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PhD student at the University of Evry

advisers: Diego CHAMORRO and Pierre-Gilles LEMARIÉ-RIEUSSET
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The Kolmogorov’s turbulence theory (K41 theory)

We will focus in three laws of the K41 theory:

(1) The energy cascade model.
(2) The Kolmogorov’s dissipation law.
(3) The behavior of the energy’s spectrum.

A. Kolmogorov (1903-1987)



(1) The energy cascade model (Richardson 1922, Kolmogorov 1941)



(2) The Kolmogorov’s dissipation law

The Kolmogorov’s dissipation law
When the fluid is in turbulent setting we have that:

εI ≈ εT ≈ εD := ε ≈ U3

`0
.

⇒ U = 〈|~u|2〉 1
2 is the fluid’s averaged velocity where ~u(t, x) ∈ R3

is the fluid’s velocity and 〈·〉 is an spatial and temporal
average which we will precisely define later.



(3) The behavior of the energy’s spectrum: the energy’s spectrum

⇒ For ~u(t, x) the fluid’s velocity, the energy’s spectrum

E (κ) :=

∫
|ξ|=κ

∣∣∣〈~̂u(·, ξ)
〉

t

∣∣∣2 dσ(ξ)

measures the average energy density at a certain length scale `
which corresponds to a frequency amplitude κ = 1

` .

⇒ ~̂u denotes the Fourier transform of the velocity, 〈·〉t is a temporal
average and dσ is measure of the unit sphere.



(3) The behavior of the energy’s spectrum

For κ0 = 1
`0

(for a given energy input scale `0 > 0) and κD =
(
ε
ν3

) 1
4 = 1

`D
(the Kolmogorov’s dissipation frequency)
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Deterministic study of the Kolmogorov’s dissipation law

⇒ We consider a viscous and incompressible fluid in the space R3 where an
stationary external force ~f = ~f (x) acts on the fluid by introducing kinetic
energy independently on time and at a given energy input scale `0 > 0.

The base equations: the incrompressible Navier-Stokes
equations

H. Navier (1785-1836) G. Stokes (1819-1903){
∂t~u + P(~u · ∇~u)− ν∆~u = ~f , div(~u) = 0, on ]0,+∞[×Ω,

~u(0, ·) = ~u0,
(1)

where Ω = [0, L]3 (periodic framework) or Ω = R3 (non-periodic framework).
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Deterministic study of the Kolmogorov’s dissipation law

(1) In the periodic framework we have a convenient framework
where we will introduce the basic ideas to study the
Kolmogorov’s dissipation law.

(2) Thereafter we will study the Kolmogorv’s dissipation law in
the non-periodic framework: the pass of the periodic
framework to the non-periodic one is delicate.



(1) The periodic framework

Let be L > 0 and Ω = [0, L]3.

⇒ If ~u0,~f ∈ L2 are Ω−periodic functions such that∫
Ω
~u0(x)dx =

∫
Ω
~f (x)dx = 0 then there exists

~u ∈ L∞(]0,+∞[, L2(Ω)) ∩ L2
loc(]0,+∞[, Ḣ1(Ω))

a weak solution of the N-S equations (1) (Leray, 1943) such that:
1. ~u is a Ω−periodic function and

∫
Ω
~u(t, x)dx = 0 a.e. t > 0.

2. Moreover, for all T > 0

‖~u(T )‖2
L2 + 2ν

∫ T

0
‖∇ ⊗ ~u(t)‖2

L2 dt ≤ ‖~u0‖2
L2 + 2

∫ T

0

∫
Ω

~u(t, x) · ~f (x)dx dt.

(2)



(1) The periodic framework: four physic quantities

(A) The fluid’s characteristic length is the biggest length scale
where we will study the fluid’s turbulent behavior. In the
periodic framework this length scale in naturally given by the
period L > 0. For simplicity we will define the input energy
scale `0 by `0 = L.



