Sobre las soluciones estacionarias de las ecuaciones de Navier-Stokes amortiguadas

Oscar Jarrín

(bajo la dirección de D.Chamorro y P.G. Lemarié-Rieusset)

Laboratorio de Matemáticas y Modelación de la Universidad de Evry

12 abril del 2018

IV Conmate-P.

Presentación

- 1 Introducción: las ecuaciones de Navier-Stokes
- 2 Problema en tiempo largo: las soluciones estacionarias
- 3 Sobre la existencia de soluciones estacionarias
- 4 Algunas propiedades de las soluciones estacionarias

Presentación

- 1 Introducción: las ecuaciones de Navier-Stokes
- 2 Problema en tiempo largo: las soluciones estacionarias
- Sobre la existencia de soluciones estacionarias
- Algunas propiedades de las soluciones estacionarias

Ecuaciones de Navier-Stokes incompresibles

H. Navier (1785-1836)

G. Stokes (1819-1903)

$$\partial_t \vec{u} + \vec{u} \cdot \vec{
abla} \vec{u} -
u \Delta \vec{u} + \vec{
abla} p = \vec{f}, \qquad ext{sobre }]0, +\infty[imes \mathbb{R}^3, \ div(\vec{u}) = 0, \ \vec{u}(0,\cdot) = \vec{u}_0.$$

- $\vec{u}(t,x) = (u_1(t,x), u_2(t,x), u_3(t,x)) \in \mathbb{R}^3$ es la velocidad del fluido y $p(t,x) \in \mathbb{R}$ es su presión (las incógnitas),
- $\partial_t \vec{u}$ describe la evolución del fluido en el tiempo,

- $\vec{u}(t,x) = (u_1(t,x), u_2(t,x), u_3(t,x)) \in \mathbb{R}^3$ es la velocidad del fluido y $p(t,x) \in \mathbb{R}$ es su presión (las incógnitas),
- $\partial_t \vec{u}$ describe la evolución del fluido en el tiempo,
- $(\vec{u} \cdot \nabla)\vec{u}$ es el término de transporte,
- $\nu\Delta\vec{u}$ es el término de difusión, donde $\nu>0$ es la constante de viscosidad del fluido (dato),

- $\vec{u}(t,x) = (u_1(t,x), u_2(t,x), u_3(t,x)) \in \mathbb{R}^3$ es la velocidad del fluido y $p(t,x) \in \mathbb{R}$ es su presión (las incógnitas),
- $\partial_t \vec{u}$ describe la evolución del fluido en el tiempo,
- $(\vec{u} \cdot \nabla)\vec{u}$ es el término de transporte,
- $\nu\Delta\vec{u}$ es el término de difusión, donde $\nu>0$ es la constante de viscosidad del fluido (dato),
- $\vec{f}(x) = (f_1(x), f_2(x), f_3(x))$ es la fuerza externa estacionaria (dato)
- $\vec{u}_0(x) = (u_{01}(x), u_{02}(x), u_{03}(x),)$ (t.q. $div(\vec{u}_0) = 0$) es la velocidad en el instante t = 0 (dato).

⇒ Un resultado clásico de existencia de soluciones débiles:

Teorema (Leray 1934)

Sea $\vec{u}_0 \in L^2(\mathbb{R}^3)$ es un dato inicial a divergencia nula y sea $\vec{f} \in \dot{H}^{-1}(\mathbb{R}^3)$ una fuerza exterior a divergencia nula. Entonces:

- 1) Existe $\vec{u} \in (L_t^{\infty})_{loc} L_x^2 \cap (L_t^2)_{loc} \dot{H}_x^1$ una solución débil de las ecuaciones N-S.
- 2) Además para todo tiempo t > 0 se tiene

$$\|\vec{u}(t)\|_{L^{2}}^{2} + 2\nu \int_{0}^{t} \|\nabla \otimes \vec{u}(s)\|_{L^{2}}^{2} ds \leq \|\vec{u}_{0}\|_{L^{2}}^{2} + 2 \int_{0}^{t} \int_{\mathbb{R}^{3}} \vec{u}(s,x) \cdot \vec{f}(x) dx.$$
 (1)

Las ecuaciones de Navier-Stokes con amortiguamiento

• En la siguiente sección estudiaremos el comportamiento de la solución $\vec{u}(t,\cdot)$ cuando $t \longrightarrow +\infty$.

