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Abstract

This paper concerns with the problem of determining an optimal control on the
dividend and investment policy of a firm under debt constraints. We allow the company
to make investment by increasing its outstanding indebtedness, which would impact its
capital structure and risk profile, thus resulting in higher interest rate debts. Moreover,
a high level of debt is also a challenging constraint to any firm as it is no other than the
threshold below which the firm value should never go to avoid bankruptcy. It is equally
possible for the firm to divest parts of its business in order to decrease its financial
debt owed to creditors. In addition, the firm may favor investment by postponing or
reducing any dividend distribution to shareholders. We formulate this problem as a
combined singular and multi-switching control problem and use a viscosity solution
approach to get qualitative descriptions of the solution. We further enrich our studies
with a complete resolution of the problem in the two-regime case and provide some
numerical illustrations.
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1 Introduction

The theory of optimal stochastic control problem, developed in the seventies, has over the
recent years once again drawn a significance of interest, especially from the applied math-
ematics community with the main focus on its applications in a variety of fields including
economics and finance. For instance, the use of powerful tools developed in stochastic con-
trol theory has provided new approaches and sometime the first mathematical approaches in
solving problems arising from corporate finance. It is mainly about finding the best optimal
decision strategy for managers whose firms operate under uncertain environment whether
it is financial or operational, see [3] and [10]. A number of corporate finance problems have
been studied, or at least revisited, with this optimal stochastic control approach.

In this paper, we consider the problem of determining the optimal control on the dividend
and investment policy of a firm under debt constraints. There are a number of research on
this corporate finance problem. In [7], Décamps and Villeneuve study the interactions
between dividend policy and irreversible investment decision in a growth opportunity and
under uncertainty. We may equally refer to [20] for an extension of this study, where the
authors relax the irreversible feature of the growth opportunity.

As in a large part of the literature in corporate finance, the above papers assume that
the firm cash reserve follows a drifted Brownian motion. They also assume that the firm
does not have the ability to raise any debt for its investment as it holds no debt in its
balance sheet. In our study, as in the Merton model, we consider that firm value follows
a geometric Brownian process and more importantly we consider that the firm carries a
debt obligation in its balance sheet. However, as in most studies, we still assume that the
firm assets is highly liquid and may be assimilated to cash equivalents or cash reserve. We
allow the company to make investment and finance it through debt issuance/raising, which
would impact its capital structure and risk profile. This debt financing results therefore in
higher interest rate on the firm’s outstanding debts. More precisely, we model the decisions
to raise or redeem some debt obligations as switching decisions controls where each regime
corresponds to a specific level debt.

Furthermore, we consider that the manager of the firm works in the interest of the
shareholders, but only to a certain extent. Indeed, in the objective function, we introduce
a penalty cost P and assume that the manager does not completely try to maximize the
shareholders’ value since it applies a penalty cost in the case of bankruptcy. This penalty
cost could represent, for instance, an estimated cost of the negative image upon his/her
own reputation due to the bankruptcy under his management leadership. Mathematically,
we formulate this problem as a combined singular and multiple-regime switching control
problem. Each regime corresponds to a level of debt obligation held by the firm.

In terms of literature, there are many research papers on singular control problems as
well as on optimal switching control problems. One of the first corporate finance problems
using singular stochastic control theory was the study of the optimal dividend strategy, see
for instance [5] and [16]. These two papers focus on the study of a singular stochastic control
problem arising from the research on optimal dividend policy for a firm whose cash reserve
follows a diffusion model.
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In the study of optimal switching control problems, a variety of problems are investi-
gated, including problems on management of power station [4], [14], resource extraction
[2], firm investment [11], marketing strategy [18], and optimal trading strategies [8], [24].
Other related works on optimal control switching problems include [1] and [19], where the
authors employ respectively optimal stopping theory and viscosity techniques to explicitly
solve their optimal two-regime switching problem on infinite horizon for one-dimensional
diffusions. We may equally refer to [22], for an interesting overview of the area.

In the above studies, only problems involving the two-regime case are investigated.
There are still very few studies on the multi-regime switching problems. The main additional
feature in the multiple regime problems consists not only in determining the switching region
as opposed to the continuation region, but also in identifying the optimal regime to where
to switch. This additional feature sharply increases the complexity of the multi-regime
switching problems. Recently, Djehiche, Hamadène and Popier [9], and Hu and Tang [15]
have studied optimal multiple switching problems for general adapted processes by means
of reflected BSDEs, and they are mainly concerned with the existence and uniqueness of
solution to these reflected BSDEs. In [23], the authors investigated an optimal multiple
switching problem on infinite horizon for a general one-dimensional diffusion. The switching
feature of this problem does not impact its state process but uniquely the profit functions.

The studies that are most relevant to our problem are the one investigating combined
singular and switching control problems. Recently an interesting connection between the
singular and the switching problems was given by Guo and Tomecek [13]. In [20], the authors
studied an optimal dividend problem with reversible technology switching investment and
used Bachelier process to model the firm’s cash reserve. The firm may decide to switch
from an old technology to a new technology in order to increases the drift of the cash
without affecting the volatility. They proved that the problem can be decoupled in two
pure optimal stopping and singular control problems and provided results which are of
quasi-explicit nature.

However, none of the above papers on dividend and investment policies, which provides
qualitative solutions, has yet moved away from the basic Bachelier model or the simplistic
assumption that firms hold no debt obligations. In our model, unlike [23], switching from
one regime, i.e. debt level, to another directly impacts the state process itself. Indeed, the
drift of the stochastic differential equation governing the firm value would equally switch
as the results of the change in interest rate paid on the outstanding debt. A given level of
debt is no other than the threshold below which the firm value should never go to avoid
bankruptcy. As such, debt level switching also signifies a change of default constraints on
the state process in our optimal control problem. Further original contributions in terms
of financial studies of our paper include the feature of the conflicts of interest for firm
manager through the presence of the penalty cost in the event of bankruptcy. Studying
a mixed singular and multi-switching problem combining with the above financial features
including debt constraints and penalty cost turns out to be a major mathematical challenge,
especially when our objective is to provide quasi-explicit solutions. In addition, it is always
tricky to overcoming the combined difficulties of the singular control with those of the
switching control, especially when there are multiple regimes, for instance, building a strict
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supersolution to our HJB system in order to prove the comparison principle.
The plan of the paper is organized as follows. We define the model and formulate our

stochastic control problem in the second section. In section 3, we characterize our problem
as the unique viscosity solution to the associated HJB system and obtain some regularity
properties. We find that the associated value functions of our problems are at least of
class C1. In section 4, we obtain qualitative description of our problem. In particular, we
show that the state space is divided into continuation, dividend and switching regions, with
each of them being union of intervals. The bounds of these intervals may be characterized.
Finally, in section 5, we further enrich our studies with a complete resolution of the problem
in the two-regime case and provide some numerical illustrations.

2 The model

We consider a firm whose value follows a process X. The firm also has the possibility to
raise its debt level in order to satisfy its financial requirement such as investing in growth
opportunities. It may equally pay down its debt.

We consider an admissible control strategy α = (Zt, (τn)n≥0, (kn)n≥0), where the non-
decreasing càd-làg process Z represents the dividend policy, the nondecreasing sequence of
stopping times (τn) the switching regime time decisions, and (kn), which are Fτn-measurable
valued in {1, ..., N}, the new value of debt regime at time t = τn. Let denote the process
Xx,i,α as the enterprise value of the company with initial value of x and initially operating
with a debt level Di and which follow the control strategy α. However, in order to reflect
the fact that a firm also holds a significant amount of debt obligation either to financial
institutions, inland revenues, suppliers or through corporate bonds, we assume that the
firm debt level may never get to zero. We assume that the firm assets is cash-like, i.e. the
manager may dispose of some part of the company assets and obtain its equivalent in cash.
In other words, the process X could be seen as a cash-reserve process used in most papers
on optimal dividend policy, see for instance [7], [16].

We assume that the cash-reserve process Xx,i,α, denoted by X when there is no ambigu-
ity and associated to a strategy α = (Zt, (τn)n≥0, (kn)n≥0), is governed by the following
stochastic differential equation:

dXt = bXtdt− rItDItdt+ σXtdWt − dZt + dKt (2.1)

where

It =
∑
n≥0

kn1τn≤t<τn+1 , I0− = i

kn ∈ IN := {1, ..., N}
Dj < Dl, j < l, j, l ∈ IN (2.2)

rj < rl, j < l, j, l ∈ IN (2.3)

Di and ri represent respectively different levels of debt and their associated interest rate
paid on those debts. Relations (2.2) and (2.3) assume that the level of risk of a firm uniquely
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depends on the level of its debt, i.e. the higher the debt level, the higher the interest rate
that the firm has to pay.
The process Kt represents the cash-flow due to the change in the firm’s indebtedness. More
precisely,

Kt =
∑
n≥0

(
Dκn+1 −Dκn − g

)
1τn+1≤t (2.4)

where g represents the additional cost associated with the change of firm’s level of debt. It
could be seen as the fixed commission cost paid for bank services for arranging debt issuance
or debt redemption. Mathematically, it prevents continuous switching of the debt level. We
assume that g is small with respect to other quantities in the following way

∀(i, j) ∈ IN : i 6= j; 0 < g < min
(
| (b− ri)Di − (b− rj)Dj |

b
; | Di −Dj |

)
. (2.5)

For a given control strategy α, the bankruptcy time is represented by the stopping time Tα

defined as

Tα = inf{t ≥ 0, Xx,i,α
t ≤ DIt}. (2.6)

