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Abstract

This paper concerns with numerical resolution of an impulse control problem under
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impact. We show that the value function could be obtained as the limit of an iterative

procedure where each step is an optimal stopping problem and the reward function is

related to the impulse operator. Given the dimension of our problem and the com-

plexity of its solvency region, we use a numerical approximation algorithm based on

quantization procedure instead of finite difference methods to calculate the value func-

tion, the transaction and no-transaction regions. We also focus on the convergence of

our numerical scheme, in particular, we show that it satisfies monotonicity, stability

and consistency properties. We further enrich our studies with some numerical results
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1 Introduction

This paper concerns with a control problem of portfolio optimization under liquidity risk

and price impact. We consider the liquidity framework studied in Ly Vath, Mnif and

Pham (2007). Under the impact of liquidity risk, prices are pushed up when the investor

buys stock shares and moved down when he sells stock shares. Transactions incur some

fixed costs and, therefore, are allowed only in discrete times. The investor maximizes his

expected utility of terminal liquidation wealth under solvency constraints. In Ly Vath,

Mnif and Pham (2007), the authors formulate this problem as an impulse control problem

under state constraints and undertake the theoretical studies of the problem. They show

that the value function is characterized as the unique constrained viscosity solution to

the associated Hamilton-Jacobi-Bellman Quasi-Variational Inequality (HJBQVI). In this

paper, we investigate numerical aspects of the problem. Our main objective is to provide

a numerical algorithm as well as numerical results of the optimal transaction strategy.

Hamilton-Jacobi-Bellman equations are usually solved by using numerical methods

based on finite difference methods. The Howard algorithm, which consists in comput-

ing two sequences, ie the optimal strategy and the value function, is often used for the

resolution of these types of equation. From Barles and Souganidis (1995), we know that

a monotone, stable and consistent scheme insures the convergence of the algorithm to the

unique viscosity solution of the HJBQVI. Chancelier, Øksendal, and Sulem (2001) use the

Howard algorithm to solve numerically a bi-dimensional HJBQVI related to a problem

of optimal consumption and portfolio with both fixed and proportional transaction costs.

They solve the problem in a bounded domain and they assumed zero Neumann boundary

conditions on the localized boundary. However, this finite difference approach has two main

limitations. First, it is only suitable to solve HJB equations when the solvency region has

a simple shape such as Rn+ or when its boundaries are straight. A second more critical

limitation of this approach concerns the state dimension of the problem. For large dimen-

sion as in our case, we have to use probabilistic algorithms as this approach is no longer

suitable. Indeed, our associated HJBQVI has, in addition to time variable, three variables

(x, y, and p, respectively the cash holding, the stock holding, and the stock share price) as

well a very complex solvency region.

Guilbaud, Mnif and Pham (2013) give some numerical methods to solve an impulse

control problem arising from optimal portfolio liquidation with bid-ask spread and market

price impact. In the latter paper, the authors are able to provide an explicit backward

numerical scheme for the time discretization of the dynamic programming QVI by taking

advantage of the lag variable tracking the time interval between trades. This lag feature

does not exist in our model, as such, the same technique may not be used. In our study, we

give an alternative and efficient approach using an iterative method to estimate our value

function.

Korn (1998) studies the problem of portfolio optimization with strictly positive trans-

action costs and impulse control and presents a sequence of optimal stopping problems

where the reward function is expressed in terms of the impulse operator. He proves the

convergence of the sequence of optimal stopping problems towards the value function of
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the initial problem. Chancelier, Øksendal and Sulem (2001) suggest an iterative method

to solve the impulse control problem. They consider an auxiliary value function where the

number of transactions is bounded by a positive number.

In this article, we prove that both iterative methods coincide. We study numerically our

problem by reducing the impulse control problem to an iterative sequence of optimal stop-

ping problems. Then, we introduce a numerical approximation algorithm for each optimal

stopping problem based on quantization numerical procedures. Our numerical approach,

called “value-iteration algorithm”, could be adapted to every shape of the solvency region

and we don’t need to assume some artificial boundary conditions.

