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Abstract
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selling producing assets whose value is governed by a stochastic process. The firm may

face liquidity costs when it decides to buy or sell assets. We formulate this problem

as a multi-dimensional mixed singular and multi-switching control problem and use a

viscosity solution approach. We numerically compute our optimal strategies and enrich
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1 Introduction

In this paper, we consider the problem of determining an optimal control on the dividend

and investment policy of a firm operating under uncertain environment and risk constraints.

In classical model in corporate finance, it is generally assumed that firm’s assets are either

infinitely liquid or illiquid. It is particularly the case in the study of optimal dividend

and/or investment policy of a firm. In [18], [1], [8], the authors study an optimal dividend

problem and consider a stochastic process which represents the cash reserve of the firm. The

cash reserve may either grow when the firm makes profits or decrease when the firm is loss-

making. The firm goes into bankruptcy when its cash reserve reaches zero. The underlying

financial assumption behind the above model is to consider that the firm’s assets may be

separated into two types of assets, highly liquid assets which may be assimilated as cash

reserve, i.e. cash & equivalents, or infinitely illiquid assets, i.e. producing assets that may

not be sold. As such, when the cash reserve gets near the bankruptcy point, the firm

manager may not be able to inject any cash by selling parts of its non-liquid assets. In [3],

the author considers a slightly modified model in which the firm’s assets may be liquidated

at a positive liquidation value but only once it reaches bankruptcy. The assumptions made

in the above models imply that the firm’s illiquid assets correspond to producing assets

which may be neither increased through investment nor decreased through disinvestment.

Some extensions of the above model are investigated, see for instance [11] where partial

and irreversible investment is allowed or [24] which studies the reversible investment case.

However, in [11] and [24], the core assumption on the two different types of assets, highly

liquid and infinitely illiquid, still remains. In [11], the authors consider a model where the

firm manager may be allowed to make a one-off investment. It is the case of a firm which has

the opportunity to invest in a new technology that increases its profitability. The firm self-

finances the opportunity cost on its cash reserve. In [24], the authors extend the study made

in [11] by making the investment reversible. In other words, once installed, the manager

can decide to return back to the old technology by receiving some cash compensation.

This dividend and investment problem is formulated as a mixed singular/switching control

problem. Some other recent studies on optimal dividend problems, such as in [19], consider

some more randomness in the model. They consider the problem of optimal dividend

distribution for a company in the presence of regime shifts. They assume that the firm

cash reserve evolves as a Brownian motion with positive drift that is modulated by a finite

state Markov chain, and model the discount rate as a deterministic function of the current

state of the chain. Unlike in [24] where the change in profit is due to the manager’s

investment decision, the regime shift is exogenous in [19]. In all the above studies, it is

assumed that a stochastic process X which represents the cash reserve of the firm follows a

drifted Brownian motion. The drift represents the average profit that the firm is generating

per unit of time. Since the drift is considered to be constant or piecewise constant, the

underlying assumption of this model is to consider producing assets as indivisible and may

not be sold. As such, producing assets are indeed assumed to be infinitely illiquid. The

diffusion part is added to the process in order to model the uncertainty under which the

firm is operating and ensures that the cash reserve evolves stochastically.
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Another possible financial interpretation of these corporate models studied above is to

consider the process X as the net liquidation value of the firm’s assets. By doing so, it is

implicitly assumed that the firm’s assets are infinitely divisible and highly liquid so that

the firm manager may sell them at any time and at zero transaction or liquidity cost. In

such a setting, the firm does not have to worry about financing issues since any assets may

be instantaneously liquidated. It is therefore implicitly assumed that the process X may

equally represent the size of the firm. As such, the profit rate generated by the firm should

depend on X. A natural model in such a framework is to consider the process X whose

drift and volatility coefficients depend on X, for instance, a geometric Brownian motion.

In [7], the authors consider the problem of determining an optimal control on the dividend

and investment policy of a firm, but under debt constraints. They allow the company to

make investment by increasing its outstanding indebtedness, which would impact its capital

structure and risk profile, thus resulting in higher interest rate debts. As in the Merton

model, they consider that firm value follows a geometric Brownian process. They assume

that the firm’s assets is highly liquid and may be assimilated to cash equivalents or cash

reserve. They formulated their dividend and investment problem as a mixed singular and

multi-regime switching control problem.

In our paper, we no longer simplify the optimal dividend and investment problem by

assuming that firm’s assets are either infinitely illiquid or liquid. For the same reason as

highlighted in financial market problems, it is necessary to take into account the liquidity

constraints. More precisely, investment (for instance acquiring producing assets) and dis-

investment (selling assets) should be possible but not necessarily at their fair value. The

firm may have to face some liquidity costs when buying or selling assets. While taking into

account liquidity constraints and costs has become the norm in recent financial markets

problems, it is still not the case in the corporate finance, to the best of our knowledge,

in particular in the studies of optimal dividend and investment strategies. In our paper,

we consider the company’s assets may be separated in two categories, cash & equivalents,

and risky assets which are subjected to liquidity costs. The risky assets are assimilated

to producing assets which may be increased when the firm decides to invest or decreased

when the firm decides to disinvest. We assume that the price of the risky assets is governed

by a stochastic process. The firm manager may buy or sell assets but has to bear liquidity

costs. The objective of the firm manager is to find the optimal dividend and investment

strategy maximizing its shareholders’ value, which is defined as the expected present value

of dividends. Mathematically, we formulate this problem as a combined multidimensional

singular and multi-regime switching control problem.

In terms of literature, there are many research papers on singular control problems as

well as on optimal switching control problems. One of the first corporate finance problems

using singular stochastic control theory was the study of the optimal dividend strategy, see

for instance [8] and [18]. In the study of optimal switching control problems, a variety of

problems are investigated, including problems on management of power station [6], [15],

resource extraction [4], firm investment [13], marketing strategy [22], and optimal trading

strategies [10], [27]. Other related works on optimal control switching problems include

[2] and [23], where the authors employ respectively optimal stopping theory and viscosity
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techniques to explicitly solve their optimal two-regime switching problem on infinite horizon

for one-dimensional diffusions. We may equally refer to [25], for an interesting overview of

the area. In the multi-regime switching problems, we may refer to [12], [17], and [26].

However, the studies that are most relevant to our problem are the one investigating

combined singular and switching control problems [14], [24], and [7]. By incorporating

uncertainty into illiquid assets value, we no longer have to deal with a uni-dimensional

control problem but a bi-dimensional singular and multi-regime switching control problem.

In such a setting, it is clear that it will be no longer possible to easily get explicit or

quasi-explicit optimal strategies. Consequently, to determine the four regions comprising

the continuation, dividend and investment/disinvestment regions, numerical resolutions are

required.

The plan of the paper is organized as follows. We define the model and formulate our

stochastic control problem in the second Section. In Section 3, we characterize our value

function as the limit of a sequence of auxiliary functions. The auxiliary functions are defined

recursively and each one may be characterized as a unique viscosity solution to its associ-

ated HJB equation. This will allow us to get an implementable algorithm approximating

our problem. Finally, in Section 4, we numerically compute the value functions and the

associated optimal strategies. We further enrich our studies with numerical illustrations.

2 Problem Formulation

Let (Ω,F,P) be a probability space equipped with a filtration F = (Ft)t≥0 satisfying the

usual conditions. Let W and B be two correlated F-Brownian motions, with correlation

coefficient c.