Las ecuaciones de Navier-Stokes con amortiguamiento

- En la siguiente sección estudiaremos el comportamiento de la solución $\vec{u}(t,\cdot)$ cuando $t \longrightarrow +\infty$.
- Cuando consideramos las ecuaciones N-S con condiciones periódicas: para L>0 la solución \vec{u} es una función periódica sobre el cubo $[0,L]^3\subset\mathbb{R}^3$; entonces:

desigualdad de energía (1) + desigualdad de Poincaré \Rightarrow

$$\|\vec{u}(t,\cdot)\|_{L^{2}}^{2} \lesssim \|\vec{u}_{0}\|_{L^{2}}^{2} e^{-\frac{\nu}{L^{2}}t} + \frac{L^{2}}{\nu^{2}} \|\vec{f}\|_{\dot{H}^{-1}}^{2} (1 - e^{-\frac{\nu}{L^{2}}t}). \tag{2}$$

Las ecuaciones de Navier-Stokes con amortiguamiento

- En la siguiente sección estudiaremos el comportamiento de la solución $\vec{u}(t,\cdot)$ cuando $t \longrightarrow +\infty$.
- Cuando consideramos las ecuaciones N-S con condiciones periódicas: para L>0 la solución \vec{u} es una función periódica sobre el cubo $[0,L]^3\subset\mathbb{R}^3$; entonces:

desigualdad de energía (1) + desigualdad de Poincaré \Rightarrow

$$\|\vec{u}(t,\cdot)\|_{L^{2}}^{2} \lesssim \|\vec{u}_{0}\|_{L^{2}}^{2} e^{-\frac{\nu}{L^{2}}t} + \frac{L^{2}}{\nu^{2}} \|\vec{f}\|_{\dot{H}^{-1}}^{2} (1 - e^{-\frac{\nu}{L^{2}}t}).$$
 (2)

- En todo \mathbb{R}^3 entonces no disponemos la desigualdad de Poincaré y por lo tanto perdemos el control (2).
- ⇒ Vamos a considerar las ecuaciones N-S con amortiguamiento.

Ecuaciones de Navier-Stokes con amortiguamiento (N-S-a)

$$\begin{cases}
\partial_{t}\vec{u} + \vec{u} \cdot \vec{\nabla}\vec{u} - \nu \Delta \vec{u} + \vec{\nabla}p = \vec{f} - \alpha \vec{u}, & \alpha > 0 \\
div(\vec{u}) = 0, & (3) \\
\vec{u}(0, \cdot) = \vec{u}_{0},
\end{cases}$$

 \Rightarrow El término $-\alpha \vec{u}$ puede verse como compensación de la falta de la desigualdad de Poincaré en \mathbb{R}^3 .

Ecuaciones de Navier-Stokes con amortiguamiento

Teorema

Sea $\vec{u}_0 \in L^2(\mathbb{R}^3)$ es un dato inicial a divergencia nula y sea $\vec{f} \in \dot{H}^{-1}(\mathbb{R}^3)$ una fuerza exterior a divergencia nula. Entonces:

- 1) Existe $\vec{u} \in L_t^{\infty} L_x^2 \cap (L_t^2)_{loc} \dot{H}_x^1$ una solución débil de las ecuaciones N-S-a.
- 2) Se tiene, para todo t > 0,

$$\begin{split} \|\vec{u}(t)\|_{L^{2}}^{2} &+ 2\nu \int_{0}^{t} \|\nabla \otimes \vec{u}(s)\|_{L^{2}}^{2} ds \leq \|\vec{u}_{0}\|_{L^{2}}^{2} \\ &+ 2\int_{0}^{t} \int_{\mathbb{R}^{3}} \vec{u}(s,x) \cdot \vec{f}(x) dx - 2\alpha \int_{0}^{t} \|\vec{u}(s)\|_{L^{2}}^{2} ds. \end{split}$$

3) Se tiene además el control en tiempo: para todo t > 0,

$$\|\vec{u}(t)\|_{L^{2}}^{2} \leq \|\vec{u}_{0}\|_{L^{2}}^{2} e^{-2\alpha t} + \frac{\|\vec{f}\|_{\dot{H}^{-1}}^{2}}{2\alpha \nu} (1 - e^{-2\alpha t}). \tag{4}$$

Oscar Jarrín

Presentación

- 1 Introducción: las ecuaciones de Navier-Stokes
- 2 Problema en tiempo largo: las soluciones estacionarias
- 3 Sobre la existencia de soluciones estacionarias
- 4 Algunas propiedades de las soluciones estacionarias

Problema en tiempo largo

• Nos interesamos en el siguiente problema: como la fuerza \vec{f} es estacionaria $(\vec{f} = \vec{f}(x))$ entonces queremos estudiar el comportamiento de la solución $\vec{u}(t,\cdot)$ cuando $t \longrightarrow +\infty$.