The paper is organized as follows. In section 2, we recall the model settings of our

problem and its theoretical results. In section 3, we show that the value function could

be obtained as the limit of an iterative procedure where each step is an optimal stopping

problem and the reward function is related to the impulse operator. In sections 4 and 5,

we provide a numerical method based on Quantization calculus and give numerical results

for the optimal transaction strategy. We also focus on the convergence of our numerical

scheme, in particular, we show that it satisfies monotonicity, stability and consistency

properties. Here, the stability is proved in a general case where the utility function is not

bounded unlike the proof in Guilbaud, Mnif and Pham (2013). Finally, in the last section,

we further enrich our studies with some numerical illustrations.

2 Problem formulation

2.1 The model of the portfolio optimization

This section presents the details of the model. Let (Ω,F ,P) be a probability space equipped

with a filtration (Ft)0≤t≤T supporting an one-dimensional Brownian motion W on a finite

horizon [0, T ], T < ∞. We consider a continuous time financial market model consisting of

a money market account yielding a constant interest rate r ≥ 0 and a risky asset (or stock)

of price process P = (Pt). We denote by Xt the amount of money (or cash holdings) and

by Yt the number of shares in the stock held by the investor at time t.

Liquidity constraints. We assume that the investor can only trade discretely on [0, T ).

This is modelled through an impulse control strategy α = (τn, ζn)n≥1 , where the non-

decreasing stopping times τ1 ≤ . . . τn ≤ . . . < T represent the intervention times of the

investor and ζn, n ≥ 1, are Fτn-measurable random variables valued in R and represent the

number of stock purchased if ζn ≥ 0 or sold if ζn < 0 at these times. The sequence (τn, ζn)

may be a priori finite or infinite. The dynamics of Y are then given by :

Ys = Yτn , τn ≤ s < τn+1 (2.1)

Yτn+1 = Yτn + ζn+1 (2.2)

Notice that we do not allow trade at the terminal date T , which is the liquidation date.

Price impact. The large investor affects the price of the risky stock P by his purchases

and sales : the stock price goes up when the trader buys and goes down when he sells

and the impact is increasing with the size of the order. We introduce a positive price
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impact function Q(ζ, p) which indicates the post-trade price when the large investor trades

a position of ζ shares of stock at a pre-trade price p. In absence of price impact, we have

Q(ζ, p) = p. Here, we have Q(0, p) = p meaning that no trading incurs no impact and Q is

nondecreasing in ζ with Q(ζ, p) ≥ (resp. ≤) p for ζ ≥ (resp. ≤) 0. Actually, in the rest of

the paper, we consider a price impact function in the form

Q(ζ, p) = peλζ where λ > 0 (2.3)

The proportionality factor eλζ represents the price increase (resp. discount) due to the ζ

shares bought (resp. sold). The positive constant λ measures the fact that larger trades gen-

erate larger quantity impact, everything else constant. This form of price impact function

is consistent with both the asymmetric information and inventory motives in the market

microstructure literature (see Kyle (1985)).

We then model the dynamics of the price impact as follows. In the absence of trading,

the price process is governed by

dPs = Ps(bds+ σdWs), τn ≤ s < τn+1 (2.4)

where b, σ are constants with σ > 0. When a discrete trading ∆Ys := Ys − Ys− = ζn+1

occurs at time s = τn+1, the price jumps to Ps = Q(∆Ys, Ps−), ie

Pτn+1 = Q(ζn+1, Pτ−n+1
) (2.5)

Notice that with this modelling of price impact, the price process P is always strictly

positive, ie valued in R∗+ = (0,∞).