We consider a firm which has the ability to make investment or disinvestment by buying

or selling producing assets, for instance, factories. We assume that these producing assets

are risky assets whose value process S is solution of the following equation:

dSt = St (µdt+ σdBt) , S0 = s, (2.1)

where µ and σ are positive constants.

We denote by Qt ∈ N the number of units of producing assets owned by the company at

time t.

We consider a control strategy: α = ((τi, qi)i∈N, Z) where τi are F-stopping times, cor-

responding to the investment decision times of the manager, and qi are Fτi-measurable

variables valued in Z and representing the number of producing assets units bought (or

sold if qi ≤ 0) at time τi. When qi is positive, it means that the firm decides to make

investment to increase the assets quantity. Each purchase or sale incurs a fixed cost de-

noted κ > 0. The non-decreasing càdlàg process Z represents the total amount of dividends

distributed up to time t. Starting from an initial number of assets q and given a control α,
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the dynamics of the quantity of assets held by the firm is governed by:
dQt = 0 for τi ≤ t < τi+1,

Qτi = Qτ−i
+ qi,

Q0 = q,

for i ∈ N. (2.2)

Notice that when there is no ambiguity, we use the notation Qt as above instead of Qαt .

This remark may apply to Xt and Yt.

Similarly, starting from an initial cash value x and given a control α, the dynamics of

the cash reserve (or more precisely the firm’s cash and equivalents) process of the firm is

governed by:
dXt = rXtdt+ h(Qt)(bdt+ ηdWt)− dZt, for τi ≤ t < τi+1

Xτi = Xτ−i
− Sτif(qi)qi − κ,

X0 = 0,

for i ∈ N. (2.3)

where b, r and η are positive constants and h a non-negative, non-decreasing and concave

function satisfying h(q) ≤ H with h(1) > 0 and H > 0. The function f represents the

liquidity cost function (or impact function with the impact being temporary) and is assumed

to be non-negative, non-decreasing, such that f(0) = 1.

Remark 2.1. 1.) We assume that the firm profit depends on the number of units of

producing assets it owns. With q units of assets, the firm profit per unit of time dt is

h(q)(bdt+ ηdWt). In the case the firm is not allowed to make any investment or disinvest-

ment, i.e. when q is constant, the resulting model is closely related to the Bachelier model

which is used in classical problems in corporate finance, see for instance [18].

2.) The assumption on the function h is quite natural. We assume that h is non-negative,

non-decreasing as we consider that the more producing assets units the firm operates, the

higher the firm profit. In particular, we assume that h(0) ≥ 0.

We denote by Y y
t = (Xx

t , S
s
t , Q

q
t ) the solution to (2.1)-(2.3) with initial condition (Xx

0 , S
s
0, Q

q
0) =

(x, s, q) := y. At each time t, the firm’s cash value and number of units of producing assets

have to remain non-negative i.e. Xt ≥ 0 and Qt ≥ 0, for all t ≥ 0.

The bankruptcy time is defined as

T := T y,α := inf{t ≥ 0, Xt < 0}.

We define the liquidation value as L(x, s, q) := x + (sf(−q)q − κ)+ and notice that L ≥ 0

on R+ × (0,+∞)× N. We introduce the following notation

S := R+ × (0,+∞)× N.

The optimal firm value is defined on S, by

v(y) = sup
α∈A(y)

Jα(y), (2.4)
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where Jα(y) = E[
∫ T

0 e−ρudZu], with ρ being a positive discount factor and A(y) is the set

of admissible strategies defined by

A(y) = {α = ((τi, qi)i∈N, Z) : Z is a predictable and non-decreasing process,

(τi)i∈N is an increasing sequence of stopping times such that lim
i→+∞

τi = +∞

and qi are Fτi −measurable, and such that (Xx,α
t , Qq,αt ) ∈ R+ × N}.

We now identify the trivial cases where the value function is infinite.

Lemma 2.1. If we have r > ρ or µ > ρ then v(y) = +∞ on S.

Proof: Let y := (x, s, q) ∈ S.

We first assume that ρ < r. At time 0, by choosing to liquidate the firm’s assets, we

may get L(y) > 0 in cash. Then by waiting until a given time t > 0, we may obtain

v(y) ≥ e(r−ρ)tL(y). By letting t going to +∞, we have v(y) = +∞.

We now assume that ρ < µ. First, suppose that q ≥ 1. In this case, by doing nothing up

to time t and then liquidate at time t, for any t > 0, we may obtain

v(y) ≥ E
[
e−ρt

(
Xx
t + qSst f(−q)− κ

)
1t<T

]
≥ −κe−ρt + qf(−q)E

[
e−ρtSst1t<T

]
≥ −κe−ρt + qf(−q)e(µ−ρ)tsQ(t < T ),

where Q is the probability equivalent to P defined by its Radon-Nykodim density E(σB).

Under this probability Q the process BQ defined by BQ
t := Bt − σt is a Brownian motion.

As we have L(Xx
t , S

s
t , Q

q
t ) ≥ Xx

t ≥ x+ h(q)(bt+ ηWt), we know that if we set

Cu := x+ h(q)(bu+ ηWu) for u ≥ 0 and T̂ = inf{u ≥ 0 : Cu ≤ 0},

we have T̂ ≤ T and then Q
(
t < T

)
≥ Q(t < T̂ ). Therefore we deduce from Girsanov

Theorem that

dCu = h(q)ηd
[ b
η
t+Wt

]
= h(q)ηdW ∗t ,

where W ∗ is a brownian motion under the probability Q∗ defined by its Radon-Nykodim

density E( bηW ) with respect to Q. We recall that T̂ admits the following density function

fT̂ (u) =
x

h(q)η
√

2πu3
e
− x2

2h(q)2η2u1{u>0}.
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Therefore, we obtain

Q(t < T̂ ) = EQ∗
[
e
b2

2η2
T̂− b

η
W ∗
T̂1{t<T̂}

]
= e

bx
h(q)η2

∫ +∞

t
e
b2

2η2
u
fT̂ (u) du

= e
bx

h(q)η2

∫ +∞

t
e
b2

2η2
u x

h(q)η
√

2πu3
e
− x2

2h(q)2η2u du

=
2h(q)η

x
√

2π
e

bx
h(q)η2

∫ +∞

t

√
ue

b2

2η2
u x2

2h(q)2η2u2
e
− x2

2h(q)2η2u du

≥ 2h(q)η
√
t

x
√

2π
e

bx
h(q)η2

[
1− e−

x2

2h(q)2η2t

]
We conclude the proof by asserting that, for t going to +∞, we have

lim
t→+∞

e(µ−ρ)tQ
(
t < T

)
≥ lim

t→+∞

x

h(q)η
√

2πt
e

bx
h(q)η2 e(µ−ρ)t = +∞

and then v(y) = +∞.

For the case where the initial value q = 0, the control policy to apply is to do nothing up

to the stopping time T inv := inf{t ≥ 0; Xt ≥ Stf(1) + κ}, which is almost surely finite,

then to acquire a unit of producing assets. We may then conclude our proof by applying

the policy used in the previous case when q ≥ 1. �

From this point, we shall assume that the parameters satisfy:

ρ > max(r, µ) (2.5)

3 Characterization of auxiliary functions

The aim of this section is to provide an implementable algorithm of our problem. To tackle

the stochastic control problem as defined in (2.4), one usual way is to first characterize the

value function as a unique solution to its associated HJB equation. The second step is to

deduce the optimal strategies from smooth-fit properties and more generally from viscosity

solution techniques. The optimal strategies may be characterized by different regions of

the state-space, i.e. the continuation region, the dividend region as well as the Buy and

Sell regions. In such cases, the solutions may be either of explicit or quasi-explicit nature.