Problema en tiempo largo

- Nos interesamos en el siguiente problema: como la fuerza \vec{f} es estacionaria $(\vec{f} = \vec{f}(x))$ entonces queremos estudiar el comportamiento de la solución $\vec{u}(t,\cdot)$ cuando $t \longrightarrow +\infty$.
- Para poner en evidencia algunas dificultades de este problema consideraremos primero el caso de la ecuaciones (3) en dos dimensiones:

$$\begin{cases}
\partial_{t}\vec{v} + \vec{v} \cdot \vec{\nabla}\vec{v} - \nu \Delta \vec{v} + \vec{\nabla}q = \vec{g} - \alpha \vec{g}, & \alpha > 0 \\
div(\vec{v}) = 0, & (5) \\
\vec{v}(0, \cdot) = \vec{v}_{0},
\end{cases}$$

donde $\vec{g} = \vec{g}(x) \in \mathbb{R}^2$ es una fuerza estacionaria; y donde la solucion \vec{v} verifica el control (4).

Problema en tiempo largo en 2D

- El estudio del comportamiento de la solución $\vec{v}(t,\cdot)$ cuando $t \longrightarrow +\infty$ fue estudiado por A. Ilyin et. al. en 2016 [2].
- Este estudio reposa sobre dos ingredientes: la nocion de solución eterna y la unicidad de la solución v.

Definición (Soluciones eternas)

Una función \vec{v}_e :] $-\infty, \infty[\times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ es una solución eterna de las ecuaciones (5) si $\vec{v}_e \in L^\infty_t L^2_x \cap (L^2_t)_{loc} \dot{H}^1_x$ y si \vec{v}_e verifica estas ecuaciones.

- Veamos ahora cómo las soluciones eternas nos permiten estudiar el comportamiento de $\vec{v}(t,\cdot)$ cuando $t \longrightarrow +\infty$.
- Consideramos una sucesión $(t_n)_{n\in\mathbb{N}}$ t.q. $t_0=0$, $t_n>0$ para todo n>0 y $t_n\longrightarrow +\infty$ cuando $n\longrightarrow +\infty$.
- Para cada $n \in \mathbb{N}$ sea $\vec{v}_n :]-t_n, +\infty[\times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la única solución del problema

$$\begin{cases} \partial_t \vec{v}_n + \vec{v}_n \cdot \vec{\nabla} \vec{v}_n - \nu \Delta \vec{v}_n + \vec{\nabla} q_n = \vec{g} - \alpha \vec{g}, & \alpha > 0 \\ div(\vec{v}_n) = 0, \\ \vec{v}_n(-t_n, \cdot) = \vec{v}_0, \end{cases}$$

• Usando el control en tiempo (4) se muestra que la sucesión de funciones $(\vec{v}_n)_{n\in\mathbb{N}}$ converge (en la topología fuerte de $(L_t^\infty L_x^2)_{loc}$) hacia une solución eterna \vec{v}_e dada en la Definición 1 y además se tiene:

$$\lim_{n \to +\infty} \|\vec{v}_n(0,\cdot) - \vec{v}_e(0,\cdot)\|_{L^2} = 0.$$
 (6)

 La unicidad de la solución de las ecuaciones (5) nos permite escribir

$$\vec{v}_n(0,\cdot) = \vec{v}(t_n,0), \tag{7}$$

 \Rightarrow Por (6) se tiene $\vec{v}(t_n,\cdot) \longrightarrow \vec{v}_e(0,\cdot)$ en $L^2(\mathbb{R}^2)$, cuando $n \longrightarrow +\infty$.

Problema en tiempo largo en 3D

Volvemos ahora a nuestro caso de estudio:

$$\left\{ \begin{array}{ll} \partial_t \vec{u} + \vec{u} \cdot \vec{\nabla} \vec{u} - \nu \Delta \vec{u} + \vec{\nabla} p = \vec{f} - \alpha \vec{u}, & \alpha > 0 \\ div(\vec{u}) = 0, \\ \vec{u}(0, \cdot) = \vec{u}_0, \end{array} \right.$$

donde $\vec{f} = \vec{f}(x) \in \mathbb{R}^3$.