Cash holdings. We denote by θ(ζ, p) the cost function, which indicates the amount for

a (large) investor to buy or sell ζ shares of stock when the pre-trade price is p :

θ(ζ, p) = ζQ(ζ, p)

In absence of transaction, the process X grows deterministically at exponential rate r :

dXs = rXsds, τn ≤ s < τn+1 (2.6)

When a discrete trading ∆Ys = ζn+1 occurs at time s = τn+1 with pre-trade price Ps− =

Pτ−n+1
, we assume that in addition to the amount of stocks θ(∆Ys, Ps−) = θ(ζn+1, Pτ−n+1

),

there is a fixed cost k > 0 to be paid. This results in a variation of cash holdings by ∆Xs

:= Xs −Xs− = −θ(∆Ys, Ps−)− k, ie

Xτn+1 = Xτ−n+1
− θ(ζn+1, Pτ−n+1

)− k (2.7)

The assumption that any trading incurs a fixed cost of money to be paid will rule out

continuous trading, ie optimally, the sequence (τn, ζn) is not degenerate in the sense that

for all n, τn < τn+1 and ζn 6= 0 a.s. A similar modelling of fixed transaction costs is

considered in Morton and Pliska (1995) and Korn (1998).

Liquidation value and solvency constraint. The solvency constraint is a key issue in any

portfolio/consumption choice problem. The point is to define in an economically meaningful
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way the portfolio value of a position in cash and stocks. In our context, we introduce

the liquidation function `(y, p) representing the value that an investor would obtained by

liquidating immediately his stock position y by a single block trade, when the pre-trade

price is p. It is given by :

`(y, p) = −θ(−y, p)

If the agent has the amount x in the bank account, the number of shares y of stocks at the

pre-trade price p, ie a state value z = (x, y, p), his net wealth or liquidation value is given

by :

L(z) = max[L0(z), L1(z)]1y≥0 + L0(z)1y<0 (2.8)

where

L0(z) = x+ `(y, p)− k, L1(z) = x

The interpretation is the following. L0(z) corresponds to the net wealth of the agent when

he liquidates his position in stock. Moreover, if he has a long position in stock, ie y ≥ 0,

he can also choose to bin his stock shares, by keeping only his cash amount, which leads

to a net wealth L1(z). This last possibility may be advantageous, ie L1(z) ≥ L0(z), due

to the fixed cost k. Hence, globally, his net wealth is given by (2.8). In the absence of

liquidity risk, ie λ = 0, and fixed transaction cost, ie k = 0, we recover the usual definition

of wealth L(z) = x + py. Our definition (2.8) of liquidation value is also consistent with

the one in transaction cost models where portfolio value is measured after stock position is

liquidated and rebalanced in cash, see eg Cvitanic and Karatzas (1996) and Oksendal and

Sulem (2002). Another alternative would be to measure the portfolio value separately in

cash and stock as in Deelstra, Pham and Touzi (2002) for transaction cost models. This

study would lead to multidimensional utility functions and is left for future research.

We then naturally introduce the liquidation solvency region :

S =
{
z = (x, y, p) ∈ R× R× R∗+ : L(z) > 0

}
and we denote its boundary and its closure by

∂S =
{
z = (x, y, p) ∈ R× R× R∗+ : L(z) = 0

}
and S̄ = S ∪ ∂S

The boundary of the solvency region may then be explicited as follows :

∂S = ∂−` S ∪ ∂
yS ∪ ∂x0S ∪ ∂x1S ∪ ∂x2S ∪ ∂+

` S

where

∂−` S =
{
z = (x, y, p) ∈ R× R× R∗+ : x+ `(y, p) = k, y ≤ 0

}
∂yS =

{
z = (x, y, p) ∈ R× R× R∗+ : 0 ≤ x < k, y = 0

}
∂x0S =

{
z = (x, y, p) ∈ R× R× R∗+ : x = 0, y > 0, p < kλe

}
∂x1S =

{
z = (x, y, p) ∈ R× R× R∗+ : x = 0, 0 < y < y1(p)), p ≥ kλe

}
∂x2S =

{
z = (x, y, p) ∈ R× R× R∗+ : x = 0, y > y2(p), p ≥ kλe

}
∂+
` S =

{
z = (x, y, p) ∈ R× R× R∗+ : x+ `(y, p) = k, y1(p) ≤ y ≤ y2(p), p ≥ kλe

}
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In the sequel, we also introduce the corner lines in ∂S :