(1) The periodic framework: four physic quantities

(B) The fluid’s averaged velocity:

U =

(
lim sup
T→+∞

1
T

∫ T

0
‖~u(t)‖2

L2
dt
L3

) 1
2

I ~f introduces the kinetic energy independently of time ⇒ we
consider the long-time average lim supT→+∞

1
T
∫ T

0 (·)dt.
I by the Poincaré’s inequality (and since

∫
Ω
~u(t, x)dx = 0) we

have ‖~u(t)‖L2 ≤ L
2π‖∇ ⊗ ~u(t)‖L2 and then the energy

inequality (2) ⇒ U < +∞.

(C) The energy dissipation rate:

ε = ν lim sup
T→+∞

1
T

∫ T

0
‖∇ ⊗ ~u(t)‖2

L2
dt
L3 .

The energy inequality (2) ⇒ ε < +∞.
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(1) The periodic framework: four physic quantities

(D) The Reynolds numbers (Reynolds 1883):

Re =
UL
ν

I Re characterizes the ratio of the transport term: ~u · ∇~u to
dissipation term: ν∆~u.

I The fluid’s turbulent setting is performed when Re >> 1.



(1) The periodic framework: the Kolmogorov’s dissipation law

Theorem (Doering & Foias, 2002)
Let be L > 0 and Ω = [0, L]3. Let be ~u0,~f ∈ L2, Ω−periodic functions and let
be ~u ∈ L∞t L2

x ∩ L2
loc,tḢ1

x a Ω− periodic weak solution of the Navier-Stokes
equations{

∂t~u + P(~u · ∇~u)− ν∆~u = ~f , div(~u) = 0, on ]0,+∞[×Ω,
~u(0, ·) = ~u0.

There exist two constants c1, c2 > 0 independent of the physic quantities above
such that

ε ≤ U3

L

( c1

Re + c2

)
.

Remark
(i) If Re is large enough we get ε . U3

L . A partial estimate of the
Kolmogorov’s dissipation law.

(ii) The other inequality U3

L . ε (when Re >> 1) is an open question.
(iii) In the periodic framework the fluid’s characteristic length is naturally

given by the period L and we have that U < +∞.
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(2) The non-periodic framework

⇒ Now, we consider a non-periodic fluid in the whole space R3.
⇒ In this framework a convenient definition of the fluid’s

characteristic length L is a delicate question!

⇒ An idea: the Constatin’s model proposes to define L by using
the external force ~f as we will see later.
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(2) The non-periodic framework: the fluid’s velocity

Our starting point is to define the fluid’s velocity ~u:
⇒ for ~u0,~f ∈ L2(R3) a divergence-free functions (the initial data and the

external force) there exists

~u ∈ L∞loc (]0,+∞[, L2(R3)) ∩ L2
loc (]0,+∞[, Ḣ1(R3))

a weak solution (Leray, 1934) of{
∂t~u + P(~u · ∇~u)− ν∆~u = ~f , div(~u) = 0, on ]0,+∞[×R3,

~u(0, ·) = ~u0,

which verifies the energy inequality: for all T > 0,

‖~u(T )‖2
L2 + 2ν

∫ T

0
‖∇ ⊗ ~u(t)‖2

L2 dt ≤ ‖~u0‖2
L2 + 2

∫ T

0

∫
R3
~u(t, x) · ~f (x)dx dt.

(3)



(2) The non-periodic framework: the conditions on the external force

⇒ According to the energy cascade model: for a given energy input scale `0
the external force ~f acts on the fluid only at this scale `0 and thus only at
the frequencies of the order κ0 = 1

`0
.

⇒ A theoretical way to model this fact is to suppose that

supp
(
~̂f
)
⊂
{
ξ ∈ R3 :

ρ1

`0
≤ |ξ| ≤ ρ2

`0

}
where 0 < ρ1 < ρ2 are constants.

⇒ We define the averaged external force F > 0 by

F =
‖~f ‖L2

`
3
2
0

.



(2) The non-periodic framework: four physic quantities (Constantin, 2003)

(A) The fluid’s characteristic length :

Lc =
F

‖∇ ⊗ ~f ‖L∞

(by the Bernstein inequalities we get that Lc & `0).