However, in a non-degenerate multidimensional setting such as in our problem, getting

explicit or quasi-explicit solutions is out of reach.

As such, to solve our control problem, we characterize our value function as the limit of a

sequence of auxiliary functions. The auxiliary functions are defined recursively and each

one may be characterized as a unique viscosity solution to its associated HJB equation.

This will allow us to get an implementable algorithm approximating our problem.
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3.1 An approximating sequence of functions

We recall the notation y = (x, s, q) ∈ S. From this point, we may use alternatively y or

(x, s, q). We now introduce the following subsets of A(y):

AN (y) := {α = ((τk, ξk)k∈N∗ , Z) ∈ A(y) : τk = +∞ a.s. for all k ≥ N + 1}

and the corresponding value function vN , which describes the value function when the

investor is allowed to make at most N interventions (investments or disinvestments):

vN (y) = sup
α∈AN (y)

Jα(y), ∀N ∈ N (3.6)

We shall show in Proposition 3.4 that the sequence (vN )N≥0 goes to v when N goes to

infinity, but we first have to carefully study some properties of this sequence.

In the next Proposition, we recall explicit formulas for v0 and the optimal strategy associ-

ated to this singular control problem. This problem is indeed very close to the one solved

in the pioneering work of Jeanblanc and Shirayev ( see [18] ). The only difference in our

framework is due to the interest r 6= 0 and therefore the cash process X does not follow

exactly a Bachelier model. However, proofs and results can easily be adapted to obtain

Proposition 3.1 and we will skip the proof.

Proposition 3.1. There exists x∗(q) ∈ [0,+∞) such that

v0(x, s, q) :=

{
Vq(x) if 0 ≤ x ≤ x∗(q)
x− x∗(q) + Vq(x

∗(q)) if x ≥ x∗(q),

where Vq is the C2 function, solution of the following differential equation

η2h(q)2

2
y′′ + (rx+ bh(q))y′ − ρy = 0; y(0) = 0, y′(x∗(q)) = 1 and y′′(x∗(q)) = 0. (3.7)

Notice that x→ v0(x, s, q) is a concave and C2 function on [0,+∞) and that if h(0) = 0, it

is optimal to immediately distribute dividends up to bankruptcy therefore v0(x, s, 0) = x.

We now are able to characterize our impulse control problem as an optimal stopping

time problem, defined through an induction on the number of interventions N.

Proposition 3.2. (Optimal stopping)

For all (x, s, q,N) ∈ S × N∗, we have

vN (x, s, q) = sup
(τ,Z)∈T ×Z

E[

∫ T∧τ

0
e−ρu dZu + e−ρτGN−1(Xx

τ− , S
s
τ , q)1{τ<T}], (3.8)

where T is the set of stopping times, Z the set of predictable and non-decreasing càdlàg

processes, and

GN−1(x, s, q) := max
n∈a(x,s,q)

vN−1 (Γ(y, n)) and G−1 = 0, (3.9)

with a(x, s, q) :=

{
n ∈ Z : n ≥ −q and nf(n) ≤ x− κ

s

}
, (3.10)

and Γ(y, n) := (x− nf(n)s− κ, s, q + n). (3.11)
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Proof: For (y,N) := (x, s, q,N) ∈ S × N∗, we set

v̂N (y) = sup
(τ,Z)∈T ×Z

E[

∫ T∧τ

0
e−ρs dZs + e−ρτGN−1(Xx

τ− , S
s
τ , q)1{τ<T}].

For α ∈ AN (y), we have

Jα(y) = E
[ ∫ τ1∧T

0
e−ρs dZs + E

[ ∫ T

τ1

e−ρs dZs|Fτ1∧T
]
1{τ1<T}

]
≤ E

[ ∫ τ1∧T

0
e−ρs dZs + e−ρτ1vN−1(Xx

τ1 , S
s
τ1 , Q

q
τ1)1{τ1<T}

]
≤ E

[ ∫ τ1∧T

0
e−ρs dZs + e−ρτ1GN−1(Xx

τ−1
, Ssτ1 , q)1{τ1<T}

]
≤ v̂N (y).

It follows that vN (y) ≤ v̂N (y) on S.

Let ε > 0. There exists (τ∗, Z∗) ∈ T × Z

v̂N (y) ≤ ε+ E[

∫ T∧τ∗

0
e−ρs dZ∗s + e−ρτ

∗
GN−1(Xx

τ∗− , S
s
τ∗ , q)1{τ∗<T}] (3.12)

Therefore, there exists ξ∗ a random variable Fτ∗-measurable, taking values in a(Xx
τ∗− , S

s
τ∗ , Q

q
τ∗−),

such that

v̂N (y) ≤ ε+E[

∫ T∧τ∗

0
e−ρs dZ∗s + e−ρτ

∗
vN−1(Xx

τ∗ − ξ∗f(ξ∗)Ssτ∗ − κ, Ssτ∗ , q+ ξ∗)1{τ∗<T}]

Now, let α = ((τk, ξk)k∈N∗ , Z) ∈ AN (y) such that

τ1 = τ∗, ξ1 = ξ∗ and Zu = Z∗u for all 0 ≤ u ≤ τ∗.

We have

vN (y) ≥ E
[ ∫ τ1∧T

0
e−ρs dZs + E

[ ∫ T

τ1

e−ρs dZs|Fτ1
]
1{τ1<T}

]
.

As the previous inequality is true for all α̂ := ((τk, ξk)k>1, (Zτ∗+u)u≥0) ∈ AN−1(Xx
τ∗ , S

s
τ∗ , Q

q
τ∗)

such that τ2 > τ∗, we finally obtain that

vN (y) ≥ E
[ ∫ τ1∧T

0
e−ρs dZs + e−ρτ1vN−1(Xx

τ1 , S
s
τ1 , Q

q
τ1)1{τ1<T}

]
≥ E

[ ∫ τ1∧T

0
e−ρs dZs + e−ρτ1GN−1(Xx

τ−1
, Ssτ1 , q)1{τ1<T}

]
≥ v̂N (y)− ε,

which ends the proof. �
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3.2 Bounds and convergence of (vN)N≥0

We begin by stating a standard result which says that any smooth function, which is

supersolution to the HJB equation, is a majorant of the value function.

Proposition 3.3. Let N ∈ N and φ = (φq)q∈N be a family of non-negative C2 functions

on R+ × (0,+∞) such that ∀q ∈ N (we may use both notations φ(x, s, q) := φq(x, s)),

φq(0, s) ≥ 0 for all s ∈ (0,∞) and

min
[
ρφ(y)− LNφ(y), φ(y)−GN−1(y),

∂φ

∂x
(y)− 1

]
≥ 0 (3.13)

for all y ∈ (0,+∞)× (0,+∞)× N, where we have set

LNϕ =
η2h(q)2

2

∂2ϕ

∂x2
+ (rx+ bh(q))

∂ϕ

∂x

+1{N>0}

[
σ2s2

2

∂2ϕ

∂s2
+ cσηsh(q)

∂2ϕ

∂s∂x
+ µs

∂ϕ

∂s

]
.

then we have vN ≤ φ.

