard Gaussian copula (h;(7;) = /1 — p?X; + p;Y
where X,,Y are independent standard Gaussian variables).

Relaxing the independence condition on the components of the process B leads to more sophis-
ticated examples.

9.8.3 Markov processes

Let X be a real-valued Markov process with transition probability pr(t, z,y)dy = P(Xr € dy|X; =
x), and ¥ a family of functions IR x IR — [0, 1], decreasing w.r.t. the second variable, such that

U(z,—o00) =1,¥(z,00) =0.

Then, for any T,

o0

Go(0) = E(U(Xr,0)|FF) = / pr(t, Xovy) Uy, 0)dy

— 00

is a family of martingale survival processes on IR. While modeling (T’; x)-bond prices, Filipovic et
al. [58] have used this approach in an affine process framework. See also Keller-Ressel et al. [93].
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Example 9.8.3 Let X be a Brownian motion, and ¥(z,0) = 6_9’”21920 + 1g<o. We obtain a
martingale survival process on R, defined for # > 0 and ¢t < T as,
1 0X?

Gi(0) = E[exp(~0X7)|F] = NS (- TT 09

The construction given above provides a martingale survival process G(#) on the time interval
[0,T]. Using a (deterministic) change of time, one can easily deduce a martingale survival process
on the whole interval [0, co[: setting

ét(o) = Gh(t) (9)
for a differentiable increasing function A from [0, co] to [0, 7], and assuming that dG¢(0) = G1(0)K¢(0)d B, t <

T, one obtains .
dG(0) = G(0) K (0)\/ B (t)dW;

where W is a Brownian motion.
One can also randomize the terminal date and consider T" as an exponential random variable inde-
pendent of F. Noting that the previous G;(6)’s depend on T, one can write them as G,t(6,T) and

consider -
0) = / G(0,z)e *dz
0

which is a martingale survival process. The same construction can be done with a random time T’
with any given density, independent of F.

9.8.4 Diffusion-based model with initial value

Lemma 9.8.4 Let ¥ be a cumulative distribution function of class C%, and Y the solution of
dY; = a(Yy)dt + v(Y:)dB:, Yo = yo

where a and v are deterministic functions smooth enough to ensure that the solution of the above
SDE is unique. Then, the process (¥(Y:),t > 0) is a martingale, valued in [0, 1], if and only if

aly)¥'(9) + ()0 () = 0. (98.7)

PROOF: The result follows by applying Ito’s formula and noting that ¥(Y;) being a (bounded) local
martingale is a martingale.

We denote by Y;(y) the solution of the above SDE with initial condition Yy = y. Note that, from
the uniqueness of the solution, y — Y;(y) is increasing (i.e., y1 > yo implies Y;(y1) > Yi(y2)). It
follows that

Gi(0) := 1 — W(Y,(6)

is a family of martingale survival processes.
Example 9.8.5 Let us reduce our attention to the case where ¥ is the cumulative distribution

function of a standard Gaussian variable. Using the fact that ®”(y) = —y®’(y), Equation (9.8.7)
reduces to

1
a’(ta y) - Eyyz(tvy) =0

In the particular the case where v(t,y) = v(t), straightforward computation leads to
t
Yi(y) = e? 5 Jo v (s)ds ) +/ e~ Jo VQ(u)du,,(s)st),
0

Setting f(s) = —v(s)exp(—3 [, v*(u)du), one deduces that Y;(y) = 4 where o?(t) = [ f2(s)ds

and m; = fo s)dBs, and we recover the Gaussian example of Subsection 6.4.4.
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