When there is no ambiguity, we generally refer to T instead of Tα for the bankruptcy
time.
We equally introduce a penalty cost or a liquidation cost P > 0, in the case of a holding
company looking to liquidate one of its own affiliate or activity. In the case of the penalty,
it mainly assumes that the manager does not completely try to maximize the shareholders’
value since it applies a penalty cost in the case of bankruptcy.
We therefore define the value functions which the manager actually optimizes as follows

vi(x) = sup
α∈A

E(i,x)

[∫ T−

0
e−ρtdZt − Pe−ρT

]
, x ∈ R, i ∈ {1, ..., N}, (2.7)

where A represents the set of admissible control strategies, and ρ the discount rate.
The next step would be to compute the real value function ui of the shareholders. Indeed,
once we obtain the optimal strategy, α∗ = (Z∗t , (τ

∗
n)n≥0, (k∗n)n≥0) of the above problem

(2.7), then we may compute the real shareholders’ value by following the strategy α∗, as
numerically illustrated in Figure 3 and 4:

ui(x) = E(i,x)

[∫ T ∗,−

0
e−ρtdZ∗t

]
, x ∈ R, i ∈ {1, ..., N}, where T ∗ = Tα

∗
(2.8)

Remark 2.1 If b > ρ, the value functions is infinite for any initial value of x > Di and
any regime i. The proof is quite straightforward. We simply consider a sequence of strat-
egy controls which consists in doing nothing up to time tk, where (tk)k≥1 is strictly non-
decreasing and goes to infinity when k goes to infinity, and then at tk, distribute Xtk −DItk

in dividend and allow the company to become bankrupt. We then need to notice that
lim
k→∞

E
[
e−ρtkXx

tk

]
= +∞.
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For the rest of the paper, we now consider that the discount rate ρ is always bigger than
the growth rate b.

3 Viscosity Characterization of the value functions

We first introduce some notations. We denote by Rx,i the firm value in the absence of
dividend distribution and the ability to change the level of debt, fixed at Di.

dRx,it = [bRx,it − riDi]dt+ σRx,it dWt, R
x,i
0 = x (3.1)

The associated second order differential operator is denoted Li:

Liϕ = [bx− riDi]ϕ′(x) +
1
2
σ2x2ϕ′′(x) (3.2)

Using the dynamic programming principle, we obtain the associated system of variational
inequalities satisfied by the value functions:

min
[
−Aivi(x) , v′i(x)− 1 , vi(x)−max

j 6=i
vj(x+Dj −Di − g)

]
= 0, x > Di, i ∈ IN

vi(Di) = −P,

where the operator Ai is defined by Aiφ = Liφ− ρφ.

We now state a standard first result for this system of PDE.

Proposition 3.1 Let (ϕi)i∈IN smooth enough on (Di,∞) such that ϕi(D+
i ) := lim

x↓Di
ϕi(x) ≥

−P , and

min
[
−Aiϕi(x) , ϕ′i(x)− 1, ϕi(x)−max

j 6=i
ϕj(x+Dj −Di − g)

]
≥ 0, for x > Di, i ∈ IN

where we set by convention ϕi(x) = −P for x < Di, then we have vi ≤ ϕi, for all i ∈ IN .

Proof: Given an initial state-regime value (x, i) ∈ (Di,∞)× IN , take an arbitrary control
α = (Z, (τn), (kn)) ∈ A, and set for m > 0, θm,n = inf{t ≥ T ∧τn : Xx,i,α

t ≥ m or Xx,i,α
t ≤

DIt + 1/m}. Notice that θm,n is non-decreasing in m and goes up to T a.s. when m goes
to ∞. Apply then Itô’s formula to e−ρtϕkn(Xx,i,α

t ) between the stopping times T ∧ τn and
τm,n+1 := τn+1 ∧ θm,n. Notice that for T ∧ τn ≤ t < τn+1 ∧ θm,n, Xx,i

t stays in regime kn.
Then, we have

e−ρτm,n+1ϕkn(Xx,i

τ−m,n+1

) = e−ρ(T∧τn)ϕkn(Xx,i
T∧τn) +

∫ τm,n+1

T∧τn
e−ρt(−ρϕkn + Lknϕkn)(Xx,i

t )dt

+
∫ τm,n+1

T∧τn
e−ρtσϕ′kn(Xx,i

t )dWt −
∫ τm,n+1

T∧τn
e−ρtϕ′kn(Xx,i

t )dZct

+
∑

T∧τn<t<τm,n+1

e−ρt
[
ϕkn(Xx,i

t )− ϕkn(Xx,i
t− )
]
, (3.3)
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where Zc is the continuous part of Z.

Since ϕ′kn ≥ 1, we have by the mean-value theorem ϕkn(Xx,i
t )−ϕkn(Xx,i

t− ) ≤ Xx,i
t −X

x,i
t− =

−(Zt − Zt−) for T ∧ τn < t < τm,n+1.

By using also the supersolution inequality of ϕkn , taking expectation in the above Itô’s
formula, and noting that the integrand in the stochastic integral term is bounded by a
constant (depending on m), we have

E
[
e−ρτm,n+1ϕkn(Xx,i

τ−m,n+1

)
]
≤ E

[
e−ρ(T∧τn)ϕkn(Xx,i

T∧τn)
]
− E

[∫ τm,n+1

T∧τn
e−ρtdZct

]

− E

 ∑
T∧τn<t<τm,n+1

e−ρt(Zt − Zt−)

 ,
and so

E
[
e−ρ(T∧τn)ϕkn(Xx,i

T∧τn)
]
≥ E

[∫ τ−m,n+1

T∧τn
e−ρtdZt + e−ρτm,n+1ϕkn(Xx,i

τ−m,n+1

)

]

Noticing that
∫ τ−m,n+1

T∧τn e−ρtdZt+e−ρτm,n+1ϕkn(Xx,i

τ−m,n+1

) ≥ −P , we may apply Fatou’s lemma.

Thus by sending m to infinity, we obtain :

E
[
e−ρ(T∧τn)ϕkn(Xx,i

T∧τn)
]

≥ E

[∫ (T∧τn+1)−

T∧τn
e−ρtdZt + e−ρ(T∧τn+1)ϕkn(Xx,i

(T∧τn+1)−)

]
. (3.4)

Now, as ϕkn(x) ≥ ϕkn+1(x+Dkn+1−Dkn−g) and recalling Xx,i
T∧τn+1

= Xx,i
(T∧τn+1)−+Dkn+1−

Dkn − g on {τn+1 < T}, we have

ϕkn(Xx,i
(T∧τn+1)−) ≥ ϕkn+1(Xx,i

(T∧τn+1)− +Dkn+1 −Dkn − g)

≥ ϕkn+1(Xx,i
(T∧τn+1)) on {τn+1 < T}. (3.5)

Moreover, notice that on {T ≤ τn+1}, Xx,i
T ≤ Dn, hence ϕkn(Xx,i

(T∧τn+1)) = ϕkn(Xx,i
T ) =

−P and ϕkn+1(Xx,i
(T∧τn+1)) = ϕkn+1(Xx,i

T ) = −P , we see that inequality (3.5) also holds on
{T ≤ τn+1} and so a.s. Therefore, plugging into (3.4), we have

E
[
e−ρ(T∧τn)ϕkn(Xx,i

T∧τn)
]
≥ E

[∫ (T∧τn+1)−

T∧τn
e−ρtdZt + e−ρ(T∧τn+1)ϕkn+1(Xx,i

T∧τn+1
)

]
.

By iterating the previous inequality for all n, we then obtain

ϕi(x) ≥ E

[∫ (T∧τn)−

0
e−ρtdZt + e−ρ(T∧τn)ϕkn(Xx,i

T∧τn)

]
,

≥ E

[∫ (T∧τn)−

0
e−ρtdZt − e−ρ(T∧τn)P

]
, ∀n ≥ 0,

since ϕkn ≥ −P . By sending n to infinity, we obtain the required result from the arbitrari-
ness of the control α. 2
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Corollary 3.1 If max
i∈IN

(b− ri)Di ≤ −ρP , an optimal policy is the immediate consumption.

Proof: It is easy to see that, in this case, the set of functions vi(x) = x − Di − P ,
for i ∈ {1, ..., N}, satisfy the previous system of variational inequalities. It is a direct
application of Proposition 3.1. 2

Throughout the paper, we now assume that the following assumption holds

P > min
j∈IN

rj − b
ρ

Dj . (A-1)

In the following Corollary, we show a linear growth condition on the value functions.

Corollary 3.2 For all i ∈ IN , and for all x ∈ (Di,∞), we have

vi(x) ≤ x−Di + max
j∈IN

b− rj
ρ

Dj

Proof: We set ∀i ∈ IN ,

ϕi(x) =

{
x−Di + maxi∈IN

b−ri
ρ Di , x > Di

−P, x ≤ Di.

A straightforward computation shows that ϕi, i ∈ IN , satisfy the supersolution properties
and the associated assumptions. Indeed it is clear that ϕi(D+

i ) := lim
x↓Di

ϕi(x) ≥ −P and

ϕi(x) = −P for x < Di and we equally have the following inequality

min
[
−Aiϕi(x) , ϕ′i(x)− 1 , ϕi(x)−max

j 6=i
ϕj(x+Dj −Di − g)

]
≥ 0, x ≥ Di

2

We shall assume that the following dynamic programming principle holds: for any (x, i)
∈ [Di,∞)× IN , we have

(DP) vi(x) = sup
α=((Z),(τn),(kn))∈A

E

[∫ (T∧θ∧τ1)−

0
e−ρtdZt

+ e−ρ(T∧θ∧τ1)
(
vi(X

x,i
T∧θ)1T∧θ<τ1 + vk1(Xx,i

τ1 )1τ1≤T∧θ
)]
, (3.6)

where θ is any stopping time, possibly depending on α ∈ A in (3.6).