Proof: Given an initial state value y = (x, s, q) ∈ S, take an arbitrary control α = (τ, Z) ∈
T × Z, and set for m > 0, θm = inf{t ≥ 0 : max(Xx

t , S
s
t ) ≤ 1

m or max(Xx
t , S

s
t ) ≥ m} ∧ T

↗ T a.s. when m goes to infinity. Apply then Itô’s formula to e−ρtφ(Y y
t ) between the

stopping times 0 and τm := T ∧ τ ∧ θm. Notice for 0 ≤ t < τm we have that Qqt = q. Then

we have

e−ρτmφ(Y y

τ−m
) = φ(y) +

∫ τm

0
e−ρt (−ρφ+ LNφ)(Y y

t )dt

+1{N>0}

∫ τm

0
e−ρtσSst

∂φ

∂s
(Y y
t )dBt +

∫ τm

0
e−ρtηh(q)

∂φ

∂x
(Y y
t )dWt

−
∫ τm

0
e−ρt

∂φ

∂x
(Y y
t )dZct +

∑
0≤t<τm

e−ρt[φ(Y y
t )− φ(Y y

t−)], (3.14)

where Zc is the continuous part of Z.

Since ∂φ
∂x ≥ 1, we have by the mean-value theorem φ(Y y

t )−φ(Y y
t−) ≥ Xx

t −Xx
t− = −(Zt−Zt−)

for 0 ≤ t < τm. By using also the supersolution inequality of φ, taking expectation in the

above Itô’s formula, and noting that the integrands in the stochastic integral terms are

bounded by a constant (depending on m), we have

E
[
e−ρτmφ(Y y

τ−m
)
]
≤ φ(y)− E

[ ∫ τm

0
e−ρt dZct

]
−E
[ ∑

0≤t<τm

e−ρt(Zt − Zt−)
]

and so

φ(y) ≥ E
[ ∫ τ−m

0
e−ρt dZt + e−ρτmφ(Y y

τ−m
)
]
.
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By sending m to infinity and recalling that φ ≥ 0, with Fatou’s lemma, we obtain:

φ(y) ≥ E
[ ∫ (T∧τ)−

0
e−ρt dZt + e−ρ(T∧τ)φ(Y y

(T∧τ)−)
]
. (3.15)

Now, as φ ≥ GN−1 and recalling that, on {τ < T}, there exists n ∈ N such that Xx
T∧τ =

Xx
(T∧τ)− − nf(n)SsT∧τ − κ, SsT∧τ = Ss(T∧τ)− and QqT∧τ = q + n. , we obtain

φ(Y y
(T∧τ)−) ≥ vN−1

(
Xx

(T∧τ)− − nf(n)SsT∧τ − κ, SsT∧τ , q + n
)

= vN−1(Y y
T∧τ ) on {τ < T}. (3.16)

Moreover, notice that on {T ≤ τ}, vN−1(Y y
T∧τ ) = vN−1(Y y

T ) = 0 ≤ φ(Y y
(T∧τ)−), hence

inequality (3.16) also holds on {T ≤ τ} and so a.s. Therefore, plugging into (3.15), we have

φ(y) ≥ E
[ ∫ (T∧τ)−

0
e−ρt dZt + e−ρ(T∧τ)vN−1(Y y

(T∧τ))
]
.

We obtain the required result from the arbitrariness of the control α. �

Corollary 3.1. Bounds:

For all N ∈ N∗ and (x, s, q) ∈ S, we have

L(x, s, q) ≤ vN (x, s, q) ≤ x+ sq +K where ρK = bH.

Proof: We obviously have vN (x, s, q) ≥ L(x, s, q) for N > 0 and v0(x) ≥ x as the agent

may distribute dividend up to bankruptcy.

We set φ(x, s, q) = x + sq + K with K ≥ 0. We obviously have φ(0, s, q) ≥ L(0, s, q) ≥ 0.

We also have ∂φ
∂x (x, s, q) ≥ 1. Moreover we have

ρφ(x, s, q)− L0φ(x, s, q) = ρ(x+ sq +K)− (rx+ bh(q))

≥ (ρ− r)x+ ρsq + ρK − bh(q)

≥ ρK − bH
≥ 0

Hence, if N = 0, φ satisfies the assumptions of Proposition (3.3) and we have φ ≥ v0 on S.
Now, assume that φ ≥ vN−1. We still have ∂φ

∂x (x, s, q) ≥ 1 and

ρφ(x, s, q)− LNφ(x, s, q) = ρ(x+ sq +K)− (rx+ bh(q))− µsq
≥ (ρ− r)x+ (ρ− µ)sq + ρK − bh(q)

≥ ρK − bH
≥ 0

We conclude by noticing that n(1− f(n)) ≤ 0 for all n ∈ Z and then

GN (x, s, q) = max
n∈a(x,s,q)

vN−1

(
Γ(y, n)

)
= max

n∈a(x,s,q)
φ
(
Γ(y, n)

)
= φ(x, s, q)− κ+ s max

n∈a(x,s,q)
(n(1− f(n)))

< φ(x, s, q).
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From Proposition 3.3 again, we obtain that vN (x, s, q) ≤ x+ sq +K.

�
We are able to conclude on the asymptotic behavior of our approximating sequence of

functions. The next Proposition shows that this sequence of functions goes to our value

function v when N goes to infinity.

Proposition 3.4. (Convergence) For all y ∈ S, we have

lim
N→+∞

vN (y) = v(y).

Proof: We obviously have vN ≤ vN+1 ≤ v for all N ∈ N. By contradiction, assume

that there exists y ∈ S such that v(y) = +∞ then for any M > 0 there would exist a

strategy α = ((τk, ξk)k∈N∗ , Z) ∈ A(y) such that M ≤ Jα(y). As (τi)i∈N∗ is such that

limi→+∞ τi = +∞, there exists N ∈ N∗ such that

M ≤ Jα(y) ≤ E[

∫ T∧τN

0
e−ρs dZs] ≤ vN (y).

As vN is bounded, it leads to a contradiction.

For y ∈ S and ε > 0 , we may now consider a strategy α = ((τk, ξk)k∈N∗ , Z) ∈ A(y) such

that

v(y) ≤ Jα(y) + ε.

Notice that, as (τi)i∈N∗ is such that limi→+∞ τi = +∞, there exists N ∈ N∗ such that

Jα(y) ≤ E[

∫ T∧τN

0
e−ρs dZs] + ε

≤ vN (y) + ε,

which ends the proof. �

3.3 Viscosity characterization of vN

Let N > 0. This subsection is devoted to the characterization of the function vN as the

unique function which satisfies the boundary condition

vN (y) = GN−1(y) on {0} × (0,+∞)× N. (3.17)

and is a viscosity solution of the following HJB equation:

min{ρvN (y)− LvN (y);
∂vN
∂x

(y)− 1; vN (y)−GN−1(y)} = 0 on (0,+∞)2 × N, (3.18)

where we have set

Lϕ =
η2h(q)2

2

∂2ϕ

∂x2
+
σ2s2

2

∂2ϕ

∂s2
+ cσηsh(q)

∂2ϕ

∂s∂x
+ (rx+ bh(q))

∂ϕ

∂x
+ µs

∂ϕ

∂s
.

It relies on the following Dynamic Programming Principle. Let θ ∈ T , y := (x, s, q) ∈ S
and set ν = T ∧ θ, we have

vN (y) = sup
(τ,Z)∈T ×Z

E[

∫ (ν∧τ)−

0
e−ρs dZs + e−ρ(ν∧τ)vN

(
Xx

(ν∧τ)− , S
s
ν∧τ , q

)
1{τ<ν}] (3.19)

We are now able to establish the main results of this section.
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Theorem 3.1. For all (N, q) ∈ N∗ × N, the value function vN (·, ·, q) is continuous on

(0,+∞)2. Moreover vN is the unique viscosity solution on (0,+∞)2×N of the HJB equation

(3.18) satisfying the boundary condition (3.17) and the following growth condition

|vN (x, s, q)| ≤ C1 + C2x+ C3sq, ∀(x, s, q) ∈ S,

for some positive constants C1, C2 and C3.