• Siguiendo las mismas ideas que en el caso 2D anterior consideramos la sucesión de funciones $(\vec{u}_n)_{n\in\mathbb{N}}$, donde $\vec{u}_n:]-t_n,+\infty[\times\mathbb{R}^3\longrightarrow\mathbb{R}^3$ es una solución de estas ecuaciones con la condición inicial

$$\vec{u}_n(-t_n,\cdot) = \vec{u}_0. \tag{8}$$

• Se muestra que $(\vec{u}_n)_{n\in\mathbb{N}}$ converge fuertemente en $(L_t^{\infty}L_x^2)_{loc}$ hacia una solución eterna

$$\vec{u}_e:]-\infty, +\infty[\times\mathbb{R}^3 \longrightarrow \mathbb{R}^3,$$

y además

$$\lim_{n\longrightarrow +\infty}\|\vec{u}_n(0,\cdot)-\vec{u}_e(0,\cdot)\|_{L^2}=0.$$

- ⇒ Problema: en el caso 3*D* la unicidad de las soluciones de las ecuaciones N-S (amortiguadas o no) es todavía un problema abierto.
- \Rightarrow Esta vez no podemos escribir $\vec{u}_n(0,\cdot) = \vec{u}(t_n,\cdot)$.

Soluciones estacionarias: motivación

- El estudio del comportamiento en tiempo largo en el caso 2D no puede ser aplicado en toda generalidad al caso 3D.
- Este estudio sugiere considerar las soluciones eternas $\vec{u}_e:]-\infty, +\infty[\times\mathbb{R}^3 \longrightarrow \mathbb{R}^3 \text{ y un caso particular de estas soluciones son las soluciones estacionarias:}$

$$\vec{U} = \vec{U}(x) \in \mathbb{R}^3$$
,

que verifican las ecuaciones

$$-\Delta \vec{U} + \vec{U} \cdot \vec{\nabla} \vec{U} + \vec{\nabla} P = \vec{f} - \alpha \vec{U}, \ \textit{div}(\vec{U}) = 0, \quad \alpha > 0 \ (9)$$

Presentación

- 1 Introducción: las ecuaciones de Navier-Stokes
- 2 Problema en tiempo largo: las soluciones estacionarias
- 3 Sobre la existencia de soluciones estacionarias
- 4 Algunas propiedades de las soluciones estacionarias

Soluciones estacionarias: algunas estimaciones a priori

- Estudiamos ahora l'existencia de las soluciones estacionarias.
- Para encontrar un espacio funcional adecuado en donde construir estas soluciones hacemos las estimaciones a priori:

$$\begin{split} &-\nu\int_{\mathbb{R}^3}\Delta\vec{U}\cdot\vec{U}dx+\int_{\mathbb{R}^3}\left[(\vec{U}\cdot\vec{\nabla})\vec{U}\right]\cdot\vec{U}dx+\int_{\mathbb{R}^3}\vec{\nabla}P\cdot\vec{U}dx\\ &=\int_{\mathbb{R}^3}\vec{f}\cdot\vec{U}dx-\alpha\int_{\mathbb{R}^3}\vec{U}\cdot\vec{U}dx, \end{split}$$

como $div(\vec{U}) = 0$ entonces

$$\int_{\mathbb{R}^3} \left[(\vec{U} \cdot \vec{\nabla}) \vec{U} \right] \cdot \vec{U} dx = 0 \quad \text{et} \quad \int_{\mathbb{R}^3} \vec{\nabla} P \cdot \vec{U} dx = 0,$$

e integrando por partes se tiene (formalmente)

$$\nu \int_{\mathbb{R}^3} |\vec{\nabla} \otimes \vec{U}|^2 dx + \alpha \int_{\mathbb{R}^3} |\vec{U}|^2 dx = \int_{\mathbb{R}^3} \vec{f} \cdot \vec{U} dx,$$

Soluciones estacionarias

- En la expresión anterior observamos que si $\vec{f} \in H^{-1}(\mathbb{R}^3)$ y si $\vec{U} \in H^1(\mathbb{R}^3)$: $\min(\alpha, \nu) \|\vec{U}\|_{H^1}^2 \le \|\vec{U}\|_{H^1} \|\vec{f}\|_{H^{-1}}$.
- \Rightarrow Si $\vec{f} \in H^{-1}(\mathbb{R}^3)$ entonces $H^1(\mathbb{R}^3)$ es un espacio *natural* para construir soluciones y se tiene la estimación *a priori*

$$\|\vec{U}\|_{H^1} \le \frac{1}{\min(\alpha, \nu)} \|\vec{f}\|_{H^{-1}}.$$
 (10)

Teorema

Sea $\vec{f} \in H^{-1}(\mathbb{R}^3)$. Existe $(\vec{U}, P) \in H^1(\mathbb{R}^3) \times H^{\frac{1}{2}}(\mathbb{R}^3)$ solución de las ecuaciones N-S estacionarias (9). Además toda solución verifica la estimación (10).