The next result states the initial-boundary data for the value functions.

Proposition 3.2 The value functions vi are continuous on (Di,∞) and satisfy

vi(D+
i ) := lim

x↓Di
vi(x) = −P. (3.7)

Proof: a) We first prove (3.7). For x > Di, let us consider the process Rx,i, defined in
(3.1), and denote θi = inf{t ≥ 0 : Rx,it = Di}.
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Let consider the geometric Brownian process Rx,0 defined as the solution to

dRt = bRtdt+ σRtdWt, R0 = x,

and denote θi,0 = inf{t ≥ 0 : Rx,0t = Di}. Notice that

Rx,it ≤ Rx,0t , ∀i ∈ IN , t ≥ 0

θi ≤ θi,0, ∀i ∈ IN . (3.8)

Fix some r ∈ (0, g) such that Di < x < Di+ r, and denote θr,i = inf{t ≥ 0 : Rx,it = r+Di}
and θr,i,0 = inf{t ≥ 0 : Rx,0t = r +Di}. A straight calculation gives us

P [θi,0 > θr,i,0] =
s(x)− s(Di)

s(Di + r)− s(Di)
,

where s is a scale function of the process Rx,0. From the continuity of s at Di, we deduce
that

P [θi,0 > θr,i,0] → 0, as x ↓ Di.

Notice that θr,i,0 < θr,i and combined with (3.8), we obtain P [θi > θr,i] ≤ P [θi,0 > θr,i,0].
As such,

P [θi > θr,i] → 0, as x ↓ Di. (3.9)

Let α = (Z, (τn)n≥1, kn≥1) be an arbitrary policy in A, and denote η = T ∧θr,i = T x,i,α∧θr,i.
For t ≤ η, from the definition of an admissible control, there is no regime shift. As such,
for t ≤ η, we have Xx,i

t ≤ R
x,i
t ≤ R

x,0
t . We also have T x,i ≤ θi.

We then write :

E

[∫ T−

0
e−ρtdZt

]
= E

[∫ η−

0
e−ρtdZt

]
+ E

[
1T>η

∫ T−

η
e−ρtdZt

]

≤ E
[
Zη−

]
+ E

[
E

[
1T>η

∫ T−

η
e−ρtdZt

∣∣∣∣∣Fθ−r,i
]]

≤ E
[
Rx,0η −Di

]
+ E

[
1T>θr,iE

[∫ T−

θr,i

e−ρtdZt

∣∣∣∣∣Fθ−r,i
]]

≤ E
[
Rx,0η −Di

]
+ E

[
1T>θr,ie

−ρθr,i
(
vi

(
Xx,i

θ−r,i

)
+ P

)]
, (3.10)

where we also used in the second inequality the fact that on {T > η}, η = θr,i, and θr,i is a
predictable stopping time. Now, since vi is nondecreasing, we have vi(X

x,i

θ−r,i
) ≤ vi(Di + r).

Moreover, recalling that T ≤ θi, inequalities (3.10) and (3.9) yield

0 ≤ E

[∫ T−

0
e−ρtdZt

]
(3.11)

≤ E

[
sup

0≤t≤θi
Rx,0t −Di

]
+ (vi(Di + r) + P ) P[θi > θr,i] −→ 0, as x ↓ Di.(3.12)
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Furthermore, using the fact that T x,i ≤ θi ≤ θi,0, we have

E
[
−Pe−ρT

]
≤ −PE

[
e−ρθi,0

]
Noticing that θi,0 is the hitting time of a drifted Brownian, it is straightforward that
E
[
e−ρθi,0

]
−→ 1, as x ↓ Di and recalling (3.11), we obtain

−P ≤ vi(x) ≤ sup
α∈A

E

[∫ T−

0
e−ρtdZt − Pe−ρT

]

≤ E

[
sup

0≤t≤θi
Rx,0t −Di

]
+ vi(Di + r)P[θi > θr,i]− PE

[
e−ρθi,0

]
−→ −P, as x ↓ Di.

We may therefore conclude that vi(D+
i ) = −P .

b) We now turn to the continuity of the value functions vi. Let γ > 0 and x ∈ (Di,∞).
We set

T γ = inf{t ≥ 0; Rx,it ≥ x+ γ}.

We now consider a control strategy α = (Z, (τn), kn), where τ1 > T γ and Zt = 0, ∀ t < τ1.
Notice that ∀ t < τ1, X

x,i
t = Rx,it . Applying the programming dynamic principle (DP), we

obtain

vi(x) ≥ E
[
e−ρXTγ∧Tx,ivi(XT γ∧Tx,i)

]
,

therefore

vi(x+ γ)− vi(x) ≤ E
[
(1− e−ρT γ )vi(x+ γ)1T γ<Tx,i + vi(x+ γ)1T γ≥Tx,i

]
+E

[
Pe−ρT

x,i
1T γ≥Tx,i

]
≤ vi(x+ γ)

(
1− E[e−ρT

γ
]
)

+ (vi(x+ γ) + P )P(T γ ≥ T x,i).

Using the non-decreasing property of the value functions, for γ ≤ γ0, we have

vi(x+ γ)− vi(x) ≤ vi(x+ γ0)
(
1− E[e−ρT

γ
]
)

+ (vi(x+ γ0) + P )P(T γ ≥ T x,i). (3.13)

Using the same arguments as in the above proof of the right continuity of vi at D+
i , we may

obtain

P(T γ ≥ T x,i) −→ 0, as γ ↓ 0, and

E[e−ρT
γ
] −→ 1, as γ ↓ 0.

Given the finiteness of vi as show in Corollary 3.2, we obtain that the right-hand side of
the (3.13) goes to zero as γ ↓ 0. We may therefore conclude the right-continuity of vi. An
analog argument gives us the left-continuity. 2

We then have the PDE characterization of the value functions vi.
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Theorem 3.1 The value functions vi, i ∈ IN , are continuous on (Di,∞), and are the
unique viscosity solutions on (Di,∞) with linear growth condition and boundary data vi(Di)
= −P , to the system of variational inequalities :

min
[
−Aivi(x) , v′i(x)− 1 , vi(x)−max

j 6=i
vj(x+Dj −Di − g)

]
= 0, x > Di. (3.14)

Actually, we obtain some more regularity results on the value functions.

Proposition 3.3 The value functions vi, i ∈ IN , are C1 on (Di,∞). Moreover, if we set
for i ∈ IN :

Si =
{
x ≥ Di , vi(x) = max

j 6=i
vj(x+Dj −Di − g),

}
(3.15)

Di = int ({x ≥ Di , v′i(x) = 1}), (3.16)

Ci = (Di,∞) \ (Si ∪ Di), (3.17)

then vi is C2 on the open set Ci ∪ int(Di) ∪ int(Si) of (Di,∞), and we have in the classical
sense

ρvi(x)− Livi(x) = 0, x ∈ Ci.

Si, Di, and Ci respectively represent the switching, dividend, and continuation regions
when the outstanding debt is at regime i.

The proofs of Theorem 3.1 and Proposition 3.3 are becoming quite standard in particular
for the viscosity property and regularity of the value functions. However, for the sake of
completeness we will provide the proof of uniqueness property, which is always of interest,
especially in our case of a combined singular and multi-switching problem, in the Appendix.

4 Qualitative results on the switching regions

For i, j ∈ IN and x ∈ [Di,+∞), we introduce some notations:

δi,j = Dj −Di, ∆i,j = (b− rj)Dj − (b− ri)Di and xi,j = x+ δi,j − g.

We set x∗i = sup{x ∈ [Di,+∞) : v′i(x) > 1} for all i ∈ IN
We equally define Si,j as the switching region from debt level i to j.

Si,j = {x ∈ (Di, +∞), vi(x) = vj(xi,j)}.

From the definition (3.15) of the switching regions, we have the following elementary de-
composition property :

Si = ∪j 6=iSi,j , i ∈ IN .

We now begin with two obvious results. Since there is a fixed switching cost g > 0,
it is not optimal to continuously change your debt structure. Moreover, if it is optimal to
distribute dividends and to switch to another regime, it is still optimal to distribute dividend
after the regime switch.
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Lemma 4.1 Let i, j ∈ IN such that i 6= j. Assume that there exists x ∈ Si,j then we have

i) xi,j := x+Dj −Di − g 6∈ Sj .

ii) v′i(x) = v′j(xi,j).

Especially, if x ∈ Si,j ∩ Di then xi,j ∈ Dj \ Sj.

Proof: For k ∈ IN \ {j}, we have

vj(xi,j) = vi(x) ≥ vk(xi,k).

As vk is strictly non-decreasing, we get vj(xi,j) > vk(xi,k − g).
Let h ∈ R. For h going to 0, we have

vj(xi,j + h) = vj(xi,j) + hv′j(xi,j) + o(h)

= vi(x) + hv′j(xi,j) + o(h)

= vi(x+ h) + h(v′j(xi,j)− v′i(x)) + o(h).

As vi(x+ h) ≥ vj(xi,j + h), we obtain

h(v′j(xi,j)− v′i(x)) ≤ o(h).