This result relies on the three following lemmas, which proofs are rather standard and

are postponed in appendix for the sake of completeness.

Lemma 3.2. Supersolution

Let N ∈ N∗. Assume that, for all 0 ≤ k ≤ N − 1 and q ∈ N, vk(·, ·, q) is continuous on

(0,+∞)2. The lower semi-continuous envelope of vN , denoted by vlN is a supersolution of

equation (3.18).

Lemma 3.3. Subsolution

Let N ∈ N∗. Assume that, for all 0 ≤ k ≤ N − 1 and q ∈ N, vk(·, ·, q) is continuous on

(0,+∞)2. The upper semi-continuous envelope of vN , denoted by vuN is a subsolution of

equation (3.18).

Lemma 3.4. Comparison Principle

Assume that u is a upper semi-continuous viscosity subsolution on (0,+∞)2×N of the HJB

equation (3.18), and that w is a lower semi-continuous viscosity supersolution on S of the

HJB equation (3.18), satisfying the boundary condition lim supy→ȳ u(y) ≤ lim infy→ȳ w(y),

for all ȳ ∈ {0} × (0,+∞)× N, and the linear growth condition :

|u(x, s, q)|+ |w(x, s, q)| ≤ C1 + C2x+ C3sq, ∀(x, s, q) ∈ S,

for some positive constants C1, C2 and C3. Then,

u(y) ≤ w(y) ∀y ∈ (0,+∞)2 × N.

4 Numerical Results

In this paragraph, we present some numerical results by approximating the solution of the

HJB equation (3.18). To solve the HJB equation (3.18) arising from the stochastic control

problem (3.6), we choose to use a finite difference scheme which leads to the construction

of an approximating Markov chain. The convergence of the scheme can be shown using

standard arguments as in [21]. We may equally refer to [5], [16], and [20] for numerical

schemes involving singular control problems.

Numerical tests are performed with the following set of parameters values:

→ r = 0.05, µ = 0.08, b = 0.1, ρ = 0.1.

→ σ = 0.2, η = 0.2, c = 0.01.

→ Liquidation cost and function: κ = 0.1, f(q) = exp (λq) s.t. λ = 10−7.

→ Firm profit rate: h(q) = 5
√

1 + q.
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Figures 1: Description of different regions and optimal investment/dividend

policy in (x, s) for a fixed numbers of producing assets units q0.

We plot the shape of the optimal regions in function of (x, s) for a fixed number of producing

assets q2 > q1 > q0. We may distinguish four regions: buy, sell, dividend and continuation

regions. We may clearly make the following observations

- As the assets price gets higher, the dividend region shrinks in favor of the buy region.

Indeed, the firm has to hold sufficient amount of cash in order to be able to invest in more

expensive assets.

- However, for very high assets price, the buy region does not exist any more. Financially,

it means that for very high assets price, it is no longer optimal to invest in the assets and

it is preferable to distribute dividend as if investment opportunities no longer exist.

- The sell region appears as the firm’s cash reserve gets close to zero. Indeed, the firm

has to make a disinvestment decision in order to inject cash into its balance, therefore

avoiding bankruptcy.

Figure 1: Description of different regions, in (x, s) for a fixed q0.

Figures 2 and 3 : Description of regions in (x, s) for respectively q1 and q2 with

q2 > q1 > q0. We observe that the buy region significantly gets smaller for higher number

of assets q1 > q0 and completely disappear for q2 > q1. These observations are explained

by the concavity of the function h.
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Figure 2: Description of different regions, in (x, s) for q1 > q0.

Figure 3: Description of different regions, in (x, s) for q2 > q1.
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Figures 4 and 5: The value function for different values of the transaction cost

κ and the liquidation factor λ. We plot the value function for fixed s and q. We can

see that the higher are the transaction cost κ and the liquidation factor λ, the lower is the

firm value. Higher costs make the firm more careful in distributing dividends.

Figure 4: The value function sliced in x for different values of κ.

Figure 5: The value function sliced in x for different values of λ.
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Appendix

Proof of Lemma 3.2:

Consider any ȳ := (x̄, s̄, q̄) ∈ (0,+∞)2 × N and let ϕ(., ., q̄) a C2 function on (0,+∞)2

such that vlN (ȳ) = ϕ(ȳ) and vlN − ϕ ≥ 0 in a neighborhood of ȳ denoted by B̄ε(ȳ) :=

(x̄− ε, x̄+ ε)× (s̄− ε, s̄+ ε)× {q̄} where 0 < ε < min(x̄, s̄).

On the one hand, we obviously have vN ≥ GN−1 and as GN−1 is continuous, it implies that

vlN ≥ GN−1. Therefore, we have

ϕ(ȳ) = vlN (ȳ) ≥ GN−1(ȳ). (4.20)

On the other hand, let us consider the admissible control α̂ =
(
(τ̂i, q̂i)i∈N, Ẑ

)
where we

decide to never make an impulse, i.e. τ̂1 = +∞, while the dividend policy is defined by

Ẑ = δ for t ≥ 0, with 0 ≤ δ ≤ ε. We know that there exists a sequence (x̄m, s̄m)m∈N such

that

lim
m→+∞

(x̄m, s̄m) = (x̄, s̄) and lim
m→+∞

vN (x̄m, s̄m, q̄) = vlN (x̄, s̄, q̄).

With the same notation, we set ȳm = (x̄m, s̄m, q̄).

We define the exit time τmε := inf{t ≥ 0, Y ȳm
t 6∈ B̄ε(ȳ)}. We notice that τmε < T .

From the dynamic programming principle (see (3.19)), if we set γm := vN (ȳm)−ϕ(ȳm) ≥ 0

and νm = τmε ∧ hm where (hm)m≥0 is a positive sequence such that limm→+∞ hm = 0 and

limm→+∞ γm/hm = 0, then we have

ϕ(ȳm) = vN (ȳm)− γm

≥ E
[ ∫ ν−m

0
e−ρt dẐt + e−ρνmvN

(
Y ȳm
νm

) ]
− γm

≥ E
[ ∫ ν−m

0
e−ρt dẐt + e−ρνmvlN

(
Y ȳm
νm

) ]
− γm

≥ E
[ ∫ ν−m

0
e−ρt dẐt + e−ρνmϕ

(
Y ȳm
νm

) ]
− γm. (4.21)

Applying Itô’s formula to the process e−ρtϕ(Y ȳm
t ) between 0 and νm and taking the expec-

tation, we obtain

E
[
e−ρνmϕ(Y ȳm

νm )
]

= ϕ(ȳm) + E
[ ∫ ν−m

0
e−ρt (−ρϕ+ Lϕ)(Y ȳm

t )dt
]

+E

[ ∑
0≤t<νm

e−ρt[ϕ(Y ȳm
t )− ϕ(Y ȳm

t− )]

]
. (4.22)

Combining relations (4.21) and (4.22), we have

E
[ ∫ ν−m

0
e−ρt (ρϕ− Lϕ)(Y ȳm

t )dt
]
− E

[ ∫ ν−m

0
e−ρt dẐt

]
−E

[ ∑
0≤t<νm

e−ρt[ϕ(Y ȳm
t )− ϕ(Y ȳm

t− )]

