Weak well-posedness and weak discretization error for stable-driven SDEs with Lebesgue drift

Mathis Fitoussi, Université d'Évry Paris-Saclay

Joint work with Benjamin Jourdain, CERMICS, École des Ponts and INRIA Marne-la-Vallée and Stéphane Menozzi, Université d'Évry Paris-Saclay

Overview

Main equation

For a fixed T>0, we are interested in the weak well-posedness and the Euler-Maruyama dicretization for the SDE

$$dX_t = b(t, X_t)dt + dZ_t, X_0 = x, \forall t \in [0, T], (1)$$

where $b \in L^q([0,T],L^p(\mathbb{R}^d))$ and Z_t is a d-dimensional α -stable process, whose spectral measure is absolutely continuous w.r.t. the Lebesgue measure on \mathbb{S}^{d-1} .

We denote by $p_{\alpha}(t,x)$ the density of the noise Z_t .

Assumptions

We work under the integrability condition

$$\gamma := 1 - \alpha - \frac{d}{p} - \frac{\alpha}{q} > 0, \tag{2}$$

which is the extension of the Krylov-Röckner condition for stable-driven SDEs.

State of the art

Well-posedness

- For $b \in L^q L^p$ and SBM driving noise, [KR05] proves strong well-posedness under $\frac{d}{p} + \frac{2}{q} < 1$
- For time-homogeneous $b \in L^p$ with strictly stable noise, [Por94] and [PP95] prove weak well-posedness under d < 1
- With appropriate assumptions the Bessel potentials of b, [XZ20] prove strong well-posedness and give heat kernel estimates

Euler scheme

We are interested in the weak error, which is the difference between the density of the process in (1) and that of the process in (9). Denote

$$\mathcal{E}_{t,x,y}(h) := \frac{|\Gamma(0,x,t,y) - \Gamma^h(0,x,t,y)|}{p_{\alpha}(t,y-x)}.$$
(3)

→ Useful when integrating against singular test functions!

Previous results for weak/strong error rates:

- If $b \in L^{\infty}$ and the noise is an SBM, then $d_{TV}(X^h, X) \leq Ch^{\frac{1}{2}}$ ([BJ22]) and if, moreover, $b \in \dot{W}_m^{\beta}$, then $\|\sup_t |X_t^h X_t|\|_{L^p} \leq Ch^{\frac{\beta+1}{2}}$ ([DGL22])
- If $b \in \mathcal{C}^{\theta} = \mathbb{B}^{\theta}_{\infty,\infty}$, we expect $\mathcal{E}_{t,x,y}(h) \leq Ch^{\frac{\theta+1}{\alpha}}$ (see [Hol22], work in progress)
- If $b \in L^q L^p$ and the noise is an SBM, then:
- Weak error : $\mathcal{E}_{t,x,y}(h) \leq Ch^{\frac{\gamma}{2}}$ with $\gamma = 1 \frac{d}{p} \frac{2}{q}$ ([JM23], same methodology as here)
- Strong error : $\|\sup_t |X_t^h X_t|\|_{L^p} \le Ch^{\frac{1}{2}}|\ln(h)|$ ([LL22], using stochastic sewing)

Threorem 1: Weak well-posedness for the diffusion

Existence

Under (2), there exists a Martingale Problem solution (X_t) to (1). Moreover, for each $t \in (0,T]$, X_t admits a density $y \mapsto \Gamma(0,t,x,y)$ s.t. $\exists C := C(b,T) < \infty : \forall t \in (0,T], \forall (x,y) \in \mathbb{R}^d$,

 $\Gamma(0, x, t, y) \le Cp_{\alpha}(t, y - x).$

It also enjoys the following Duhamel representation:
$$\forall t \in (0, T], \forall (x, y) \in \mathbb{R}^d,$$

$$\Gamma(0, x, t, y) = p_{\alpha}(t, y - x) - \int_0^t \mathbb{E}_{x, 0} \left[b(r, X_r) \cdot \nabla_y p_{\alpha}(t - r, y - X_r) \right] dr. \tag{5}$$

Uniqueness

We also obtain uniqueness of the marginal laws, i.e.

There exists a unique function
$$\Gamma$$
 satisfying (4) and (5)

Heat kernel estimates for the density

Hölder regularity in the forward space variable: $\exists C := C(b,T) < \infty : \forall t \in (0,T], \forall (x,y,y') \in \mathbb{R}^d$,

$$|\Gamma(0,x,t,y) - \Gamma(0,x,t,y')| \le C \frac{|y-y'|^{\gamma} \wedge t^{\frac{\gamma}{\alpha}}}{t^{\frac{\gamma}{\alpha}}} \left(p_{\alpha}(t,y-x) + p_{\alpha}(t,y'-x) \right).$$

Definition of the Euler scheme

We will consider a cutoff for the drift. The possible cutoffs we consider are the following:

- If $p=q=\infty,$ we take $b_h=ar{b}_h=b$
- Otherwise, we set

$$b_{h}(t,y) := \frac{\min\left\{|b(t,y)|, Bh^{-\frac{d}{\alpha p} - \frac{1}{q}}\right\}}{|b(t,y)|} b(t,y) 1_{|b(t,y)| > 0}, \qquad (t,y) \in [0,T] \times \mathbb{R}^{d}$$

$$\min\left\{|b(t,y)|, Bh^{\frac{1}{\alpha} - 1}\right\}$$
(6)

|b(t,y)| for some constant B>0 not depending on any of the parameters.