- \Rightarrow Como $div(\vec{U})$ entonces $\vec{U} \cdot \vec{\nabla} \vec{U} = div(\vec{U} \otimes \vec{U})$,
- \Rightarrow Con la ayuda del proyector de Leray \mathbb{P} $(\mathbb{P}(\vec{\varphi}) = \vec{\varphi} \vec{\nabla} \left(\frac{1}{\Delta}(\textit{div}(\vec{\varphi}))\right))$ podemos escribir las ecuaciones N-S estacionarias (9) como un problema de punto fijo

$$\vec{U} = -\frac{1}{\nu\Delta + \alpha I_d} \left[\mathbb{P}(div(\vec{U} \otimes \vec{U})) \right] + \frac{1}{\nu\Delta + \alpha I_d} [\vec{f}]$$

 \Rightarrow Se quiere usar algún teorema de punto para encontrar \vec{U} .

⇒ Manera clásica: usar el teorema de punto de Picard:

Lema (Punto fijo de Picard)

Sea E un espacio de Banach, $B: E \times E \longrightarrow E$ una forma bi-lineal t.q. $\|B(e,e)\| \le C_B \|e\|_E \|e\|_E$ para todo $e \in E$. Sea $e_0 \in E$. Si $4C_B \|e_0\|_E < 1$ entonces existe $e \in E$ solución de $e = B(e,e) + e_0$.

- ⇒ En el marco de este lema anterior definimos:
 - $E = \{ \vec{U} \in H^1(\mathbb{R}^3) : div(\vec{U}) = 0 \},$
 - $B(\vec{U}, U) = -\frac{1}{\nu\Delta + \alpha I_d} \left[\mathbb{P}(div(\vec{U} \otimes \vec{U})) \right] \text{ y } e_0 = \frac{1}{\nu\Delta + \alpha I_d} [\vec{f}].$

⇒ Manera clásica: usar el teorema de punto de Picard:

Lema (Punto fijo de Picard)

Sea E un espacio de Banach, $B: E \times E \longrightarrow E$ una forma bi-lineal t.q. $\|B(e,e)\| \le C_B\|e\|_E\|e\|_E$ para todo $e \in E$. Sea $e_0 \in E$. Si $4C_B\|e_0\|_E < 1$ entonces existe $e \in E$ solución de $e = B(e,e) + e_0$.

- ⇒ En el marco de este lema anterior definimos:
 - $E = \{ \vec{U} \in H^1(\mathbb{R}^3) : div(\vec{U}) = 0 \},$
 - $B(\vec{U}, U) = -\frac{1}{\nu\Delta + \alpha I_d} \left[\mathbb{P}(div(\vec{U} \otimes \vec{U})) \right] \text{ y } e_0 = \frac{1}{\nu\Delta + \alpha I_d} [\vec{f}].$
- \Rightarrow Se requiere un control sobre el término $\frac{1}{\nu\Delta+\alpha l_d}[\vec{f}]$ y por lo tanto un control adicional sobre \vec{f} .

Oscar Jarrín

 \Rightarrow Se quiere mostrar la existencia de soluciones \vec{U} para cualquier fuerza $\vec{f} \in H^{-1}(\mathbb{R}^3)$.

Lema (Punto fijo de Scheafer)

Sea E un espacio de Banach y $T: E \longrightarrow E$ tal que:

- 1) T es compacto.
- 2) Existe C > 0 t.q. para todo $\lambda \in [0,1]$ si $e \in E$ verifica la ecuación $e = \lambda T(e)$ entonces $\|e\|_E \leq C$.

Entonces existe $e \in E$ una solución del problema e = T(e).

- ⇒ Definimos ahora:
 - $E = \{ \vec{U} \in H^1(\mathbb{R}^3) : div(\vec{U}) = 0 \},$
 - $\mathcal{T}(\vec{U}) = -rac{1}{
 u\Delta + \alpha I_d} \left[\mathbb{P}(\textit{div}(\vec{U} \otimes \vec{U})) \right] + rac{1}{
 u\Delta + \alpha I_d} [\vec{f}].$

- \Rightarrow Problema: la compacidad del operador T sobre E está fuera de alcance.
- \Rightarrow Solución: aproximar el operador T por une familia de operadores $(T_r)_{r>0}$ que verifican todas las hipótesis del Lema 2.
- \Rightarrow Para cada r > 0 existe $\vec{U}_r \in E$ solución del problema $U_r = T_r(\vec{U}_r)$.
- \Rightarrow La familia $(U_r)_{r>0}$ converge débilmente en E hacia $\vec{U} \in E$ una solución de las ecuaciones N-S estacionarias (9).