]
≥ −γm. (4.23)
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• If we take δ = 0, we notice that Y is continuous on [0, νm] and only the first term of

relation (4.23) is non zero. By dividing the above inequality by hm and letting m going to

infinity, it follows from the smoothness of ϕ and the continuity of the coefficients that

(ρϕ− Lϕ)(ȳ) ≥ 0. (4.24)

• If we take now δ > 0 in (4.23), we notice that Ẑ jumps only at t = 0 with size δ, hence

E
[ ∫ ν−m

0
e−ρt (ρϕ− Lϕ)(Y ȳm

t )dt
]
− δ − (ϕ(x̄m − δ, s̄m, q̄)− ϕ(x̄m, s̄m, q̄)) ≥ −γm. (4.25)

By sending m to infinity, and then dividing by δ and letting δ → 0, we obtain

∂ϕ

∂x
(x̄, s̄, q̄)− 1 ≥ 0. (4.26)

We conclude by combining (4.20), (4.24) and (4.26) to obtain the required supersolution

property

min{ρϕ(x̄, s̄, q̄)− Lϕ(x̄, s̄, q̄);
∂ϕ

∂x
(x̄, s̄, q̄)− 1; vlN (x̄, s̄, q̄)−GN−1(x̄, s̄, q̄)} ≥ 0. (4.27)

Proof of Lemma 3.3: Consider any ȳ := (x̄, s̄, q̄) ∈ (0,+∞)2 × N and let ϕ(., ., q̄) a C2

function on (0,+∞)2 such that vuN (ȳ) = ϕ(ȳ) and vuN − ϕ ≤ 0 in a neighborhood of ȳ,

denoted by B̄ε(ȳ) := (x̄− ε, x̄+ ε)× (s̄− ε, s̄+ ε)× {q̄} where 0 < ε < min(x̄, s̄).

Let us argue by contradiction by assuming on the contrary that ∃ δ > 0 s.t. ∀y ∈ B̄ε(ȳ)

we have

ρϕ(y)− Lϕ(y) > δ, (4.28)

∂ϕ

∂x
(y)− 1 > δ, (4.29)

vuN (y)−GN−1(y) > δ. (4.30)

We know that there exists a sequence (x̄m, s̄m)m∈N such that

lim
m→+∞

(x̄m, s̄m) = (x̄, s̄) and lim
m→+∞

vN (x̄m, s̄m, q̄) = vuN (x̄, s̄, q̄).

Let ȳm := (x̄m, s̄m, q̄) ∈ Bε(ȳ). For any admissible control α =
(
(τi, qi)i∈N∗ , Z

)
, consider the

exit time τmε = inf{t ≥ 0, Y ȳm
t 6∈ B̄ε(ȳ)}. We notice that τmε < T . Applying Itô’s formula

to the process e−ρtϕ(Y ȳm
t ) between 0 and (τmε ∧ τ1)− and by noting that before (τmε ∧ τ1)−,

Y ȳm
t stays in the ball B̄ε(ȳ), we obtain

E
[
e−ρ(τmε ∧τ1)−ϕ(Y ȳm

(τmε ∧τ1)−)
]

= ϕ(ȳm) + E
[ ∫ (τmε ∧τ1)−

0
e−ρt (−ρϕ+ Lϕ)(Y ȳm

t )dt
]

−E
[ ∫ (τmε ∧τ1)−

0
e−ρt

∂ϕ

∂x
(Y ȳm
t )dZct

]
+E

[ ∑
0≤t<τmε ∧h

e−ρt[ϕ(Y ȳm
t )− ϕ(Y ȳm

t− )]

]
. (4.31)
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From Taylor’s formula and (4.29), and noting that ∆X x̄
t = −∆Zt for all 0 ≤ t < τmε ∧ τ1,

we have

ϕ(Y ȳm
t )− ϕ(Y ȳm

t− ) = ∆X x̄
t

∂ϕ

∂x
(Y ȳm
t− )

≤ −(1 + δ)∆Zt. (4.32)

Plugging the relations (4.28), (4.29) and (4.32) into (4.31), we obtain

ϕ(ȳm) ≥ E
[ ∫ (τmε ∧τ1)−

0
e−ρt dZt + e−ρ(τmε ∧τ1)−ϕ(Y ȳm

(τmε ∧τ1)−)
]

+δ
(
E
[ ∫ (τmε ∧τ1)−

0
e−ρt dt

]
+ E

[ ∫ (τmε ∧τ1)−

0
e−ρt dZt

])
≥ E

[ ∫ (τmε ∧τ1)−

0
e−ρt dZt + e−ρτ

m−
ε ϕ(Y ȳ

τm−ε
)1τmε <τ1 + e−ρτ

−
1 ϕ(Y ȳm

τ−1
)1τ1≤τmε

]
+δ
(
E
[ ∫ (τmε ∧τ1)−

0
e−ρt dt

]
+ E

[ ∫ (τmε ∧τ1)−

0
e−ρt dZt

])
. (4.33)

First step: On {τmε < τ1}, we notice that while Y ȳm
τm−ε
∈ B̄ε(ȳ), Y ȳm

τmε
is either on the boundary

∂B̄ε(ȳ) or out of B̄ε(ȳ). However, there is some random variable γ valued in [0, 1] s.t.

X(γ) := X x̄m
τm−ε

+ γ∆X x̄m
τmε
,

= X x̄m
τm−ε
− γ∆Zτmε ∈ {x̄− ε, x̄+ ε},

hence, Y (γ) := (X(γ), S s̄mτmε , Q
q̄
τmε

) is on the boundary ∂B̄ε(ȳ).

Following the same arguments as in (4.32), we have

ϕ(Y (γ))− ϕ(Y ȳm
τm−ε

) ≤ −γ(1 + δ)∆Zτmε . (4.34)

Noting that X(γ) = X x̄m
τmε

+ (1− γ)∆Zτε , we have

vuN (Y (γ)) ≥ vuN (Y ȳm
τmε

) + (1− γ)∆Zτmε . (4.35)

Recalling that ϕ(Y (γ)) ≥ vuN (Y (γ)), inequalities (4.34) and (4.35) imply

ϕ(Y ȳm
τm−ε

) ≥ vuN (Y ȳm
τmε

) + (1 + γδ)∆Zτmε . (4.36)

Second step: On {τ1 ≤ τmε }, we notice that Y ȳm
τ−1
∈ B̄ε(ȳ), thus vuN (Y ȳm

τ−1
) ≤ ϕ(Y ȳm

τ−1
). From

the assumption (4.30) we obtain

ϕ(Y ȳm
τ−1

) ≥ GN−1(Y ȳm
τ−1

) + δ. (4.37)

Plugging (4.36) and (4.37) into (4.33) we have

ϕ(ȳm) ≥ E
[ ∫ (τmε ∧τ1)−

0
e−ρt dZt + e−ρτ

m
ε vuN (Y ȳm

τmε
)1τε<τ1 + e−ρτ1GN−1(Y ȳm

τ−1
)1τ1≤τmε

]
+δ E

[ ∫ (τmε ∧τ1)−

0
e−ρt dt+

∫ (τmε ∧τ1)−

0
e−ρt dZt + γe−ρτ

m
ε ∆Zτmε 1τε<τ1 + e−ρτ11τ1≤τmε

]
+E
[
e−ρτ

m
ε ∆Zτmε 1τmε <τ1

]
. (4.38)
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We now claim that there exists a constant c0 > 0 such that for any admissible control

c0 ≤ E
[ ∫ (τmε ∧τ1)−

0
e−ρt dt+

∫ (τmε ∧τ1)−

0
e−ρt dZt

]
+E
[
γe−ρτ

m
ε ∆Zτmε 1τmε <τ1 + e−ρτ11τ1≤τmε

]
. (4.39)

The C2 function ψ(x, s, q) = c0[1− (x−x̄m)2

ε2
], with

0 < c0 ≤ min

{(
ρ+

2

ε
(r(x̄+ ε) + bH) +

η2

ε2
H
)−1

,
ε

2

}
satisfies

min{−ρψ(x, s, q) + Lψ(x, s, q) + 1;−∂ψ
∂x (x, s, q) + 1;−ψ(x, s, q) + 1} ≥ 0 on B̄ε(ȳ),

ψ(x, s, q) = 0 on ∂B̄ε(ȳ).