Hence, we have v′j(xi,j) = v′i(x). 2

In the following Lemma, we state that there exists a finite level of cash such that it is
optimal to distribute dividends up to this level.

Lemma 4.2 For all i ∈ IN , we have x∗i := sup{x ∈ [Di,+∞) : v′i(x) > 1} < +∞.

Proof: Assume that there exists k ∈ {0, ..., N − 1} such that x∗i < +∞ for all i ∈ Ik :=
{i1, ..., ik} ⊂ IN . Notice that Ik = ∅ if k = 0. We will show that there exists j ∈ IN \ Ik
such that x∗j < +∞.
From Corollary 3.2 and Proposition 3.3, we deduce that, for all i ∈ IN , the function x →
vi(x) − x is continuous, non decreasing and bounded. We set ai := lim

x→+∞
(vi(x) − x).

Moreover, for all (i, j) ∈ IN such that i 6= j, we have

aj − (ai + δj,i − g) = lim
x→+∞

(vj(x)− vi(x+ δj,i − g)) ≥ 0.

Let j0 ∈ IN \ Ik such that aj0 + Dj0 = maxj∈IN\Ik(aj + Dj). For all j ∈ IN \ Ik, we have
aj + δj0,j − g < aj0 .
It is easy to see that there exists x̄ ∈ [Dj ,+∞) satisfying the following conditions:

vj0(x̄) > x̄+ max
j∈IN\Ik;j0 6=j

(aj + δj0,j − g),

ρvj0(x̄) > bx̄− rj0Dj0 ,

x̄ > x∗i − (δj0,i − g), ∀i ∈ Ik.
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At this point, we introduce a continuous function defined on [Di, +∞):

V̂ (x) =

{
vj0(x) if x < x̄

x− x̄+ vj0(x̄) if x ≥ x̄

Let x ≥ x̄. We have

−Aj0 V̂ (x) = (ρ− b)(x− x̄) + [ρvj0(x̄)− (bx̄− rj0Dj0)] > 0.

Moreover, for j ∈ IN \ Ik such that j 6= j0, we have

V̂ (x) ≥ x+ aj + δj0,j − g ≥ vj(x+ δj0,j − g).

For i ∈ Ik, we have

vi(x+ δj0,i − g)− V̂ (x) = x+ δj0,i − g − x∗i + vi(x∗i )− (x− x̄+ vj0(x̄))

= vi(x∗i )− x∗i + (x̄+ δj0,i − g)− vj0(x̄)

≤ vi(x̄+ δj0,i − g)− vj0(x̄)

≤ 0.

Finally, for all j ∈ IN \ {j0}, V̂ (x) ≤ vj0(x) ≤ vj(x− δj,j0 + g).
As V̂ ′(x) = 1, V̂ is a continuous solution of equation (3.14). From Theorem 3.1, we deduce
that vj0 = V̂ and x∗j0 ≤ x̄. 2

Now, we shall study properties of x∗i and more generally, properties of left-boundaries
of Di in the sense as detailed in the following definition.

Definition 4.1 Let i ∈ IN and x ∈ (Di,+∞). x is a left-boundary of Di if there exists
ε > 0 and a sequence (yn)n∈N with values in (Di, x) \ Di such that

[x, x+ ε] ∈ Di and lim
n→+∞

yn = x.

Remark 4.1 Notice that, if x∗i > Di then x∗i is a left-boundary of Di.

In order to compute the dividend regions, we establish the following lemma.

Lemma 4.3 Let i, j ∈ IN such that j 6= i. We assume that there exists x̂i a left-boundary
of Di.

i) Assume that x̂i 6∈ Si, then we have (b− ri)Di > −ρP and ρvi(x̂i) = bx̂i − riDi.
As x→ ρvi(x)− bx+ riDi is increasing, it implies that

ρvi(x) < bx− riDi on (Di, x̂i) and ρvi(x) > bx− riDi on (x̂i,+∞).

ii) Assume that x̂i ∈ Si,j then we have

ii.a) [x̂i, x̂i + ε] ⊂ Si,j and x̂i + δi,j − g is a left-boundary of Dj .

ii.b) ρvi(x̂i) = bx̂i − riDi + ∆i,j − bg and ∆i,j > 0.
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ii.c) ∀k ∈ IN − {i, j}, x̂i 6∈ Si,k.

Notice that the last equality implies that −ρP + bg < (b− rj)Dj.

Remark 4.2 We have ρvi(x̂i) ≥ bx̂i − riDi, ∀i ∈ IN .

Proof:
i). We assume that x̂i 6∈ Si. As Si is closed and x̂i > Di, we can choose ε > 0 such that
(x̂i − ε, x̂i + ε) ∩ Si = ∅. Moreover, v′i ≥ 1 and v′i(x̂i) = 1 so there exists a sequence
(yn)n∈N ∈ (x̂i − ε, x̂i) ∩ Ci such that lim

n→+∞
yn = x̂i and v′′i (yn) ≤ 0. We have

0 ≥ v′′i (yn) =
2

σ2y2
n

(
ρvi(yn)− (byn − riDi)v′i(yn)

)
and letting n going to infinity, we get

0 ≥ ρvi(x̂i)− (bx̂i − riDi) = lim
y→x̂i;y>x̂i

−Aivi(y) ≥ 0,

leading to the desired equality.

Now let us show that (b− ri)Di > −ρP .
Assume that (b− ri)Di ≤ −ρP , we then obtain the following inequality:

vi(x̂i) ≤
b

ρ
(x̂i −Di)− P,

leading to a contradiction as ρ > b and vi(x̂i) ≥ x̂i −Di − P .

ii). We assume that x̂i ∈ Si,j .
ii.a). We first prove that [x̂i, x̂i + ε] ⊂ Si,j and that x̂j := x̂i + δi,j − g is a left-boundary of
Dj.
Let y ∈ [x̂i, x̂i + ε]. We have

vj(y + δi,j − g) ≤ vi(y) = y − x̂i + vi(x̂i) = y − x̂i + vj(x̂j).

On the other hand, v′j ≥ 1 so y−x̂i+vj(x̂j) ≤ vj(y+δi,j−g). It follows that vj(y+δi,j−g) =
vi(y) and [x̂i, x̂i + ε] ⊂ Si,j .
Moreover, we have proved that [x̂j , x̂j + ε] ⊂ Dj .
We assume that there exists η > 0 such that (x̂j − η, x̂j) ⊂ Dj and show that it leads to a
contradiction. Let x ∈ (x̂j − η, x̂j). We have

vj(x) = x− x̂j + vj(x̂j)

= (x− δi,j + g)− x̂i + vi(x̂i)

> vi(x− δi,j + g).
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The last inequality follows from the fact that x̂i is a left-boundary of Di and contradicts
the fact that vi is solution of equation (3.14). Hence, to show that x̂j is a left-boundary of
Dj it remains to prove that x̂j > Dj . However, if it was not the case, we would have,

vi(x̂i) = vj(x̂i + δi,j − g), since x̂i ∈ Si,j ,
= vj(Dj) = −P.

But x̂i = x̂j−δi,j+g = Di+g, leading to the contradiction −P = vi(Di) < vi(Di+g) = −P .

ii.b). We now prove that ρvi(x̂i) = bx̂i−riDi+∆i,j−bg and ∆i,j := (b−rj)Dj−(b−ri)Di > 0.
From Lemma 4.1, we know that x̂j 6∈ Sj . Therefore it follows from step i) that (b −

rj)Dj > −ρP and ρvj(x̂j) = bx̂j − rjDj . We obtain

ρvi(x̂i) = ρvj(x̂i + δi,j − g)

= ρvj(x̂j)

= bx̂j − rjDj

= bx̂i + b(δi,j − g)− rjDj

= bx̂i − riDi + ∆i,j − bg. (4.1)

As ρvi(x̂i)− (bx̂i− riDi) = lim
y→x̂i;y>x̂i

ρvi(y)−Livi(y) ≥ 0, we have ρvi(x̂i) ≥ bx̂i− riDi and

then ∆i,j ≥ bg > 0.

ii.c). It remains to show that ∀k ∈ IN − {i, j}, x̂i 6∈ Si,k.
This fact is an elementary result as highlighted earlier because if there exists k ∈ IN −{i, j}
such that x̂i ∈ Si,k ∩ Si,j , it would implies that ∆i,k = ∆i,j .
Relation (4.1) gives us the last equality. 2

Corollary 4.1 Let i ∈ IN . We have the following results:

i) If x∗i 6∈ Si, then either x∗i = Di or
(b− ri)Di > −ρP , and ρvi(x∗i ) = bx∗i − riDi.

ii) If there exists j ∈ IN − {i}, such that x∗i ∈ Si,j, then
we have ∆i,j > 0 and (b− rj)Dj > −ρP + bg and ρvi(x∗i ) = bx∗i − riDi + ∆i,j − bg.

Proof: These results are straightforward from Lemma 4.3 –(i) and –(iib) and Remark 4.1.
2

We now turn to the following result which basically states that when it is optimal to
distribute dividend and/or to switch regime, then it is still optimal when the firm is richer.

