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Overview

Main equation

Fora fixed T' > 0, we are interested in the weak well-posedness and the Euler-Maruyama dicretization for the SDE

dX; = b(t, X,)dt + dZ,, X, =z, vt € [0, T], (1)

where b € L4([0,T], LP(R%)) and Z; is a d-dimensional a-stable process, whose spectral measure is absolutely con-
tinuous w.r.t. the Lebesgue measure on S%1,

We denote by p,(t, z) the density of the noise Z;.

Assumptions

We work under the integrability condition

d
7:1—@—5—%>Q (2)

which is the extension of the Krylov-Rockner condition for stable-driven SDEs.

State of the art

Definition of the Euler scheme

Well-posedness

"= Forb € L7 — LP and SBM driving noise, [KRO5] proves strong well-posedness under g +§ <1

* For time-homogeneous b € LP with strictly stable noise, [Por?4] and [PP95] prove weak well-posedness under
d
=<1
p

= With appropriate assumptions the Bessel potentials of b, [XZ20] prove strong well-posedness and give heat
kernel estimates

Euler scheme

We are interested in the weak error, which is the difference between the density of the process in (1) and that of
the process in (?2). Denote

(0, z,t,y) — Fh((), x,t,y)
pa(ta Yy — 117)

Etay(h) = : (3)

— Useful when integrating against singular test functions !

Previous results for weak/strong error rates:

= If b € L and the noise is an SBM, then dry (X", X) < Ch? ([BJ22]) and if, moreover, b € sz, then
Isup, | X! — X|||1» < CR'T — (IDGL22))

"Ifb e’ =B ., weexpect &, (h) < Ch's (see [Hol22], work in progress)

" |fbe LY — LP and the noise is an SBM, then:
= Weak error: &, ,(h) < Chz withy =1 — z% — % ([JM23], same methodology as here)

= Strong error : || sup, | X — X,|||» < Ch2|In(h)| ([LL22], using stochastic sewing)

Threorem 1. Weak well-posedness for the diffusion

Existence

Under (2), there exists a Martingale Problem solution (X;) to (1).
Moreover, for each t € (0,T], X; admits a density y — I'(0, ¢, z,y) s.t. 3C = C(b,T) < o0 :Vt € (0,T],V(x,y) €
R?.
F(O,Qf,t,y) < CpOé(t?y_x) (4)

It also enjoys the following Duhamel representation : vt € (0,T],V(z,y) € RY,

['0,z,t,y) = pa(t,y — x) — /0 E,o[b(r, X,) - Vypa(t —r,y — X,)] dr. (5)

Uniqueness

We also obtain uniqueness of the marginal laws, i.e.

There exists a unique function I satisfying (4) and (5)

Heat kernel estimates for the density
Holder regularity in the forward space variable: 3C = C(b,T) < 0o : Vt € (0,T],V(z,y,y') € R?,
ly—y A ta

ta

10, 2, t,y) — T(0,z,t,y")| < C (pa(t,y — ) + palt,y' — ).

Université d'Evry Paris-Saclay

We will consider a cutoff for the drift. The possible cutoffs we consider are the following:

" [f p=g=o00, wetake b, = b, = b

= Otherwise, we set
d

min{|b(t,y)|,B Tﬂ}b(

bu(t,y) == b0 t ) Lt ) >05 (t,y) €[0,T] x R (6)
] min 4 [b(t, y)|, Bha~!
bh(t7y> = { |b<t y)| }b<t7y)1t2h,b(t,y)>07 (tay> S [O7T] X Rd (7)

for some constant B > 0 not depending on any of the parameters.
Notations for the Euler scheme:

" n time steps over [0, T], with step size h = T'/n. We denote Vk € {0, ...,n},ty = kh

" Vk € {0,...,n— 1}, Up ~U((kh, (k + 1)h)) independently of Z will be the evaluation point in time of by, (resp. by,)
for measurability concerns

= 7l = h|%] € (s — h, s|, which is the last point of the time grid before s.