(4.40)

Applying Itô’s formula, we then obtain

0 < c0 = ψ(ȳm) ≤ E
[
e−ρ(τmε ∧τ1)−ψ(Y ȳm

(τmε ∧τ1)−)
]

+E
[ ∫ (τmε ∧τ1)−

0
e−ρt dt+

∫ (τmε ∧τ1)−

0
e−ρt dZt

]
. (4.41)

Noting that ∂ψ
∂x (x, s, q) ≤ 1, we have

ψ(Y ȳ

τm−ε
)− ψ(Y (γ)) ≤ X x̄m

τm−ε
−X(γ) = γ∆Zτmε .

Plugging into (4.41), we obtain

0 < c0 ≤ E
[
e−ρτ1ψ(Y ȳm

τ−1
)1τ1≤τmε

]
+ E

[ ∫ (τmε ∧τ1)−

0
e−ρt dt

]
+E
[ ∫ (τmε ∧τ1)−

0
e−ρt dZt

]
+ E

[
e−ρτ

m
ε γ∆Zτmε 1τmε <τ1

]
. (4.42)

Since ψ ≤ 1 for all y ∈ B̄ε(ȳ), this proves the claim (4.39).

Finally, by taking the supremum over all admissible control α, and using the dynamic

programming principle (3.19), Equation (4.38) implies that ϕ(ȳm) ≥ vuN (ȳm) + δc0, which

leads to a contradiction when m goes to infinity. Thus we obtain the required viscosity

subsolution property:

min{ρϕ(x̄, s̄, q̄)− Lϕ(x̄, s̄, q̄);
∂ϕ

∂x
(x̄, s̄, q̄)− 1; vuN (x̄, s̄, q̄)−GN−1(x̄, s̄, q̄)} ≤ 0. (4.43)

�

Proof of Lemma 3.4:

Step 1. We first construct a strict supersolution to the system with suitable perturbation

of w. We set

g(y) = A+B(x+ sq + 1) +D(x+ sq + 1)p, p ∈ (1, 2), y ∈ S,
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where

A =
BHb+ bH + 1

ρ
+ C1 + C3κ, B = 2 and D = B

(ρ−max(r, µ)

2Hb

)
.

We then define for all γ ∈ (0, 1), the lower semi-continuous function on (0,+∞)2 × N by:

wγ = (1− γ)w + γg.

Let y ∈ (0,+∞)2 × N. For all γ ∈ (0, 1), we then see that :

wγ(y)−GN−1(y) ≥ (1− γ)
(
w(y)−GN−1(y)

)
+ γ
(
g(y)−GN−1(y)

)
≥ γκ, (4.44)

where the last inequality comes from the facts that as a supersolution w(y) ≥ GN−1(y) and

that for all n ∈ A(y), Corollary 3.1 implies that:

vN−1

(
Γ(y, n)

)
≤ x− κ− nsf(n) + s(q + n) +

bH

ρ

≤ bH

ρ
+ (x+ sq + 1) + sn(1− f(n))− κ

≤ g(y)− κ. (4.45)

Furthermore, we also easily obtain

∂g

∂x
(y)− 1 = B + p(x+ sq + 1)p−1 − 1 ≥ 1. (4.46)

Recalling that h(q) ≤ H for all q ∈ N, a straight calculation gives

ρg(y)− Lg(y) = ρ
(
A+B(x+ sq + 1) +D(x+ sq + 1)p

)
−Dcσh(q)ηqsp(p− 1)(x+ sq + 1)p−2

−η
2h2(q)

2
Dp(p− 1)(x+ sq + 1)p−2 − s2q2σ2

2
Dp(p− 1)(x+ sq + 1)p−2

−
(
rx+ bh(q)

)(
B +Dp(x+ sq + 1)p−1

)
− µs

(
Bq +Dqp(x+ sq + 1)p−1

)
≥ ρA−BbH +B

(
ρ−max(r, µ)

)
(x+ sq + 1)−DcσHηp(p− 1)(x+ sq + 1)p

−Dη
2H2

2
p(p− 1)(x+ sq + 1)p −Dσ

2

2
p(p− 1)(x+ sq + 1)p

−DbHp(x+ sq + 1)p−1 −Dmax(r, µ)p(x+ sq + 1)p +Dρ(x+ sq + 1)p

≥ ρA−BbH + (x+ sq + 1)
(
B
(
ρ−max(r, µ)

)
−DbHp(x+ sq + 1)p−2

)
+D

(
ρ−max(r, µ)p− (

η2H2

2
+
σ2

2
+ cσHη)p(p− 1)

)
(x+ sq + 1)p.

Using that p(x+ sq + 1)p−2 ≤ 2 for all p ∈ (1, 2) and replacing A by its value, we obtain

ρg(y)− Lg(y) ≥ 1 + (x+ sq + 1)
(
B(ρ−max(r, µ))− 2DbH

)
+D

(
ρ−max(r, µ)p− (

η2H2

2
+
σ2

2
+ cσHη)p(p− 1)

)
(x+ sq + 1)p.
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Recalling that ρ > max(r, µ), we can choose p ∈ (1, 2) s.t.

ξ := ρ−max(r, µ)p− (
η2H2

2
+
σ2

2
+ cσHη)p(p− 1) > 0,

we then have

ρg(y)− Lg(y) ≥ 1 +Dξ(x+ sq + 1)p, ∀y ∈ (0,+∞)2 × N. (4.47)

Combining (4.45), (4.46) and (4.47), we obtain that wγ is a strict supersolution of equation

(3.18): ∀y ∈ (0,+∞)2 × N, we have

min{ρwγ(y)− Lwγ(y);
∂wγ

∂x
(y) − 1;wγ(y)−GN−1(y)} ≥ γmin(1, κ) := δ. (4.48)

Step 2. In order to prove the comparison principle, it suffices to show that for all γ ∈ (0, 1):

sup
y∈(0,+∞)2×N

(u− wγ) ≤ 0,

since the required result is obtained by letting γ to 0. We argue by contradiction and

suppose that there exist some γ ∈ (0, 1) s.t.

θ := sup
y∈(0,+∞)2×N

(u− wγ) > 0. (4.49)

Notice that u(y) − wγ(y) goes to −∞ as x, s and q go to infinity. For any ȳ ∈ {0} ×
(0,+∞)× N, we also have

lim sup
y→ȳ

u(y)− wγ(y) ≤ γ(lim inf
y→ȳ

w(y)−A) ≤ 0.

Hence, by semi-continuity of the functions u and wγ , there exists y0 = (x0, s0, q0) ∈
(0,+∞)2 × N s.t.

θ = u(y0)− wγ(y0).