D0 = {(0, 0)} × R∗+ ⊂ ∂yS, Dk = {(k, 0)} × R∗+ ⊂ ∂−` S
C1 = {(0, y1(p), p) : p ∈ R∗+} ⊂ ∂+

` S, C2 = {(0, y2(p), p) : p ∈ R∗+} ⊂ ∂+
` S

Admissible controls. Given t ∈ [0, T ], z = (x, y, p) ∈ S̄ and an initial state Zt− = z,

we say that the impulse control strategy α = (τn, ζn)n≥1 is admissible if the process Zs =

(Xs, Ys, Ps) given by (2.1)-(2.2)-(2.4)-(2.5)-(2.6)-(2.7) (with the convention τ0 = t) lies in

S̄ for all s ∈ [t, T ]. We denote by A(t, z) the set of all such policies. We shall see later

that this set of admissible controls is nonempty for all (t, z) ∈ [0, T ] × S̄. In the sequel,

for t ∈ [0, T ], z = (x, y, p) ∈ S̄, we also denote Z0,t,z
s = (X0,t,x

s , y, P 0,t,p
s ), t ≤ s ≤ T , the

state process when no transaction (ie no impulse control) is applied between t and T , ie

the solution to :

dZ0
s =

 rX0
s

0

bP 0
s

 ds+

 0

0

σP 0
s

 dWs (2.9)

starting from z at time t.

Investment problem. We consider an utility function U from R+ into R, strictly increas-

ing, concave and w.l.o.g. U(0) = 0, and s.t. there exist K ≥ 0, γ ∈ [0, 1) :

U(w) ≤ Kwγ , ∀w ≥ 0 (2.10)

We denote UL the function defined on S̄ by :

UL(z) = U(L(z))

We study the problem of maximizing the expected utility from terminal liquidation wealth

and we then consider the value function :

v(t, z) = sup
α∈A(t,z)

E
[
e−r(T−t)UL(ZT )

]
, (t, z) ∈ [0, T ]× S̄ (2.11)

2.2 Viscosity solution of the associated Quasi-variational Hamilton-Jacobi-

Bellman inequality

The HJB quasi-variational inequality satisfied by the value function (2.11) is as follows:

min

[
−∂v
∂t
− Lv , v −Hv

]
= 0, on [0, T )× S (2.12)

where L as the infinitesimal generator associated to the system (2.9) corresponding to

a no-trading period :

Lϕ = rx
∂ϕ

∂x
+ bp

∂ϕ

∂p
+

1

2
σ2p2∂

2ϕ

∂p2
− rϕ

6



H is the impulse operator defined by

Hϕ(t, z) = sup
ζ∈C(z)

ϕ(t,Γ(z, ζ)), (t, z) ∈ [0, T ]× S̄

Γ is the impulse transaction function defined from S̄ × R into R× R× R∗+ :

Γ(z, ζ) = (x− θ(ζ, p)− k, y + ζ,Q(ζ, p)), z = (x, y, p) ∈ S̄, ζ ∈ R

and C(z) the set of admissible transactions :

C(z) =
{
ζ ∈ R : Γ(z, ζ) ∈ S̄

}
= {ζ ∈ R : L(Γ(z, ζ)) ≥ 0}

We related the value function (2.11) and the associated HJB quasi-variational inequality

(2.12) by means of constrained viscosity solutions. The definition of viscosity solutions is

given as follows:

Definition 2.1 (i) Let O ⊂ S̄. A locally bounded function u on [0, T ) × S̄ is a viscosity

subsolution (resp. supersolution) of (2.12) in [0, T )×O if for all (t̄, z̄) ∈ [0, T )×O and ϕ

∈ C1,2([0, T )×S̄) s.t. (u∗−ϕ)(t̄, z̄) = 0 (resp. (u∗−ϕ)(t̄, z̄) = 0) and (t̄, z̄) is a maximum

of u∗ − ϕ (resp. minimum of u∗ − ϕ) on [0, T )×O, we have

min

[
−∂ϕ
∂t

(t̄, z̄)− Lϕ(t̄, z̄), u∗(t̄, z̄)−Hu∗(t̄, z̄)
]
≤ 0 (2.13)

( resp. ≥ 0) (2.14)

(ii) A locally bounded function u on [0, T )×S̄ is a constrained viscosity solution of (2.12) in

[0, T )×S if u is a viscosity subsolution of (2.12) in [0, T )× S̄ and a viscosity supersolution

of (2.12) in [0, T )× S.