We then define the scheme as

Xl =X +(Zy,, — Zy,) + hbp(Ur, X1), (8)
and its time interpolation is defined as
dX) = on(U 1), X"h)dt +dZz, (9)
Tt

(resp. the same dynamics with by, in place of by).

Theorem 2: Weak convergence rate for the stable-driven
Euler-Maruyama scheme

Density of the interpolated scheme

The solution to
X" = on(U 1), XMh)dt +dZz, (10)

T4

(resp. the same with b,) started from z at time 0 admits at time ¢ € (0,77 a density with respect to the Lebesgue
measure on R? denoted by y — T(0, 2, ¢, y) (resp. y — I'"*(0, z,t,y)) and Vy € R,

t
"0, z,t,y) = palt,y — x) — / E.o {bh(UL%PXZb) - Vypat — 1y — Xf)} dr (11)
0

resp. the same equation holds wi and by, replaced by ' and by,).
( th tion holds with ' and b laced by I'* and b,)

Convergence rate

Assume that (2) holds.
Then, there exists a constant C' < oo s.t. forall h = T'/n withn € N*, and all t € (0,T), z,y € R?

Eivy(h) < Cha (12)

Remark about the rate of convergence

It would seem natural to obtain convergence with a rate h%ﬂ, using an integration by parts
t
['0,z,t,y) = pa(t,y — x) — / /b(z) - Vypat — s,y — 2)1(0, 2, 5, 2)dzds
0
t
= palt,y —x) — / /VZF(O, r,8,2) b(2)pa(t — s,y — z)dzds
0

_ /0 t / [(0, 2, 5, 2)div(b(2)) - palt — 5,y — 2)dzds

— Works with the expansion of (1), but not with that of (?), because good assumptions on div(b) do not translate
into good assumptions on div(by,).

— Integrating against a C! test function would work but doesn’t allow to use a Gronwall lemma.

— The full parametrix expansion solves the former but requires to compensate multiple gradients.

Poster Session - Mean field interactions with singular kernels and their approximations

Sketch of the proof

Establish estimates for the density of the scheme
Duhamel representation:

t
TPty ., t,y) = palt — ty,y — x) — / E, [bh(UL%J’XZb) - Vypa(t — 1y — Xﬁ)] dr

ty;

Compute HK estimates: Vk € {0,...,n — 1},t € (t;,T],z,y,y € RY,
Fh(tk‘7 €T, t? y) < Opoz(t — tk? Yy — ZE’) (13)

|Fh(tk7 :E>t7 y/> — Fh(tkv €I, t: y)|
YA (E— ty)a

<ol =Y - (palt — te,y — @) + pal(t — tr, ¥ — ). (14)
(t —t3)a
Forall0 <k </l <n, te€ltyti] x,y €RY,
h h (t—to)a
|F (tkaxatvy) — I (tk7x7t€7y)| < C(t ; >1pa<t — kY — Zl?), (15)
¢ — )

and the same estimations hold with I'* replacing T

Well-posedness: taking the limit h — 0

We obtain well-posedness through a tightness argument, and we obtain (5) thanks to the Ascoli-Arzelad theorem.

Uniqueness of the marginals is obtained using a brute-force analysis of (5).

Convergence rate: comparing the Duhamel expansions

We split the error as follows:

t
Ervylh) = / /[F(O, z,5,2) — 0,1, 8,2)]b(s, 2) - Vypal(t — s,y — z)dzds
0
Tth—h
+ / /Fh((), z,s,2)(b(s,2) — bp(s,2)) - Vypa(t — s,y — z)dzds
t
17'th—h
+ / /[Fh(O, z,5,2) — D0, 2,7, 2)|bp(s, 2) - Vpa(t — s,y — 2)dzds
t1
Tth h

+ / K0 [bh(ULs/hjaXZh)'
t1

X (vypoz<t — U[s/hjay - XZh) — Vypoz(t — 5 Y- Xh)) ds

S

-+ minor terms

0O h T —h t
A1 Gronwall lemma
B2 Cutoff error terms
= Forward time regularity of T
Ay

Stable sensitivities

Figure 1. Splitting of the error
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