For any ε > 0, we consider the the functions

Φε(y, y
′) = u(y)− wγ(y′)− ϕε(y, y′)

ϕε(y, y
′) =

1

4
|y − y0|4 +

1

2ε
|y − y′|2,

for all y, y′ ∈ S. By standard arguments in comparison principle, the function Φε attains its

maximum in (yε, y
′
ε) ∈ ((0,+∞)2 × N)2, which converges (up to a subsequence) to (y0, y0)

when ε goes to zero. Moreover,

lim
ε→0

|yε − y′ε|2

ε
= 0. (4.50)

Applying Theorem 3.2 in [9], we get the existence of two 2× 2 symmetric matrices M ε and

N ε s.t.:

(pε,M ε) ∈ J2,+u(yε),

(dε, N ε) ∈ J2,−wγ(y′ε),
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and (
M ε 0

0 −N ε

)
≤ D2

y,y′ϕε(yε, y
′
ε) + ε

(
D2
y,y′ϕε(yε, y

′
ε)
)2
, (4.51)

where

pε = Dyϕε(yε, y
′
ε) =

(
(xε − x0)|yε − y0|2 + 1

ε (xε − x′ε)
(sε − s0)|yε − y0|2 + 1

ε (sε − s′ε)

)

dε = −Dy′ϕε(yε, y
′
ε) =

(
1
ε (xε − x′ε)
1
ε (sε − s′ε)

)
,

D2
y,y′ϕε(yε, y

′
ε) =


2(xε − x0)2 + |yε − y0|2 + 1

ε 2(xε − x0)(sε − s0) −1
ε 0

2(xε − x0)(sε − s0) 2(sε − s0)2 + |yε − y0|2 + 1
ε 0 −1

ε
−1
ε 0 1

ε 0

0 −1
ε 0 1

ε

 .

By writing the viscosity subsolution property of u and the viscosity supersolution property

(4.48) of wγ , we have the following inequalities:

min
{
ρu(yε)−

(
rxε + bh(qε)

)
pε1 − µsεpε2 −cσηsεh(qε)M

ε
12 −

η2h2(qε)
2 M ε

11 −
σ2s2ε

2 M ε
22;

pε1 − 1;u(yε)−GN−1(yε)
}
≤ 0 (4.52)

min
{
ρwγ(y′ε)−

(
rx′ε + bh(q′ε)

)
dε1 − µs′εdε2 −cσηs′εh(q′ε)N

ε
12 −

η2h2(q′ε)
2 N ε

11 −
σ2(s′ε)

2

2 N ε
22;

dε1 − 1;wγ(y′ε)−GN−1(y′ε)
}
≥ δ (4.53)

We then distinguish three cases:

• Case 1 : u(yε)−GN−1(yε) ≤ 0 in (4.52).

From the definition of (yε, y
′
ε), we have

θ = u(y0)− wγ(y0)

≤ u(yε)− wγ(y′ε)− ϕε(yε, y′ε)
≤ GN−1(yε)−GN−1(y′ε)− δ − ϕε(yε, y′ε).

Now, letting ε going to 0, we deduce from equation (4.50) and the continuity of GN−1 that

0 < θ ≤ −δ < 0, which is obviously a contradiction.

• Case 2 : (xε − x0)|yε − y0|2 + 1
ε (xε − x′ε)− 1 = pε1 − 1 ≤ 0 in (4.52).

Notice by (4.53), we have

1

ε
(xε − x′ε)− 1 = dε1 − 1 ≥ δ,

which implies in this case

(xε − x0)|yε − y0|2 ≤ −δ.
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By sending ε to zero, we obtain again a contradiction.

• Case 3: ρu(yε)−
(
rxε + bh(qε)

)
pε1 − µsεpε2 − cσηsεh(qε)M

ε
12 −

η2h2(qε)
2 M ε

11 −
σ2s2ε

2 M ε
22 ≤ 0

in (4.52).

From (4.53), we have

ρwγ(y′ε)−
(
rx′ε + bh(q′ε)

)
dε1 − µs′εdε2 − cσηs′εh(q′ε)N

ε
12 −

η2h2(q′ε)

2
N ε

11 −
σ2(s′ε)

2

2
N ε

22 ≥ δ,

which implies in this case

ρ
(
u(yε)− wγ(y′ε)

)
− r(xεpε1 − x′εdε1)− b(h(qε)p

ε
1 − h(q′ε)d

ε
1)− µ(sεp

ε
1 − s′εdε1)

−cση(sεh(qε)M
ε
12 − s′εh(q′ε)N

ε
12)− η2

2
(h2(qε)M

ε
11 − h2(q′ε)N

ε
11)

−σ
2

2

(
(sε)

2M ε
22 − (s′ε)

2N ε
22

)
≤ −δ (4.54)

We have that

xεp
ε
1 − x′εdε1 = xε(xε − x0)|yε − y0|2 +

1

ε
(xε − x′ε)2.

From (4.50) we have that this last quantity goes to zero when ε goes to zero. Using the

same argument, we also have that the quantity sεp
ε
1−s′εdε1 goes to zero when ε goes to zero.

Using that h(q) ≤ H for all q ∈ N we have

h(qε)p
ε
1 − h(q′ε)d

ε
1 ≤ h(qε)(xε − x0)|yε − y0|2 +

1

ε
(xε − x′ε)

(
h(qε)− h(q′ε)

)
≤ h(qε)(xε − x0)|yε − y0|2 +H

(xε − x′ε)2 + (qε − q′ε)2

ε
.

Again, by (4.50), this last quantity goes to zero when ε goes to zero.

Moreover, assuming that c 6= 0, from (4.51), we have

cση(sεh(qε)M
ε
12 − s′εh(q′ε)N

ε
12) +

η2

2
(h2(qε)M

ε
11 − h2(q′ε)N

ε
11)

+
c2σ2

2

(
(sε)

2M ε
22 − (s′ε)

2N ε
22

)
≤ Υ (4.55)

where

Υ = Λ
(
D2
y,y′ϕε(yε, y

′
ε) + ε

(
D2
y,y′ϕε(yε, y

′
ε)
)2)

Λᵀ

with

Λ =
1√
2

(
ηh(qε), cσsε, ηh(q′ε), cσs

′
ε

)ᵀ
Here ᵀ denotes the transpose operator.

From (4.51), we have also

c2σ2

2

(
(sε)

2M ε
22 − (s′ε)

2N ε
22

)
≤ Ῡ (4.56)
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where

Ῡ = Λ̄
(
D2
y,y′ϕε(yε, y

′
ε) + ε

(
D2
y,y′ϕε(yε, y

′
ε)
)2)

Λ̄ᵀ

with

Λ̄ =
1√
2

(
0, cσsε, 0, cσs

′
ε

)ᵀ
Combining (4.55) and (4.56) and the fact that −1 ≤ c ≤ 1, we obtain

cση(sεh(qε)M
ε
12 − s′εh(q′ε)N

ε
12) +

η2

2
(h2(qε)M

ε
11 − h2(q′ε)N

ε
11) +

σ2

2

(
(sε)

2M ε
22 − (s′ε)

2N ε
22

)
≤ Υ +

1− c2

c2
Ῡ.

After some straightforward calculations and using (4.50) and that h(q) ≤ H for all q ∈ N,

we have that Υ and Ῡ go to zero when ε goes to zero.

The case of c = 0 is treated in the same way by choosing Λ = 1√
2

(
ηh(qε), 0, ηh(q′ε), 0

)ᵀ
and

Λ̄ = 1√
2

(
0, σsε, 0, σs

′
ε

)ᵀ
.

Finally, using all the above arguments and the continuity of u and wγ we can see that when

ε goes to zero in the inequality (4.54), we obtain the required contradiction: ρθ ≤ −δ < 0.

This ends the proof.

�
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