In Ly Vath, Mnif and Pham (2007), the following characterization was obtained

Theorem 2.1 The value function v is continuous on [0, T ) × S and is the unique (in

[0, T ) × S) constrained viscosity solution to (2.12) satisfying the boundary and terminal

condition :

lim
(t′, z′)→ (t, z)

z′ ∈ S

v(t′, z′) = 0, ∀(t, z) ∈ [0, T )×D0 (2.15)

lim
(t, z′)→ (T, z)

t < T, z′ ∈ S

v(t, z′) = max[UL(z),HUL(z)], ∀z ∈ S̄ (2.16)

and the growth condition :

|v(t, z)| ≤ K
(

1 +
(
x+

p

λ

))γ
, ∀(t, z) ∈ [0, T )× S (2.17)

for some positive constant K < ∞.

Remark 2.1 In Ly Vath, Mnif and Pham (2007), the authors have also shown that the

value function lies in the set of functions satisfying the growth condition :

Gγ([0, T ]× S̄) =

{
v : [0, T ]× S̄ → R; sup

[0,T ]×S̄

| v(t, z) |
1 + (x+ p

λ)γ
<∞

}
(2.18)

For simplifying notation and when there is no ambiguity, this set will be noted Gγ.
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3 Convergence of the iterative scheme

We first introduce the following subsets of A(t, z), the set of the admissible impulse control

strategies :

An(t, z) := {α = (τk, ξk)k=0,...,n ∈ A(t, z)}

and the corresponding value function vn, which describes the value function when the

investor is allowed to trade at most n times:

vn(t, z) := sup
α∈An(t,z)

E[e−r(T−t)UL(ZT )] (t, z) ∈ [0, T ]× S (3.1)

For t ∈ [0, T ] and z = (x, y, p) ∈ S, if x, y are both nonnegative, we clearly have

L(Z0,t,z
s ) ≥ 0, and so A0(t, z) is nonempty. Otherwise, if x < 0, y ≥ 0 or x ≥ 0, y < 0,

due to the diffusion term P 0,t,z, it is clear that the probability for L(Z0,t,z
s ) to be negative

before time T , is strictly positive, so that A0(t, z) is empty. Hence, the value function for

n = 0 is initialized to:

v0(t, z) =

{
E
[
e−r(T−t)UL(Z0,t,z

T )
]

if x ≥ 0, y ≥ 0

−∞ otherwise

We now show the convergence of the sequence of the value functions vn towards our

initial value function v.

Lemma 3.1 For all (t, z) ∈ S

lim
n→∞

vn(t, z) = v(t, z).

Proof. From the definition of An(t, z), we have:

An(t, z) ⊂ An+1(t, z) ⊂ A(t, z)

As such,

vn(t, z) ≤ vn+1(t, z) ≤ v(t, z)

which gives the existence of the limit and the first inequality:

lim
n→∞

vn(t, z) ≤ v(t, z) (3.2)

Given ε > 0, from the definition of v, there exists an impulse control α = (τ1, τ2, ...; ξ1, ξ2, ...) ∈
A(t, z) such that

E[e−r(T−t)UL(ZαT )] ≥ v(t, z)− ε (3.3)

with Zα diffusing under the impulse control α.