Lemma 4.4 Let (i, j) ∈ I2N such that i 6= j. If (x∗i , +∞) ∩ Si,j 6= ∅ then there exists
y∗i,j ∈ [x∗i , +∞) such that

[x∗i , +∞) ∩ Si,j = [y∗i,j , +∞) and ρvi(y∗i,j) = by∗i,j − riDi + ∆i,j − bg.
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Proof: We set y∗i,j = inf
(

[x∗i , +∞) ∩ S̊i,j
)
. If x∗i ∈ Si,j , the result has been proved in

Corollary 4.1. We now assume that x∗i < y∗i,j . Let y > y∗i,j . Using the same argument as in
ii) of Corollary 4.1, we may get vj(y + δi,j − g) = vi(y) and [y∗i,j , +∞) ⊂ Si,j .
Moreover, we know that y∗i,j + δi,j − g 6∈ Sj and Sj is a closed set, so there exists ε > 0 such
that [ȳ∗i,j − ε, ȳ∗i,j ] ∩ Sj = ∅ where we set ȳ∗i,j = y∗i,j + δi,j − g. As y∗i,j ∈ D̊i, we can find a
sequence (yk)k∈N with values in [ȳ∗i,j − ε, ȳ∗i,j ], such that yk 6∈ Dj (if not we may obtain a

contradiction by straightforwardly showing that y∗i,j > inf
(

[x∗i , +∞) ∩ S̊i,j
)
.), i.e.

∀k ∈ N, yk ∈ Cj and lim
k→+∞

yk = ȳ∗i,j .

We finally obtain

0 = ρvj(yk)− (byk − rjDj)v′j(yk)−
σ2y2

k

2
v′′j (yk)

= ρvj(ȳ∗i,j)− (bȳ∗i,j − rjDj)v′j(ȳ
∗
i,j).

Using vj(ȳ∗i,j) = vi(y∗i,j) and v′j(ȳ
∗
i,j) = v′i(y

∗
i,j) = 1 (from Lemma 4.1 and y∗i,j ∈ Di), we may

obtain the desired results and conclude the proof. 2

We now establish an important result in determining the description of the switching
regions. The following Theorem states that it is never optimal to expand its operation, i.e.
to make investment, through debt financing, should it result in a lower “drift” ((b− ri)Di)
regime. However, when the firm’s value is low, i.e. with a relatively high bankruptcy risk,
it may be optimal to make some divestment, i.e. sell parts of the company, and use the
proceedings to lower its debt outstanding, even if it results in a regime with lower “drift”.
In other words, to lower the firm’s bankruptcy risk, one should try to decrease its volatility,
i.e. the diffusion coefficient. In our model, this clearly means making some debt repayment
in order to lower the firm’s volatility, i.e. σXt.

Theorem 4.1 Let i, j ∈ IN such that (b−rj)Dj > (b−ri)Di. We have the following results:

1) x∗j 6∈ Sj,i and D̊j = (x∗j , +∞).

2) S̊j,i ⊂ (Dj + g, x∗j ). Furthermore, if Dj < Di, then S̊j,i = ∅.

Proof:
1). Since (b − rj)Dj > (b − ri)Di, we have ∆j,i < 0. It follows from part ii) of Corollary
4.1 that x∗j 6∈ Sj,i. Let y ∈ D̊j . There exists ε > 0 such that (y − ε, y + ε) ⊂ D̊j . For
x ∈ (y − ε, y + ε), we have

0 ≤ −Ajvj(x) = ρvj(x)− (bx− rjDj).

Hence, ρvj(x) ≥ bx−rjDj and using Remark 4.1 and Lemma 4.3 –(i), we may obtain y ≥ x∗j .

2). Let us assume that there exists y ∈ S̊j,i. we first need to prove that y < x∗j .
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Let’s assume that y ≥ x∗j . From Lemma 4.4, we know that [y, +∞) ⊂ Sj,i. We set
s∗j,i = inf S̊j,i ∩ Dj . As x∗j 6∈ Sj , we have x∗j ≤ s∗j,i. On the other hand, it is easy to see that
s∗j,i + δj,i − g = x∗i and x∗i 6∈ Si. We obtain

ρvj(s∗j,i) = ρvi(x∗i )

= bx∗i − riDi

= bs∗j,i − rjDj − (∆i,j + bg)

< bs∗j,i − rjDj

< ρvj(x∗j ).

We may deduce that x∗j > s∗j,i,, which contradicts the fact that x∗j ≤ s∗j,i, so y < x∗j .

We now prove that if Dj < Di, S̊j,i = ∅.

Assume that there exists x ∈ S̊j,i. From the first step, we know that x 6∈ Dj . We deduce
from Lemma 4.1 that x̄ := x+ δj,i − g ∈ Ci then we have

1
2
σ2x2v′′j (x) + (bx− rjDj) v′j(x) ≤ ρvj(x)

= ρvi(x̄)

=
1
2
σ2x̄2v′′i (x̄) + (bx̄− riDi) v′i(x̄)

=
1
2
σ2x̄2v′′j (x) + (bx̄− riDi) v′j(x).

Combining these equations, we get

0 ≤ σ2

2
(x̄2 − x2)v′′j (x)− (∆i,j + bg)v′j(x).

As x̄2 − x2 ≥ 0 (using Dj < Di and Assumption (2.5)), (∆i,j + bg)v′j(x) > 0 and v′′j < 0 on
[ rjDjb , x∗j ), we necessarily have x ∈ (Dj + g,

rjDj
b ∧ x

∗
j ). Therefore, if b ≥ rj , Sj,i = ∅.

Now, we assume that b < rj and S̊j,i 6= ∅. Let Sj,i = sup S̊j,i and if we set S̄j,i := Sj,i+δj,i−g,
it follows that

0 ≤ σ2

2
(S̄2
j,i − S2

j,i)v
′′
j (S−j,i)− (∆i,j + bg)v′j(Sj,i).

Hence, we have

0 ≤ ρvj(Sj,i)−

(
bS̄j,i − riDi +

S̄2
j,i

S̄2
j,i − S2

j,i

(∆i,j + bg)

)
v′j(Sj,i)

≤ ρvj(Sj,i)−

(
bSj,i − rjDj +

Sj,i
2

S̄2
j,i − S2

j,i

(∆i,j + bg)

)
v′j(Sj,i). (4.2)

On the other hand, we have (Sj,i, x∗j ) ⊂ Cj so

0 ≤
σ2S2

j,i

2
v′′j (S+

j,i)−
Sj,i

2

S̄2
j,i − S2

j,i

(∆i,j + bg)v′j(Sj,i).
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Especially, we have v′′j (S+
j,i) > 0. Moreover, vj is a C2 function and v′j > 1 on (Sj,i, x∗j ),

it follows that there exists y ∈ (Sj,i, x∗j ) such that v′′j (y) = 0 since v′(x∗j ) = 1. We set
yj = inf{y ∈ (Sj,i, x∗j ) : v′′j (y) ≤ 0}. As v′′j ≤ 0 on [ rjDjb ,+∞), we know that yj ≤ rjDj

b .
We have v′′j (yj) = 0 and yj ∈ Cj , so we can assert that h(yj) = 0 where we have set

h(x) = (bx− rjDj)v′j(x)− ρvj(x).

On (Sj,i, yj), we have v′′j > 0 so h is decreasing. Indeed, we have

h′(x) = (bx− rjDj)v′′j (x)− (ρ− b)v′j(x) ≤ 0.

Finally, this proves that ρvj(Sj,i) ≤ (bSj,i − rjDj)v′j(Sj,i). Reporting this in the inequality
(4.2), we get

0 ≤ − Sj,i
2

S̄2
j,i − S2

j,i

(∆i,j + bg)v′j(Sj,i).

This is impossible as S̄2
j,i > S2

j,i, ∆i,j + bg > 0 and v′j(Sj,i) ≥ 1. In conclusion, S̊j,i = ∅. 2

We now turn to an important corollary.

Corollary 4.2 Let m ∈ IN such that (b− rm)Dm = maxi∈IN (b− ri)Di.

1) x∗m 6∈ Sm and D̊m = (x∗m, +∞).

2) For all i ∈ IN − {m}, we have:

i) If Dm < Di, S̊m,i = ∅.
ii) If Di < Dm, S̊m,i ⊂ (Dm + g, x∗m). Furthermore, if b ≥ ri, then S̊m,i ⊂

(Dm + g, (a∗i + δi,m + g) ∧ x∗m), where a∗i is the unique solution of the equation
ρvi(x) = (bx− riDi)v′i(x). We further have a∗i 6= x∗i .

Proof:
The only point left to show is 2.ii). We now assume that there exists i ∈ IN − {m} such
that Di < Dm, b ≥ ri and S̊m,i 6= ∅

We prove that the equation ρvi(x) = (bx− riDi)v′i(x) admits a unique solution a∗i and
prove that S̊m,i ⊂ (Dm + g, a∗i + δm,i − g).
Let x ∈ S̊m,i. It follows from the first step that S̊m,i ∩ Dm = ∅. Hence, from Lemma 4.1,
we have x := x+ δm,i − g ∈ Ci. We obtain

0 ≥ σ2x2

2
v′′i (x) + (bx− rmDm)v′i(x)− ρvi(x)

= Aivi(x) +
σ2

2
(x2 − x2)v′′i (x) + (∆i,m + bg)v′i(x)

= −x
2 − x2

x2
Hi(x),

where we have set

Hi(x) =
(
bx− riDi −

x2

(x+ δi,m + g)2 − x2
(∆i,m + bg)

)
v′i(x)− ρvi(x).