Notations for the Euler scheme:

- n time steps over [0,T], with step size h=T/n. We denote $\forall k \in \{0,...,n\}, t_k=kh$
- $\forall k \in \{0, ..., n-1\}, U_k \sim \mathcal{U}((kh, (k+1)h))$ independently of Z will be the evaluation point in time of b_h (resp. \bar{b}_h) for measurability concerns
- $\tau_s^h = h \left| \frac{s}{h} \right| \in (s h, s]$, which is the last point of the time grid before s.

We then define the scheme as
$$X_{t_{k+1}}^h = X_{t_k}^h + (Z_{t_{k+1}} - Z_{t_k}) + hb_h(U_k, X_{t_k}^h), \tag{8}$$
 and its time interpolation is defined as
$$\mathrm{d}X_t^h = b_h(U_{|\frac{t}{h}|}, X_{\tau_t^h}^h)\mathrm{d}t + \mathrm{d}Z_t \tag{9}$$

(resp. the same dynamics with \bar{b}_h in place of b_h).

Theorem 2: Weak convergence rate for the stable-driven Euler-Maruyama scheme

Density of the interpolated scheme

The solution to $\mathrm{d}X^h_t = b_h(U_{|\frac{t}{h}|},X^h_{\tau^h})\mathrm{d}t + \mathrm{d}Z_t$

(resp. the same with \bar{b}_h) started from x at time 0 admits at time $t \in (0,T]$ a density with respect to the Lebesgue measure on \mathbb{R}^d denoted by $y \mapsto \Gamma^h(0,x,t,y)$ (resp. $y \mapsto \bar{\Gamma}^h(0,x,t,y)$) and $\forall y \in \mathbb{R}^d$,

$$\Gamma^{h}(0,x,t,y) = p_{\alpha}(t,y-x) - \int_{0}^{t} \mathbb{E}_{x,0} \left[b_{h}(U_{\lfloor \frac{r}{h} \rfloor}, X_{\tau_{r}^{h}}^{h}) \cdot \nabla_{y} p_{\alpha}(t-r,y-X_{r}^{h}) \right] dr$$
(11)

(resp. the same equation holds with Γ^h and b_h replaced by $\bar{\Gamma}^h$ and \bar{b}_h).

Convergence rate

Assume that (2) holds.

Then, there exists a constant $C < \infty$ s.t. for all h = T/n with $n \in \mathbb{N}^*$, and all $t \in (0,T]$, $x,y \in \mathbb{R}^d$

$$\mathcal{E}_{t,x,y}(h) \le Ch^{\frac{\gamma}{\alpha}} \tag{12}$$

Remark about the rate of convergence

It would seem natural to obtain convergence with a rate $h^{\frac{\gamma+1}{\alpha}}$, using an integration by parts

$$\Gamma(0, x, t, y) = p_{\alpha}(t, y - x) - \int_{0}^{t} \int b(z) \cdot \nabla_{y} p_{\alpha}(t - s, y - z) \Gamma(0, x, s, z) dz ds$$

$$= p_{\alpha}(t, y - x) - \int_{0}^{t} \int \nabla_{z} \Gamma(0, x, s, z) \cdot b(z) p_{\alpha}(t - s, y - z) dz ds$$

$$- \int_{0}^{t} \int \Gamma(0, x, s, z) div(b(z)) \cdot p_{\alpha}(t - s, y - z) dz ds$$

 \rightarrow Works with the expansion of (1), but not with that of (9), because good assumptions on $\operatorname{div}(b)$ do not translate into good assumptions on $\operatorname{div}(b_h)$.

- \rightarrow Integrating against a \mathcal{C}^1 test function would work but doesn't allow to use a Grönwall lemma.
- \rightarrow The full parametrix expansion solves the former but requires to compensate *multiple* gradients.