(B) The fluid’s averaged velocity:

U =

(
lim sup
T→+∞

1
T

∫ T

0
‖~u(t)‖2

L2
dt
`0

3

) 1
2

.

(C) The energy dissipation rate:

ε = ν lim sup
T→+∞

1
T

∫ T

0
‖∇ ⊗ ~u(t)‖2

L2
dt
`0

3 .

(D) The Reynolds numbers:
Re =

ULc
ν
.



(2) The non-periodic framework: the Kolmogorov’s dissipation law

Theorem (Constantin, 2003)
Let be `0 > 0 and let be ~f ∈ L2(R3) a divergence-free external force such that
~̂f is localized at the frequencies ρ1

`0
≤ |ξ| ≤ ρ2

`0
. Let be ~u0 ∈ L2(R3) a

divergence-free function and let be ~u ∈ L∞loc,tL2
x ∩ L2

loc,tḢ1
x a weak solution of{

∂t~u + P(~u · ∇~u)− ν∆~u = ~f , div(~u) = 0, on ]0,+∞[×R3,
~u(0, ·) = ~u0.

There exist a constant c1 > 0, which does not depend of the physic quantities,
such that

ε ≤ c1
U3

Lc

(
1 + (Re)−

1
2 +

3
4 (Re)−1

)
.

Remark
As in the periodic framework we get the inequality ε . U3

Lc
when Re >> 1.

However, this theorem presents two lacks which we will talk about more in
details.
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(2) The non-periodic framework: the lacks in the Constantin’s theorem

(a) The definition of the averaged velocity U:

⇒ for ~u ∈ L∞loc,tL2
x ∩ L2

loc,tḢ1
x a weak solution of the N-S equations

we do not know a convenient control of ‖~u(t)‖L2 respect to
the time t: the energy inequality (3) =⇒ for all t ∈]0,+∞[,

‖~u(t)‖2
L2 ≤ ‖~u0‖2

L2 +
t

2ν ‖
~f ‖2

Ḣ−1

⇒ we can not assure that

U =

(
lim sup
T→+∞

1
T

∫ T

0
‖~u(t)‖2

L2
dt
`0

3

) 1
2

< +∞.

(b) The fluid’s characteristic length Lc = F
‖∇⊗~f0‖L∞

: in order to prove the
Constantin’s theorem we need the inequality

‖∇ ⊗ ~f ‖L2 ≤ c`−
3
2

0 ‖∇ ⊗ ~f ‖L∞

which is not generally verified.
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(2) The non-periodic framework: the damped Navier-Stokes equations

⇒ In order to make sense the averaged velocity U we modify the
N-S equations by introducing an additional term: for α > 0
and 0 < κ2 <

ρ1
`0

(~̂f is localized at the frequencies
ρ1
`0
≤ |ξ| ≤ ρ2

`0
) we define

α̂P2~u(t, ξ) = α1|ξ|<κ2 (ξ)~̂u(t, ξ).

The damped N-S equations

{
∂t~u + P(~u · ∇~u)− ν∆~u = ~f − αP2~u, div(~u) = 0, on ]0,+∞[×R3,

~u(0, ·) = ~u0.

⇒ For all α > 0 there exists
~uα ∈ L∞(]0,+∞[, L2(R3)) ∩ L2

loc(]0,+∞[, Ḣ1(R3)) a weak
solution.
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(2) The non-periodic framework: the damped Navier-Stokes equations

⇒ The solution ~uα verifies the energy inequality: for all
t ∈]0,+∞[,

‖~uα(t)‖2
L2 + 2ν

∫ t

0
‖∇ ⊗ ~uα(s)‖2

L2 ds ≤ ‖~u0‖2
L2 + 2

∫ t
0
∫
R3
~f · ~uα dxds

−2α
∫ t

0 ‖P2~uα(s)‖2
L2 ds,

⇒ by the Grönwall inequality, for β > 0, we get ∀t ∈]0,+∞[

‖~uα(t)‖2
L2 ≤ ‖~u0‖2

L2 e−
β
2 t +

4
β
‖~f ‖2

L2 (1− e−
β
2 t)

⇒ in this way

Uα =

(
lim sup
T→+∞

1
T

∫ T

0
‖~uα(t)‖2

L2
dt
`0

3

) 1
2

< +∞.