We now set the control

αn := (τ1, τ2, ..., τn−1, τ ; ξ1, ξ2, ..., ξn−1, yτn−1)
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where τn−1 < τ < min{τn, T}. We see that αn ∈ An(t, z) and consider the corresponding

process Z(αn). Using Fatou lemma, we obtain:

lim inf
n→∞

E[e−r(T−t)UL(Z
(αn)
T )] ≥ E[lim inf

n→∞
e−r(T−t)UL(Z

(αn)
T )] = E[e−r(T−t)UL(ZαT )] (3.4)

Using (3.3) and (3.4), we obtain

lim inf
n→∞

vn(t, z) ≥ lim inf
n→∞

E[e−r(T−t)UL(Z
(αn)
T )] ≥ v(t, z)− ε

As we obtain the latter inequality with an arbitrary ε > 0, and combining with the relation

(3.2), we obtain the desired result:

lim
n→∞

vn(t, z) = v(t, z)

2

Theorem 3.1 We define ϕn(t, z) iteratively as a sequence of optimal stopping problems:

ϕn+1(t, z) = sup
τ∈St,T

E
[
e−r(τ−t)Hϕn(τ, Z0,t,z

τ )
]

ϕ0(t, z) = v0(t, z)

where St,T is the set of stopping times in [t, T ]. Then

ϕn(t, z) = vn(t, z)

Remark 3.1 Theorem 3.1 together with Lemma 3.1 show that

lim
n→∞

ϕn(t, z) = v(t, z), (t, z) ∈ [0, T ]× S

so that the iteration scheme for ϕn provides an approximation for v.

Remark 3.2 The value function ϕn satisfies the system of variational inequalities, which

can be solved by induction starting from ϕ0:

min

[
−∂ϕn+1

∂t
− Lϕn+1 , ϕn+1 −Hϕn

]
= 0, (t, z) ∈ [0, T )× S

together with the terminal condition:

ϕn+1(T, z) = Hϕn(T, z)

Proof of Theorem 3.1. We show by induction that vn(t, z) = ϕn(t, z), for all n. First,

we have v0 = ϕ0. Considering an impulse control strategy α1 = (τ, ξ) ∈ A1(t, z), we

clearly have

ϕ1(t, z) ≥ E[e−r(τ−t)Hϕ0(τ, Z0,t,z
τ )]

≥ E[e−r(τ−t)Hv0(τ, Z0,t,z
τ )]
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From the definition of the operator H, we obtain

ϕ1(t, z) ≥ E[e−r(τ−t)v0(τ,Γ(Z0,t,z
τ , ξ))], ∀α1 = (τ, ξ) ∈ A1(t, z) (3.5)

Let Z(α1) be the diffusion of Z, starting at time t, with Z
(α1)
t = z, and evolving under the

impulse control α1. Relation (3.5) becomes:

ϕ1(t, z) ≥ E[e−r(τ−t)v0(τ, Z(α1)
τ )], ∀ α1 = (τ, ξ) ∈ A1(t, z) (3.6)

Given the arbitrariness of α1 and by using the dynamic programming principle applied to

v1(t, z), we obtain

ϕ1(t, z) ≥ v1(t, z)

From the definition of ϕ1, for a given ε > 0, there exists τ∗ such that

ϕ1(t, z)− ε ≤ E[e−r(τ
∗−t)Hϕ0(τ∗, Z0,t,z

τ∗ )] (3.7)

From the compactness of the set of admissible transactions, there exists ξ∗ such that

ϕ1(t, z)− ε ≤ E[e−r(τ
∗−t)v0(τ∗,Γ(Z0,t,z

τ∗ , ξ∗))]

≤ E[e−r(τ
∗−t)v0(τ∗, Z

(∗)
τ∗ )]

where Z(∗) is the processus starting at time t, with Z
(∗)
t = z, and evolving under the impulse

control α∗ := (τ∗, ξ∗).

Using the dynamic programming principle applied on v1(t, z), we obtain

ϕ1(t, z)− ε ≤ v1(t, z)

The latter inequality is satisfied for any value of ε > 0, as such, we have

ϕ1(t, z) ≤ v1(t, z)

which leads to ϕ1(t, z) = v1(t, z), for all (t, z) ∈ [0, T )× S.