18



Hence, we have

S̊m,i ⊂ {x ∈ (Dm + g, +∞) : Hi(x) ≥ 0} ⊂ {x ∈ (Dm + g, +∞) : Gi(x+ δm,i − g) ≤ 0},

where we set Gi(y) = ρvi(y)− (by − riDi)v′i(y).
We notice that, for all y ∈ (Di,+∞), Gi(y) ≥ σ2y2

2 v′′i (y). Recalling our assumption that
b ≥ ri, it follows that

G′i(y) ≥ (ρ− b)v′i(y)− 2(by − riDi)
σ2y2

Gi(y) > −2(by − riDi)
σ2y2

Gi(y).

As Gi is continuous on (Di,+∞) and Gi(Di) < 0, it implies that the equation Gi(y) = 0
admits a unique solution which will be denoted by a∗i . Therefore, we have S̊m,i ⊂ (Dm +
g, a∗i + δi,m + g). Furthermore, from Corollary 4.1, we either have G(x∗i ) = 0 or G(x∗i ) > 0.
As such, we deduced that a∗i ∈ (Di, x

∗
i ).

2

We now turn to the following results ordering the left-boundaries (x∗i )i∈IN of the dividend
regions (Di)i∈IN .

Proposition 4.1 Consider i, j ∈ IN , such that (b − ri)Di < (b − rj)Dj. We always have
x∗i + δi,j − g ≤ x∗j unless there exists a regime k such that (b − rj)Dj < (b − rk)Dk and
x∗i ∈ Si,k, then we have x∗j − δi,j + g < x∗i < x∗k − δi,k + g.

Proof: First, we assume that x∗i 6∈ Si. From Lemma 4.3, we know that ρvi(x∗i ) = bx∗i−riDi.

On the other hand, we have

ρvi(x∗j − (δi,j − g)) ≥ ρvj(x∗j )

≥ bx∗j − rjDj

≥ b(x∗j − (δi,j − g))− riDi + ∆i,j − bg
> b(x∗j − (δi,j − g))− riDi.

Hence, we have x∗i + δi,j − g < x∗j .
Now, we assume that there exists k ∈ IN − {i} such that x∗i ∈ Si,k. If k = j, we have
x∗i + δi,j − g = x∗j . If k 6= j, we have x∗i + δi,k − g = x∗k and

ρvi(x∗i ) = bx∗i − riDi + ∆i,k − bg = b(x∗i + δi,k − g)− rkDk.

On the other hand, we have

ρvi(x∗j − (δi,j − g)) ≥ ρvj(x∗j )

= bx∗j − rjDj

= b(x∗j − (δi,j − g))− riDi + ∆i,j − bg
= b

(
x∗j − (δi,j − g) + (δi,k − g)

)
− rkDk + ∆k,j .

If (b− rj)Dj > (b− rk)Dk, i.e. ∆k,j > 0, then we have

ρvi(x∗j − (δi,j − g)) > b
(
x∗j − (δi,j − g) + (δi,k − g)

)
− rkDk.
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Hence, we have x∗i + δi,j − g < x∗j .
However, in the case that (b− rj)Dj < (b− rk)Dk, then

ρvi(x∗j − (δi,j − g)) < b
(
x∗j − (δi,j − g) + (δi,k − g)

)
− rkDk.

Hence, we have x∗i + δi,j − g > x∗j . 2

5 The two regime-case

Before investigating the two-regime case, for the sake of completeness, we give the results
in the case where there is no regime change, i.e. the firm’s debt level remains constant.

Proposition 5.1 The value function V̂ is C2 on (D1,∞). There exists x̂ ≥ D such that
Ĉ = (D, x̂), and D̂ = (x̂,∞). Furthermore, If (b− rD) > −ρP , then, on Ĉ = (D, x̂), V̂ is
the unique solution (in the classical sense) to

ρv − Lv = 0

and

V̂ (x) = x− x̂+ V̂ (x̂), x ≥ x̂

where V̂ (x̂) =
bx̂− rD

ρ
.

If (b− rD) ≤ −ρP , then x̂ = D and the optimal value function V (x) = x−D − P .

This result directly derives from Corollary 4.1. 2

Throughout this section, we now assume that N = 2, in which case, we will get a
complete description of the different regions. We will see that the most important parameter
to consider is the so-called “drifts” ((b− ri)Di)i=1,2 and in particular their relative positions.
To avoid cases with trivial solution, i.e. immediate consumption, we will assume that
−ρP < (b− ri)Di, i = 1, 2.
We now distinguish the two following cases: (b − r2)D2 < (b − r1)D1 and (b − r1)D1 <

(b − r2)D2. Throughout Theorem 5.1 and Theorem 5.2, we provide a complete resolution
to our problem in each case.

Theorem 5.1 We assume that (b− r2)D2 < (b− r1)D1.
We have

C1 = [D1, x
∗
1), D1 = [x∗1, +∞), and S̊1 = ∅ where ρv1(x∗1) = bx∗1 − r1D1.

1) If S2 = ∅ then we have

C2 = [D2, x
∗
2), and D2 = [x∗2, +∞) where ρv2(x∗2) = bx∗2 − r2D2.

2) If S2 6= ∅ then there exists y∗2 such that S2 = [y∗2, +∞) and we distinguish two cases
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a) If x∗2 + δ2,1 − g < x∗1, then y
∗
2 > x∗2, y

∗
2 = x∗1 + δ1,2 + g and

C2 = [D2, x
∗
2), and D2 = [x∗2, +∞) where ρv2(x∗2) = bx∗2 − r2D2.

b) If x∗2 + δ2,1 − g = x∗1 then y∗2 ≤ x∗2, ρv2(x∗2) = bx∗2 − r2D2 + ∆2,1 − bg.
We define a∗2 as the solution of ρv2(a∗2) = ba∗2 − r2D2 and have two cases

i) If a∗2 6∈ D2, we have

D2 = [x∗2, +∞) and C2 = [D2, y
∗
2).

ii) If a∗2 ∈ D2, there exists z∗2 ∈ (a∗2, y
∗
2) such that

D2 = [a∗2, z
∗
2 ] ∪ [x∗2, +∞) and C2 = [D2, a

∗
2) ∪ (z∗2 , y

∗
2).

Remark 5.1 Theorem 5.1 clearly states that it is never optimal to make growth investment
through debt financing when it results in lower “drift” (b − ri)Di. However, when the firm
value process exceeds the threshold, y∗i , it may be optimal to switch to a lower debt regime
should it result in a higher “drift” (b− ri)Di.

Figure 1: Switching regions: case (b− r1)D1 > (b− r2)D2.
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Proof: From Theorem 4.2, we have

D1 = [x∗1, +∞) where ρv1(x∗1) = bx∗1 − r1D1 and S1 = ∅.

1) We assume that S̊2 = ∅. From Corollary 4.1, we know that ρv2(x∗2) = bx∗2 − r2D2. If
there exists x ∈ D̊2 ∩ (D2, x

∗
2), we would have 0 ≤ ρv2(x) − (bx − r2D2) but this is

impossible for x < x∗2. Hence we have

C2 = [D2, x
∗
2), and D2 = [x∗2, +∞).

2) Now, we assume that S̊2 6= ∅ and set y∗2 = inf S̊2. We first prove that S2 = [y∗2, +∞).
We define the following function

V2(x) =

{
v2(x) if D2 ≤ x < y∗2
v1(x+ δ2,1 − g) if y∗2 ≤ x.
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V2 is a C1 function on [D2,+∞). We prove that V2 is the solution of the variational
inequality satisfied by v2. We obviously have V ′2(x) ≥ 1 and V2(x) ≥ v1(x+ δ2,1 − g).
Moreover, we have

V2(x+ δ1,2 − g) =

{
v2(x+ δ1,2 − g) ≤ v1(x) if D2 ≤ x < y∗2 + δ2,1 + g

v1(x− 2g) ≤ v1(x) if y∗2 + δ2,1 + g ≤ x.

It remains to prove that A2V2(x) ≤ 0 on [y∗2, +∞). For x ≥ y∗2, we set x = x+δ2,1−g
and we have

A2V2(x) =
σ2x2

2
v′′1(x) + (bx− r2D2)v′1(x)− ρv1(x)

= A1v1(x) +
σ2

2
(x2 − x2)v′′1(x)− (∆2,1 + bg)v′1(x)

≤ σ2

2
(x2 − x2)v′′1(x).

As D1 < D2, we have x2 > x2. On the other hand, we have seen that v1 is concave so
we can assert that A2V2(x) ≤ 0 on [y∗2, +∞). This proves that v2 = V2 and especially
that S̊2 = (y∗2, +∞).

a) If x∗2 + δ2,1 − g < x∗1, then using Proposition 4.1, we have y∗2 > x∗2 and x∗2 6∈ S2,
so it follows from Corollary 4.1 that ρv2(x∗2) = bx∗2 − r2D2. Moreover, we have
D̊2 = (x∗2, +∞) and from Lemma 4.4, we have y∗2 = x∗1 + δ1,2 + g.

b) If x∗2 + δ2,1 − g = x∗1, then using Proposition 4.1, we have y∗2 ≤ x∗2. In this case,
x∗2 ∈ S2 and it follows from Corollary 4.1 that ρv2(x∗2) = bx∗2− r2D2 + ∆2,1− bg.
We define a∗2 as the solution of ρv2(a∗2) = ba∗2 − r2D2 and distinguish two cases:

i) If a∗2 6∈ D2, it follows from Lemma 4.3 that

D2 = [x∗2, +∞) and C2 = [D2, x
∗
2).

ii) Finally, we assume that a∗2 ∈ D2. We set z∗2 = inf{x ≥ a∗2 : v′2 > 1} and
have

D2 = [a∗2, z
∗
2 ] ∪ [x∗2, +∞) and C2 = [D2, a

∗
2) ∪ (z∗2 , x

∗
2).