Sketch of the proof

Establish estimates for the density of the scheme

Duhamel representation:

$$\Gamma^{h}(t_{k}, x, t, y) = p_{\alpha}(t - t_{k}, y - x) - \int_{t_{k}}^{t} \mathbb{E}_{x, t_{k}} \left[b_{h}(U_{\lfloor \frac{r}{h} \rfloor}, X_{\tau_{r}^{h}}^{h}) \cdot \nabla_{y} p_{\alpha}(t - r, y - X_{r}^{h}) \right] dr$$

Compute HK estimates: $\forall k \in \{0, ..., n-1\}, t \in (t_k, T], x, y, y' \in \mathbb{R}^d$,

$$\Gamma^h(t_k, x, t, y) \le Cp_{\alpha}(t - t_k, y - x) \tag{13}$$

$$|\Gamma^{h}(t_{k}, x, t, y') - \Gamma^{h}(t_{k}, x, t, y)|$$

$$\leq C \frac{|y - y'|^{\gamma} \wedge (t - t_{k})^{\frac{\gamma}{\alpha}}}{(t - t_{k})^{\frac{\gamma}{\alpha}}} \left(p_{\alpha}(t - t_{k}, y - x) + p_{\alpha}(t - t_{k}, y' - x)\right). \tag{14}$$

For all $0 \le k < \ell < n, \ t \in [t_\ell, t_{\ell+1}], x, y \in \mathbb{R}^d$,

$$|\Gamma^h(t_k, x, t, y) - \Gamma^h(t_k, x, t_\ell, y)| \le C \frac{(t - t_\ell)^{\frac{\gamma}{\alpha}}}{(t_\ell - t_k)^{\frac{\gamma}{\alpha}}} p_\alpha(t - t_k, y - x), \tag{15}$$

and the same estimations hold with $\bar{\Gamma}^h$ replacing Γ^h .

Well-posedness: taking the limit $h \to 0$

We obtain well-posedness through a tightness argument, and we obtain (5) thanks to the Ascoli-Arzelà theorem. Uniqueness of the marginals is obtained using a brute-force analysis of (5).

Convergence rate: comparing the Duhamel expansions

We split the error as follows:

$$\mathcal{E}_{t,x,y}(h) = \int_0^t \int [\Gamma(0,x,s,z) - \Gamma^h(0,x,s,z)] b(s,z) \cdot \nabla_y p_\alpha(t-s,y-z) dz ds$$

$$+ \int_{t_1}^{\tau_t^h - h} \int \Gamma^h(0,x,s,z) (b(s,z) - b_h(s,z)) \cdot \nabla_y p_\alpha(t-s,y-z) dz ds$$

$$+ \int_{t_1}^{\tau_t^h - h} \int [\Gamma^h(0,x,s,z) - \Gamma^h(0,x,\tau_s^h,z)] b_h(s,z) \cdot \nabla_y p_\alpha(t-s,y-z) dz ds$$

$$+ \int_{t_1}^{\tau_t^h - h} \mathbb{E}_{x,0} \left[b_h(U_{\lfloor s/h \rfloor}, X_{\tau_s^h}^h) \cdot \times (\nabla_y p_\alpha(t-U_{\lfloor s/h \rfloor}, y - X_{\tau_s^h}^h) - \nabla_y p_\alpha(t-s,y-X_s^h)) \right] ds$$
+ minor terms

Figure 1. Splitting of the error

References

- [BJ22] Oumaima Bencheikh and Benjamin Jourdain.

 Convergence in total variation of the Euler-Maruyama scheme applied to diffusion processes with measurable drift coefficient and additive noise.

 SIAM Journal on Numerical Analysis, 60(4):1701-1740, 2022.
- [DGL22] Konstantinos Dareiotis, Máté Gerencsér, and Khoa Lê. Quantifying a convergence theorem of Gyöngy and Krylov. arXiv:2101.12185, 2022.
- [Hol22] Teodor Holland.

 A note on the weak rate of convergence for the euler-maruyama scheme with hölder drift.

 arXiv:2206.12830, 2022.
- [JM23] Benjamin Jourdain and Stéphane Menozzi. Convergence Rate of the Euler-Maruyama Scheme Applied to Diffusion Processes with $L^q - L^\rho$ Drift Coefficient and Additive Noise. Annals of Applied Probability, 2023.
- [KR05] Nicolai V. Krylov and Michael Röckner. Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields, 131(2):154–196, 2005.
- Taming singular stochastic differential equations: A numerical method. arXiv:2110.01343, 2022.

 [Por94] Mykola Portenko.
 Some perturbations of drift-type for symmetric stable processes.
- [PP95] S. I. Podolynny and Mykola Portenko.
 On multidimensional stable processes with locally unbounded drift.

 Random Oper. Stochastic Equations, 3(2):113–124, 1995.

Random Oper. Stochastic Equations, 2(3):211–224, 1994.

[LL22] Khoa Lê and Chengcheng Ling.

[XZ20] Longjie Xie and Xicheng Zhang.
Ergodicity of stochastic differential equations with jumps and singular coefficients.
Ann. Inst. Henri Poincaré Probab. Stat., 56(1):175–229, 2020.