Presentación

- 1 Introducción: las ecuaciones de Navier-Stokes
- 2 Problema en tiempo largo: las soluciones estacionarias
- Sobre la existencia de soluciones estacionarias
- 4 Algunas propiedades de las soluciones estacionarias

Dos propiedades de la soluciones estacionarias

- Vamos a estudiar dos propiedades de estas soluciones estacionarias \vec{U} : la estabilidad y el decrecimiento al infinito (en variable espacial).
- (1) Estabilidad: si consideramos $\vec{u}_0 \in L^2(\mathbb{R}^3)$ une solución débil del problema de Cauchy

$$\begin{cases}
\partial_{t}\vec{u} + \vec{u} \cdot \vec{\nabla}\vec{u} - \nu \Delta \vec{u} + \vec{\nabla}p = \vec{f} - \alpha \vec{u}, & \alpha > 0 \\
div(\vec{u}) = 0, & \\
\vec{u}(0, \cdot) = \vec{u}_{0},
\end{cases} (11)$$

queremos estudiar la convergencia la convergencia

$$\lim_{t \longrightarrow +\infty} \|\vec{u}(t,\cdot) - \vec{U}\|_{L^2} = 0.$$

 \Rightarrow Estudio del comportamiento en tiempo largo de la solución $\vec{u}(t,\cdot)$.

Dos propiedades de la soluciones estacionarias

- Vamos a estudiar dos propiedades de estas soluciones estacionarias \vec{U} : la estabilidad y el decrecimiento al infinito (en variable espacial).
- (1) Estabilidad: si consideramos $\vec{u}_0 \in L^2(\mathbb{R}^3)$ une solución débil del problema de Cauchy

$$\begin{cases}
\partial_{t}\vec{u} + \vec{u} \cdot \vec{\nabla}\vec{u} - \nu \Delta \vec{u} + \vec{\nabla}p = \vec{f} - \alpha \vec{u}, & \alpha > 0 \\
div(\vec{u}) = 0, & \\
\vec{u}(0, \cdot) = \vec{u}_{0},
\end{cases} (11)$$

queremos estudiar la convergencia la convergencia

$$\lim_{t \to +\infty} \|\vec{u}(t,\cdot) - \vec{U}\|_{L^2} = 0.$$

- \Rightarrow Estudio del comportamiento en tiempo largo de la solución $\vec{u}(t,\cdot)$.
- (2) Decrecimiento al infinito:

$$|\vec{U}(x)| \lesssim \frac{1}{|x|^4}.$$

(1) Estabilidad

- Se quiere mostrar la convergencia $\lim_{t\longrightarrow +\infty}\|\vec{u}(t,\cdot)-\vec{U}\|_{L^2}=0.$
- Para ello necesitaremos un control sobre la solución \vec{U} .
- ullet Por el Teorema 3 sabemos que la solución $ec{U}$ verifica el control

$$\|\vec{U}\|_{H^1} \leq \frac{1}{\min(lpha,
u)} \|\vec{f}\|_{H^{-1}}.$$

 \Rightarrow Vamos a controlar la fuerza \vec{f} .

(2) Decrecimiento al infinito

Teorema (Estabilidad)

Sea $\vec{f} \in H^{-1}(\mathbb{R}^3)$. Sea $\vec{U} \in H^1(\mathbb{R}^3)$ una solución de las ecuaciones N-S estacionarias

$$-\Delta \vec{U} + \vec{U} \cdot \vec{\nabla} \vec{U} + \vec{\nabla} P = \vec{f} - \alpha \vec{U}, \quad \alpha > 0, \ div(\vec{U}) = 0.$$

Sea $\vec{u}_0 \in L^2(\mathbb{R}^3)$ y sea $\vec{u} \in L^\infty_t L^2_x \cap (L^2_t)_{loc} \dot{H}^1_x$ una solcion de las ecuaciones N-S no estacionarias

$$\left\{ \begin{array}{ll} \partial_t \vec{u} + \vec{u} \cdot \vec{\nabla} \vec{u} - \nu \Delta \vec{u} + \vec{\nabla} p = \vec{f} - \alpha \vec{u}, & \quad \alpha > 0, \; \; \text{div}(\vec{u}) = 0, \\ \vec{u}(0,\cdot) = \vec{u}_0, & \end{array} \right.$$

 $Si \|\vec{f}\|_{H^1} \leq \nu \min(\alpha, \nu)$ entonces

$$\lim_{t \to +\infty} \|\vec{u}(t,\cdot) - \vec{U}\|_{L^2} = 0.$$

Oscar Jarrín

- Definimos la función $\vec{v}(t,x) = \vec{u}(t,x) \vec{U}(x)$, donde $\vec{v} \in L^{\infty}_t L^2_x \cap (L^2_t)_{loc} \dot{H}^1_x$.
- La función \vec{v} verifica la ecuación

$$\begin{cases} \partial_t \vec{v} + \vec{v} \cdot \vec{\nabla} \vec{v} + \vec{v} \cdot \vec{\nabla} \vec{U} + \vec{U} \cdot \vec{\nabla} \vec{v} - \nu \Delta \vec{v} + \vec{\nabla} q = -\alpha \vec{v}, \\ div(\vec{v}) = 0, \\ \vec{v}(0, \cdot) = \vec{u}_0 - \vec{U}, \end{cases}$$

donde
$$q(t,x) = p(t,x) - P(x)$$
.