2

We now turn to the case where (b− r1)D1 < (b− r2)D2.

Theorem 5.2 We assume that (b− r1)D1 < (b− r2)D2,

1) we have

D2 = [x∗2, +∞) where ρv2(x∗2) = bx∗2 − r2D2

S̊2 = ∅ or there exist s∗2, S
∗
2 ∈ (D2 + g, x∗2) such that S̊2 = (s∗2, S

∗
2).
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2) If S̊1 = ∅ then we have

C1 = [D1, x
∗
1), and D1 = [x∗1, +∞) where ρv1(x∗1) = bx∗1 − r1D1.

3) If S̊1 6= ∅ there exists y∗1 such that S̊1 = (y∗1, +∞)

a) If x∗1 + δ1,2 − g < x∗2, then y
∗
1 > x∗1, y

∗
1 = x∗2 + δ2,1 + g and

C1 = [D1, x
∗
1), and D1 = [x∗1, +∞) where ρv1(x∗1) = bx∗1 − r1D1.

b) If x∗2 + δ2,1 − g = x∗1, then y
∗
1 ≤ x∗1, ρv1(x∗1) = bx∗1 − r1D1 + ∆1,2 − bg.

We define a∗1 as the solution of ρv1(a∗1) = ba∗1 − r1D1 and have two cases.

i) If a∗1 6∈ D1, we have

D1 = [x∗1, +∞) and C1 = [D1, y
∗
1).

ii) If a∗1 ∈ D1, there exists z∗1 ∈ (a∗1, y
∗
1) such that

D1 = [a∗1, z
∗
1 ] ∪ [x∗1, +∞) and C1 = [D1, a

∗
1) ∪ (z∗1 , y

∗
1).

Remark 5.2 Theorem 5.2 states that when the firm’s value is sufficiently high (above y∗1
threshold), it’s optimal to switch to a higher-debt regime which operates at a higher drift
(b−ri)Di, see figure 2, case 2. However, when the firm is too small, it may be optimal not to
postpone dividend payment and to operate under as a medium size company (cash-reserve
lower than the threshold a∗1, as in figure 2, case 3), i.e. to distribute dividend, whenever the
cash-reserve exceed the threshold a∗1.

However, one should not switch to a lower drift regime unless it lowers the firm’s
bankruptcy risk. It may happen, when the value firm dangerously approaches bankruptcy
threshold, i.e. when its cash reserve stands between s∗2 and S∗2 .

Figure 2: Switching regions: case (b− r1)D1 < (b− r2)D2.
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Proof: Throughout the proof, for x ∈ R, we set x̄ = x + δ1,2 − g and x = x + δ2,1 − g.
Notice that we have x < x < x̄.
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1.) From Theorem 4.2 we have

D2 = [x∗2, +∞) where ρv2(x∗2) = bx∗2 − r2D2

S̊2 ⊂ (D2 + g, (a∗1 + δ2,1 − g) ∧ x∗2),

where a∗1 is the unique solution of the equation ρv1(x) = (bx− r1D1)v′1(x).
Assume that S̊2 6= ∅. We set s∗2 = inf S̊2 and S∗2 = sup S̊2. Now we prove that S̊2 = (s∗2, S

∗
2).

On [D2, +∞), we define the following function:

V2(x) =


v2(x) if x < s∗2
v1(x+ δ2,1 − g) if s∗2 ≤ x ≤ S∗2
v2(x) if x > S∗2 .

V2 is a continuous function on [D2, +∞) and it is easy to see that V ′2 ≥ 1. For all
x ∈ [D2, +∞), we have V2(x) ≥ v1(x+δ2,1−g) and for x+δ1,2−g ∈ [s∗2, S

∗
2 ], V2(x+δ1,2−g) =

v1(x− 2g) < v1(x). We now prove that A2V2 ≤ 0. Let x ∈ [s∗2, S
∗
2 ], we have

A2V2(x) = A1v1(x) +
x2 − x2

x2

(
σ2x2

2
v′′1(x) +

x2

x2 − x2
(∆1,2 + bg)v′1(x)

)
= −x

2 − x2

x2
H1(x).

We recall that

H1(x) =
(
bx− r1D1 −

x2

(x+ δ1,2 + g)2 − x2
(∆1,2 + bg)

)
v′1(x)− ρv1(x).

We have seen in the proof of Theorem 4.2 that S̊2 ⊂ {x ∈ (Dm,+∞) : H1(x) ≥ 0}.
Especially, we have H1(S∗2) ≥ 0, with S∗2 ≤ a∗1. Now, we prove that H1 is decreasing on
(D1, a

∗
1). As H1 is continuous, this will lead to A2V2 ≤ 0 and allows us to assert that

v2 = V2 and especially that S̊2 = (s∗2, S
∗
2).

We may rewrite H1:
H1(x) = U1(x)−G1(x),

where

G1(x) = ρv1(x)− (bx− r1D1)V ′1(x)

U1(x) = − x2

(x+ δ1,2 + g)2 − x2
(∆1,2 + bg)v′1(x).

From the proof of Theorem 4.2, we have G1 is strictly non-decreasing on (D1, a
∗
1). Further-

more, a straight study of the function U1 and recalling that on (D1, a
∗
1], v′′1(x) ≤ 0, we may

obtain that U1 is non-increasing. As such, H1 is strictly non-increasing.

2.) If S̊1 = ∅, then x∗1 6∈ S1. Using the arguments from 1.) of Theorem 4.2, we may obtain

C1 = [D1, x
∗
1), and D1 = [x∗1, +∞) where ρv1(x∗1) = bx∗1 − r1D1.
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3.) We now assume that S̊1 6= ∅. We set y∗1 = inf S̊1 and prove that S̊1 = (y∗1, +∞).

On [D1, +∞), we define the following function:

V1(x) =

{
v1(x) if x < y∗1
v2(x+ δ1,2 − g) if y∗1 ≤ x.

V1 is a C1 function on [D1, +∞) and it is easy to see that V ′1 ≥ 1. For all x ∈ [D1, +∞),
we have V1(x) ≥ v2(x+ δ1,2 − g) and for x ≥ y∗1, V1(x+ δ2,1 − g) = v2(x− 2g) < v2(x). We
now prove that A1V1 ≤ 0. Let x ∈ [y∗1, +∞), we have

A1V1(x) = A2v2(x̄)− (x̄2 − x2)σ2

2
v′′2(x̄)−∆−1,2v

′
2(x̄)

≤ −(x̄2 − x2)σ2

2
v′′2(x̄)−∆−1,2v

′
2(x̄).

If x̄ ∈ D2, we obviously have A1V1(x) ≤ 0. Assume that x̄ ∈ C2, then we have

A1V1(x) =
x̄2 − x2

x̄2
H2(x̄).

As H2 is decreasing, we have H2(x̄) ≤ H2(y∗1) ≤ 0 so A1V1(x) ≤ 0. Finally, we assume that
x̄ ∈ S̊2. In this case, we have

(x− g)2

x̄2 − x2
A1V1(x) ≤ −σ

2(x− g)2

2
v′′1(x− g)− (x− g)2

x̄2 − x2
∆−1,2v

′
1(x− g)

= −ρv1(x− g) +
(
b(x− g)− r1D1 −

(x− g)2

x̄2 − x2
∆−1,2

)
v′1(x− g)

= −ρv2(x̄) +
(
bx̄− r2D2 −∆1,2 −

(x− g)2

x̄2 − x2
∆−1,2

)
v′2(x̄)

= H2(x̄) +
(
x̄2 − (x− g)2

x̄2 − x2
∆−1,2 −∆1,2

)
v′2(x̄)

≤
(
x̄2 − (x− g)2

x̄2 − x2
∆−1,2 −∆1,2

)
v′2(x̄).

However, we have

(x̄2 − (x− g)2)∆−1,2 − (x̄2 − x2)∆1,2 = −bg(x̄2 − x2) + g(2x− g))(∆1,2 − bg)

= g
(

2(r1D1 − r2D2)x− g∆−1,2 − b(δ1,2 − g)2
)

≤ 0.

Therefore, A1V1 ≤ 0 on (D1, +∞). This allows us to assert that v1 = V1 and especially
that S̊1 = (y∗1, +∞).

a) If x∗1 + δ1,2 − g < x∗2, then using Proposition 4.1, we have y∗1 > x∗1 and x∗1 6∈ S1. So
it follows from Corollary 4.1 that ρv1(x∗1) = bx∗1 − r1D1. Moreover, we have D̊1 =
(x∗1, +∞) and from Lemma 4.4, we have y∗1 + δ1,2 − g = x∗2.
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b) If x∗1 +δ1,2−g = x∗2, then using Proposition 4.1, we have y∗1 ≤ x∗1. In this case, x∗1 ∈ S1

and it follows from Corollary 4.1 that ρv1(x∗1) = bx∗1− r1D1 + ∆1,2− bg. We define a∗1
as the solution of ρv1(a∗1) = ba∗1 − r1D1 and distinguish two cases:

i) If a∗1 6∈ D1, it follows from Lemma 4.3 that

D1 = [x∗1, +∞) and C1 = [D1, x
∗
1).

ii) Finally, we assume that a∗1 ∈ D1. We set z∗1 = inf{x ≥ a∗1 : v′1 > 1} and have

D1 = [a∗1, z
∗
1 ] ∪ [x∗1, +∞) and C1 = [D1, a

∗
1) ∪ (z∗1 , x

∗
1).