(2) The non-periodic framework: the fluid’s characteristic length

For a given energy input scale `0 > 0 and since ~f ∈ L2(R3) is such
that ~̂f is localized at the frequencies ρ1

`0
≤ |ξ| ≤ ρ2

`0
⇒ F =

‖~f ‖L2

`
3
2
0

.

⇒ We introduce the parameter γ := ‖~f ‖L∞
F and we define

L =
`0
γ
.

⇒ By the Bernstein inequalities we get that:
I 0 < γ ≤ 1 ⇒ L ≥ `0 and
I c1 L ≤ Lc ≤ c2 L.



(2) The non-periodic framework: the Kolmogorov’s dissipation law

Now, we fix α by α = ν
`20

and we denote by ~u ∈ L∞t L2
x ∩ L2

loc,tḢ1
x

the solution of{
∂t~u + P(~u · ∇~u)− ν∆~u = ~f − ν

`20
P2~u, div(~u) = 0, ]0,+∞[×R3,

~u(0, ·) = ~u0.
(4)

⇒ We study the relation: ε ≈ U3

L when Re >> 1



(2) The non-periodic framework: the Kolmogorov’s dissipation law

Theorem (2015)
Let be `0 > 0 the energy input scale and ~f ∈ L2(R3) the external force such
that ~̂f is localized at the frequencies ρ1

`0
≤ |ξ| ≤ ρ2

`0
. Let be L = `0

γ
the fluid’s

characteristic length where γ = ‖~f ‖L∞
F . Finally, let be ~u ∈ L∞t L2

x ∩ L2
loc,tḢ1

x a
weak solution of the damped N-S equations (4). We define

I U =
(

lim supT→+∞
1
T
∫ T

0 ‖~u(t)‖2
L2

dt
`3

0

) 1
2 ,

I ε = ν lim supT→+∞
1
T
∫ T

0 ‖∇ ⊗ ~u(t)‖2
L2

dt
`3

0
and

I Re = U L
ν .

If Re ≥ 2G0
γ2 then there exist two constants C1(G0),C2(G0) > 0 such that

C1(G0)ε ≤ U3

L ≤ C2(G0)ε,

where G0 =
‖~f ‖L∞`

3
0

ν2 is a fix and dimensionless quantity.



(2) The non-periodic framework: a non turbulent model

Remark
In the damped N-S equations

∂t~u + P(~u · ∇~u)− ν∆~u = ~f − αP2~u

the damping term −αP2 ~u allows us:
(i) to obtain a control on ‖~u(t)‖2

L2 when t −→ +∞ such that U < +∞,

(ii) by setting α = ν
`2

0
and L = `0

γ
we have that ε ≈ U3

L , if Re is large enough.

⇒ However, by the term − α
`2

0
P2 ~u we can prove an additional

control on the Taylor scale `T :=
(
νU2

ε

) 1
2 respect to `0:

`T ≈ C3(G0)`0

⇒ the model given by the damped N-S equations with α = ν
`2

0

and L = `0
γ is actually a non turbulent model.
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(2) The non-periodic framework: a non turbulent model

⇒ Even in the asymptotic setting of the large Reynolds numbers Re we may
not conclude that the deterministic model given by the damped N-S
equations with with α = ν

`2
0

and L = `0
γ

is a turbulent one.

⇒ This deterministic model may be seen as an artificial model of the fluid’s
mechanics when the Reynolds numbers large enough are not sufficient to
characterize the turbulent setting.
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Deterministic study of the energy’s spectrum

⇒ We recall that we consider a viscous and incompressible fluid in the whole
space R3 where an stationary external force ~f = ~f (x) acts on the fluid by
introducing kinetic energy independently on time.