Ideas de la prueba

• La función \vec{v} verifica la desigualdad de energía

$$\begin{aligned} \|\vec{v}(t,\cdot)\|_{L^{2}}^{2} &\leq \|\vec{u}_{0} - \vec{U}\|_{L^{2}}^{2} - 2\nu \int_{0}^{t} \|\vec{v}(s,\cdot)\|_{\dot{H}^{1}}^{2} ds \\ &- 2 \int_{0}^{t} \langle (\vec{v} \cdot \vec{\nabla}) \vec{U}, \vec{v} \rangle_{\dot{H}^{-1} \times \dot{H}^{1}} ds \\ &- 2\alpha \int_{0}^{t} \|\vec{v}(s,\cdot)\|_{L^{2}}^{2} ds. \end{aligned}$$

Se tiene la estimación:

$$-2\int_0^t \langle (\vec{v}\cdot\vec{\nabla})\vec{U},\vec{v}\rangle_{\dot{H}^{-1}\times\dot{H}^1}ds \leq 2\|\vec{U}\|_{L^3}\int_0^t \|\vec{v}(s,\cdot)\|_{\dot{H}^1}^2ds,$$

Oscar Jarrín

Ideas de la prueba

Finalmente podemos escribir

$$\|\vec{v}(t,\cdot)\|_{L^{2}}^{2} \leq \|\vec{u}_{0} - \vec{U}\|_{L^{2}}^{2} - 2(\nu - \|\vec{U}\|_{L^{3}}) \int_{0}^{t} \|\vec{v}(s,\cdot)\|_{\dot{H}^{1}}^{2} ds$$
$$-2\alpha \int_{0}^{t} \|\vec{v}(s,\cdot)\|_{L^{2}}^{2} ds.$$

• Se quiere que la cantidad $2(\nu - \|\vec{U}\|_{L^3})$ sea positiva para escribir

$$\|\vec{v}(t,\cdot)\|_{L^2}^2 \leq \|\vec{u}_0 - \vec{U}\|_{L^2}^2 - 2\alpha \int_0^t \|\vec{v}(s,\cdot)\|_{L^2}^2 ds,$$

Por Grönwall se tiene

$$\|\vec{v}(t,\cdot)\|_{L^2}^2 \le \|\vec{u}_0 - \vec{U}\|_{L^2}^2 e^{-2\alpha t}.$$

Fin de la prueba

- Para que la cantidad $2(\nu \|\vec{U}\|_{L^3})$ sea positiva necesitamos que $\|\vec{U}\|_{L^3} \leq \nu$.
- Entonces escribimos

$$\|\vec{U}\|_{L^{3}} \leq \|\vec{U}\|_{H^{1}} \leq \frac{1}{\min(\alpha, \nu)} \|\vec{f}\|_{H^{-1}} \leq \nu,$$

⇒ necesitamos entonces el control sobre la fuerza

$$\|\vec{f}\|_{H^{-1}} \leq \nu \min(\alpha, \nu).$$

Introducción: las ecuaciones de Navier-Stokes Problema en tiempo largo: las soluciones estacionarias Sobre la existencia de soluciones estacionarias Algunas propiedades de las soluciones estacionarias

(2) Decrecimiento al infinito

• Estudiamos ahora el decrecimiento en variable espacial de las soluciones estacionarias \vec{U} .

(2) Decrecimiento al infinito

- Estudiamos ahora el decrecimiento en variable espacial de las soluciones estacionarias \vec{U} .
- Idea: suponemos que la fuerza \vec{f} (dato del problema) es a decrecimiento rápido $(\vec{f} \in \mathcal{S}(\mathbb{R}^3))$ y se trata de estudiar una estimación del tipo

$$|\vec{U}(x)| \lesssim \frac{1}{|x|^{\beta}},$$

para un cierto parámetro $\beta > 0$ y para |x| suficientemente grande.

 \Rightarrow Cuál es el más grande valor de $\beta > 0$ que podemos esperar ?

- En el resultado que enunciamos mas adelante obtenemos un decrecimiento del tipo $|\vec{U}(x)|\lesssim \frac{1}{|x|^4}$.
- Vamos primero a explicar porqué esta estimacion es interesante.