2

Remark 5.3 The arguments used to obtain the above results in Theorems 5.1 and 5.2 in
the two-regime problem may also apply to higher regime problems although the required
analysis involved would be much lengthier and depends on many more parameters. It is
particularly the case when we reconsider our initial multi-switching problem with a slight
but realistic change to our initial model: we only allow the firm to change, i.e. increase or
repay, its debt level to the one immediately above or below. This latter case may be subject
to further studies in the future, but we may already obtain:

• The elementary decomposition of the switching regions becomes Si = Si,i−1 ∪ Si,i+1.
The system of variational inequalities becomes :

min
[
−Aivi(x) , v′i(x)− 1 , vi(x)− max

j=i−1,i+1
vj(x+ (j − i)D − g)

]
≥ 0, x > Di (5.1)

• With the exception of part i) of Lemma 4.1, all the other results still hold. For results
obtained by using part i) of Lemma 4.1, it suffices to slightly modify the existing proofs.

• The complete solution to our modified problem may be obtained by applying iteratively
the results from Theorem 5.1 and 5.2.

Some numerical illustrations:

Below are some numerical analysis on value functions as defined in equation (2.7) versus the
real value for shareholders as defined in equation (2.8) for different values of P , see Figure
3.
Finally, Figure 4 shows the contribution of the management team in creating value for
shareholders for different values of P .
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Figure 3: Optimal values for managers (vi) Vs shareholders’ value (ui) for increasing penalty P .

    P different for u valuesequity  Real i ↓)(x

    P  different for v functions Value i ↓)(x

Figure 4: Excess shareholders’ values Vs immediate consumption.

    P  different for uW ii ↓−−= )()()( iDxxx
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Appendix A : Proof of Theorem 3.1

Proof of the uniqueness property.
Suppose ui, i ∈ IN , are continuous viscosity subsolutions to the system of variational
inequalities on (Di,∞), and wi, i ∈ IN , continuous viscosity supersolutions to the system of
variational inequalities on (Di,∞), satisfying the boundary conditions ui(D+

i ) ≤ wi(D+
i ),

i ∈ IN , and the linear growth condition :

|ui(x)|+ |wi(x)| ≤ C1 + C2x, ∀x ∈ (0,∞), i ∈ IN , (A.1)

for some positive constants C1 and C2. We want to prove that

ui ≤ wi, on (Di,∞), i ∈ IN .

Step 1. We first construct strict supersolutions to the system with suitable perturbations
of wi, i ∈ IN and any j 6= i. We set

hi(x) = Ai +Bx, x ≥ Di,

where

Ai = DN −Di + 1 + sup
i∈IN

∣∣wi(D+
i )
∣∣

B = 2C2 + 2.

We then define for all γ ∈ (0, 1), the continuous functions on (Di,∞) by :

wγi = (1− γ)wi + γhi, i ∈ IN .

We then see that for all γ ∈ (0, 1), i ∈ IN :

wγi (x)− wγj (x+Dj −Di − g) = (1− γ) [wi(x)− wj(x+Dj −Di − g)] (A.2)

+ γ [hi(x)− hj(x+Dj −Di − g)] ,

A straightforward calculation gives us

wγi (x)− wγj (x+Dj −Di − g) = γg, i, j ∈ IN , i 6= j. (A.3)

As such we obtain

wγi (x)−max
j 6=i

wγj (x+Dj −Di − g) ≥ γg, i ∈ IN . (A.4)

Furthermore, we also easily obtain

h′i(x)− 1 = B − 1 > 1. (A.5)

A straight calculation will also provide us with the last required inequality, i.e.

ρhi(x)− Lihi(x) ≥ min
i∈IN

(ρ+ riDi) > 0, (A.6)
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where min
i∈IN

(ρ+ riDi) > ρ.

Combining (A.4), (A.5), and (A.6), this shows that wγi is a strict supersolution of the
system : for i ∈ IN , we have on (Di,∞)

min
[
ρwγi (x)− Liwγi (x), wγi

′(x)− 1, wγi (x)−max
j 6=i

wγj (x+Dj −Di − g)
]
≥ δ > 0, (A.7)

where δ = γmin{1, g, ρ}.
Step 2. In order to prove the comparison principle, it suffices to show that for all γ ∈ (0, 1):

max
i∈IN

sup
(Di,+∞)

(ui − wγi ) ≤ 0,

since the required result is obtained by letting γ to 0. We argue by contradiction and
suppose that there exist some γ ∈ (0, 1) and i ∈ IN , s.t.

θ := max
j∈IN

sup
(Dj ,+∞)

(uj − wγj ) = sup
(Di,+∞)

(ui − wγi ) > 0. (A.8)

Notice that ui(x)−wγi (x) goes to −∞ when x goes to infinity. We also have lim
x→D+

i

ui(x)−

lim
x→D+

i

wγi (x) ≤ γ( lim
x→D+

i

wi(x) − hi(Di)) ≤ 0. Hence, by continuity of the functions ui and

wγi , there exists x0 ∈ (Di,∞) s.t.

θ = ui(x0)− wγi (x0).

For any ε > 0, we consider the functions

Φε(x, y) = ui(x)− wγi (y)− φε(x, y),

φε(x, y) =
1
4
|x− x0|4 +

1
2ε
|x− y|2,

for all x, y ∈ (Di,∞). By standard arguments in comparison principle, the function Φε

attains a maximum in (xε, yε) ∈ (Di,∞)2, which converges (up to a subsequence) to (x0, x0)
when ε goes to zero. Moreover,

lim
ε→0

|xε − yε|2

ε
= 0. (A.9)

Applying Theorem 3.2 in [6], we get the existence of Mε, Nε ∈ R such that:

(pε,Mε) ∈ J2,+ui(xε),

(qε, Nε) ∈ J2,−wγi (yε),

and (
Mε 0
0 −Nε

)
≤ D2φε(xε, yε) + ε(D2φε(xε, yε))2, (A.10)
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where

pε = Dxφε(xε, yε) =
1
ε

(xε − yε) + (xε − x0)3,

qε = −Dyφε(xε, yε) =
1
ε

(xε − yε),

D2φε(xε, yε) =

(
3(xε − x0)2 + 1

ε −1
ε

−1
ε

1
ε

)
.

By writing the viscosity subsolution property of ui and the strict viscosity supersolution
property (A.7) of wγi , we have the following inequalities:

min
{
ρui(xε)−

(
1
ε

(xε − yε) + (xε − x0)3
)

(bxε − riDi)−
1
2
σ2x2

εMε,(
1
ε

(xε − yε) + (xε − x0)3
)
− 1, ui(xε)−max

j 6=i
uj(xε +Dj −Di − g)

}
≤ 0,(A.11)

min
{
ρwγi (yε)−

1
ε

(xε − yε)(byε − riDi)−
1
2
σ2y2

εNε,
1
ε

(xε − yε)− 1,

wγi (yε)−max
j 6=i

wγj (yε +Dj −Di − g)
}
≥ δ. (A.12)

We then distinguish the following three cases :

? Case 1 : ui(xε)−max
j 6=i

uj(xε +Dj −Di − g) ≤ 0 in (A.11).

From the continuity of ui and by sending ε→ 0, this implies

ui(x0) ≤ max
j 6=i

uj(x0 +Dj −Di − g). (A.13)

On the other hand, from (A.12), we also have

wγi (yε)−max
j 6=i

wγj (yε +Dj −Di − g) ≥ δ,

which implies, by sending ε→ 0 and using the continuity of wi :

wγi (x0) ≥ max
j 6=i

wγj (x0 +Dj −Di − g) + δ. (A.14)

Combining (A.13) and (A.14), we obtain

θ = ui(x0)− wγi (x0) ≤ max
j 6=i

uj(x0 +Dj −Di − g)−max
j 6=i

wγj (x0 +Dj −Di − g)− δ,

≤ max
j 6=i

{
uj(x0 +Dj −Di − g)− wγj (x0 +Dj −Di − g)

}
− δ,

≤ θ − δ,

which is a contradiction.

? Case 2 :
(

1
ε (xε − yε) + (xε − x0)3

)
− 1 ≤ 0 in (A.11)

Notice that by (A.12), we have

1
ε

(xε − yε)− 1 ≥ δ,
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which implies in this case

(xε − x0)3 ≤ −δ.

By sending ε to zero, we obtain again a contradiction.

? Case 3 : ρui(xε)−
(

1
ε (xε − yε) + (xε − x0)3

)
(bxε − riDi)− 1

2σ
2x2
εMε ≤ 0 in (A.11)

From (A.12), we have

ρwγi (yε)−
1
ε

(xε − yε)(byε − riDi)−
1
2
σ2y2

εNε ≥ δ,

which implies in this case

ρ (ui(xε)− wγi (yε)) ≤
b

ε
(xε − yε)2 + (bxε − riDi)(xε − x0)3

+
1
2
σ2(x2

εMε − y2
εNε)− δ, (A.15)

Using (A.10), we obtain an upper bound of 1
2σ

2(x2
εMε − y2

εNε) which may be plugged
into (A.15). This yields an upper bound of ρ (ui(xε)− wγi (yε)) which goes to −δ when we
send ε to zero.

Using the continuity of ui and w
γ
i , we obtain the required contradiction : ρθ ≤ −δ < 0.

This ends the proof. 2
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