⇒ Since ~f does not depend on time the idea is to consider now the
stationary N-S equations:

P(~u · ∇~u)− ν∆~u = ~f , div(~u) = 0, on R3.

⇒ We have that ~u = ~u(x), the velocity depends only on the spatial variable.

⇒ We want to study the exponential decay of ~̂u according the K41 theory.
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Deterministic study of the energy’s spectrum: motivation

⇒ The energy’s spectrum E(κ) is given by E(κ) =

∫
|ξ|=κ

∣∣∣~̂u(ξ)
∣∣∣2 dσ(ξ).

According to the K41 theory we have that:

⇒ We will focus in the study of the exponential decay:

|~̂u(ξ)| ≈ e−|ξ| =⇒ E(κ) ≈ e−κ

for the highs frequencies |ξ| >> 1.
⇒ The expected behavior E(κ) ≈ κ2 (0 < κ < κ0) and E(κ) ≈ ε

2
3 κ−

5
3

(κ0 < κ < κD) is completely unknown.
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Deterministic study of the energy’s spectrum: the exponential decay

⇒ The idea: we suppose that ~̂f has an exponential decay and we want to
obtain a similar behavior for ~̂u where ~u is a solution of
P(~u · ∇~u)− ν∆~u = ~f , div(~u) = 0.

Theorem (2016)
Let be ~f ∈ Ḣ−1(R3) a time independent and divergence-free external force such
that for ε0 > 0 we have that∫

R3
e2ε0|ξ|

∣∣∣~̂f (ξ)
∣∣∣2 dξ
|ξ|2 < +∞.

Then there exist ~u ∈ Ḣ1(R3) solution to the stationary Navier-Stokes equations
in the whole space R3:

P(~u · ∇~u)− ν∆~u = ~f , div(~u) = 0,

such that ~u verifies the exponential frequency decay in norm L2:∫
R3

e2ε1|ξ|
∣∣∣~̂u(ξ)

∣∣∣2 |ξ|2dξ < +∞

where ε1 > 0 is a constant which depends of ε0.
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Deterministic study of the energy’s spectrum: the pointwise exponential decay

For 0 ≤ a < 3 we define the space of pseudo-measures PMa by

PMa =
{

g ∈ S
′
(R3) : ĝ ∈ L1

loc(R3) and |ξ|aĝ ∈ L∞(R3)
}

which is a Banach space provided of the norm
‖g‖PMa = ‖|ξ|aĝ‖L∞ .

For a = 0 we will denote the space PM0 by PM.

Theorem (2016)
Let be ~f ∈ PM an stationary and divergence-free external force. There exists a
constant η > 0 such that if

sup
ξ∈R3

e|ξ|
∣∣∣~̂f (ξ)

∣∣∣ < η

then there exists ~u ∈ PM2 solution to the stationary Navier-Stokes equations

P(~u · ∇~u)− ν∆~u = ~f , div(~u) = 0,

such that ~̂u verifies the following pointwise exponential frequency decay:∣∣∣~̂u(ξ)
∣∣∣ ≤ c e−|ξ|

|ξ|2 .
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Work in progress

We are interested in study two properties of the solutions of the
stationary Navier-Stokes equations:

P(~u · ∇~u)− ν∆~u = ~f , div(~u) = 0.

(1) Under spatial decay conditions on the external force |~f (x)| we
study the asymptotic behavior of |~u(x)| when |x | → +∞ .

(2) We study the long-time asymptotics behavior of the
non-stationary Navier-Stokes equations: for ~f ∈ L2 an
stationary and smooth enough external force we consider{
∂t~v + P(~v · ∇~v)− ν∆~v = ~f , div(~v) = 0, on ]0,+∞[×R3,

~v(0, ·) = ~v0 ∈ L2,



Work in progress

⇒ we want to study the properties of

~V (x) = lim sup
T−→+∞

1
T

∫ T

0
~v(t, x)dt.

⇒ Do we have that ~V (x) = ~u(x)?
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