- En el resultado que enunciamos mas adelante obtenemos un decrecimiento del tipo $|\vec{U}(x)| \lesssim \frac{1}{|x|^4}$.
- Vamos primero a explicar porqué esta estimacion es interesante.
- \Rightarrow Consideremos por un momento las ecuaciones N-S estacionarias clásicas (cuando $\alpha=0$)

$$-\Delta \vec{U} + \vec{U} \cdot \vec{\nabla} \vec{U} + \vec{\nabla} P = \vec{f}$$

- En el resultado que enunciamos mas adelante obtenemos un decrecimiento del tipo $|\vec{U}(x)| \lesssim \frac{1}{|x|^4}$.
- Vamos primero a explicar porqué esta estimacion es interesante.
- \Rightarrow Consideremos por un momento las ecuaciones N-S estacionarias clásicas (cuando $\alpha=0$)

$$-\Delta \vec{U} + \vec{U} \cdot \vec{\nabla} \vec{U} + \vec{\nabla} P = \vec{f}$$

⇒ Si la fuerza verifica

$$\sup_{|a|\leq 2}\sup_{x\in\mathbb{R}^3}(1+|x|^4)|\partial^a f(x)|\leq \eta\nu^2,$$

con $\eta>0$ una constante pequeña entonces existe $(\vec{U},P)\in\mathcal{C}^2(\mathbb{R}^3)$ una solución (clásica) de estas ecuaciones.

Introducción: las ecuaciones de Navier-Stokes Problema en tiempo largo: las soluciones estacionarias Sobre la existencia de soluciones estacionarias Algunas propiedades de las soluciones estacionarias

- \Rightarrow El teorema de Dobrokhotov y Shafarevich nos dice que la solución no puede decrecer al infinito más rapido que $\frac{1}{|x|^4}$.
- ⇒ Este resultado se aplica a las soluciones clásicas y con una fuerza es suficientemente pequeña.

- \Rightarrow El teorema de Dobrokhotov y Shafarevich nos dice que la solución no puede decrecer al infinito más rapido que $\frac{1}{|x|^4}$.
- ⇒ Este resultado se aplica a las soluciones clásicas y con una fuerza es suficientemente pequeña.
- \Rightarrow L. Brandolese y D. Iftime muestran la existencia de al menos una solución débil t.q. $|\vec{U}(x)| \lesssim \frac{\log(|x|)}{|x|^3}$ cuando $|x| \longrightarrow +\infty$.

- \Rightarrow El teorema de Dobrokhotov y Shafarevich nos dice que la solución no puede decrecer al infinito más rapido que $\frac{1}{|x|^4}$.
- ⇒ Este resultado se aplica a las soluciones clásicas y con una fuerza es suficientemente pequeña.
- \Rightarrow L. Brandolese y D. Iftime muestran la existencia de al menos una solución débil t.q. $|\vec{U}(x)| \lesssim \frac{\log(|x|)}{|x|^3}$ cuando $|x| \longrightarrow +\infty$.
- \Rightarrow El termino $-\alpha \vec{U}$ (con $\alpha > 0$) conlleva que toda solución débil verifica un decrecimiento del tipo $\frac{1}{|x|^4}$ y sin condiciones de pequeñez sobre la fuerza.

Teorema (Decrecimiento al infinito)

Sea $\vec{f} \in \mathcal{S}(\mathbb{R}^3)$. Toda solución $\vec{U} \in H^1(\mathbb{R}^3)$ de las ecuaciones

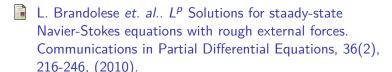
$$-\Delta \vec{U} + \vec{U} \cdot \vec{\nabla} \vec{U} + \vec{\nabla} P = \vec{f} - \alpha \vec{U},$$

dada por el Teorema 3 verifica

$$|\vec{U}(x)| \leq \frac{c}{1+|x|^4},$$

para todo $x \in \mathbb{R}^3$ y donde $c = c(\vec{U}, \vec{f}, \nu, \alpha) > 0$ es una constante.

Bibliography



- A. Iliyin, K. Patni & S. Zelik. Upper bounds for the attractor simension of damped Navier- Stokes equations in R2. Discrete and continous dynamical systems. Vol.36, N. 4: 2085–2102 (2016).
- P.G. Lemarié-Rieusset. The Navier–Stokes problem in the XXIst century. Chapman & Hall/CRC, (2016).

Introducción: las ecuaciones de Navier-Stokes Problema en tiempo largo: las soluciones estacionarias Sobre la existencia de soluciones estacionarias Algunas propiedades de las soluciones estacionarias

Gracias por su atención!