By induction, assuming that for a given n, we have ϕn(t, z) = vn(t, z), we will prove that

ϕn+1(t, z) = vn+1(t, z). By definition, we have for any αn+1 = (τ1, ..., τn+1, ξ1, ..., ξn+1) ∈
An+1(t, z),

ϕn+1(t, z) ≥ E[e−r(τ1−t)Hϕn(τ1, Z
0,t,z
τ1 )],

≥ E[e−r(τ1−t)vn(τ1,Γ(Z0,t,z
τ1 , ξ1))]

≥ E[e−r(τ1−t)vn(τ1, Z
(n+1)
τ1 )] (3.8)

where Z(n+1) is the diffusion starting at time t, with Z
(n+1)
t = z and evolves under the

control αn+1. Given the arbitrariness of the control αn+1 and by using the dynamic pro-

gramming principle applied to vn+1, relation (3.8) becomes:

ϕn+1(t, z) ≥ vn+1(t, z)
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To prove the opposite inequality, we use the definition of ϕn+1. For any ε > 0, there exists

τ∗ such that

ϕn+1(t, z)− ε ≤ E[e−r(τ
∗−t)Hϕn(τ∗, Z0,t,z

τ∗ )] (3.9)

≤ E[e−r(τ
∗−t)Hvn(τ∗, Z0,t,z

τ∗ )] (3.10)

From the compactness of the set of admissible transactions, there also exists ξ∗ such that

Hvn(τ∗, Z0,t,z
τ∗ ) = vn(τ∗, Z

(α∗)
τ∗ )

where Z(α∗), the processus starting at time t, with Zt = z, evolves under the impulse

control α∗ := (τ∗, ξ∗). Using the dynamic programming principle applied on vn+1, the

relation (3.10) becomes

ϕn+1(t, z)− ε ≤ E[e−r(τ
∗−t)vn(τ∗, Z

(α∗)
τ∗ )]

≤ vn+1(t, z)

The inequality is obtained for any given ε, this leads to the required inequality

ϕn+1(t, z) = vn+1(t, z)

2

4 Approximation Scheme and Numerical Algorithm

In this section, we introduce a numerical scheme that approximates the HJB-QVI con-

tinuous operator, defined in (2.12), by a discrete one. This discrete operator is meant to

converge towards the continuous operator as the discretization step goes to zero.

For the rest of the paper, we suppose that r = 0.

4.1 Approximation Scheme

For a time step h > 0 on the interval [0, T ], let us consider the following approximation

scheme:

Sh(t, z, vh(t, z), vh) = 0 (t, z) ∈ [0, T ]× S (4.1)

where Sh : [0, T ]× S̄ × R× Gγ → R is defined by

Sh(t, z, g, ϕ) :=


min

[
g − E[ϕ(t+ h, Z0,t,z

t+h )], g −Hϕ(t, z)
]
, t ∈ [0, T − h]

min
[
g − E[ϕ(T,Z0,t,z

T )], g −Hϕ(t, z)
]
, t ∈ (T − h, T )

min
[
g − UL(z), g −HUL(z)

]
, t = T

(4.2)

We recall that Z0,t,z stands for the state process starting from z at time t, and without any

impulse control strategy. It is given by

Z0,t,z
s = (X0,t,x

s , y, P 0,t,p
s ), s ≥ t

11



with P 0,t,p solution of (2.4) starting from p at time t. Notice that (4.1) is formulated as a

backward scheme for the solution vh through:

vh(T, z) = max
[
UL(z),HUL(z)

]
(4.3)

vh(t, z) = max
[
E[vh(t+ h, Z0,t,z

t+h )],Hvh(t, z)
]
, 0 ≤ t ≤ T − h (4.4)

vh(t, z) = vh(T − h, z), T − h < t < T

This approximation scheme seems a priori implicit due to the nonlocal obstacle term H.

This is typically the case in impulse control problems, and the usual way to circumvent this

problem is to iterate the scheme by considering a sequence of optimal stopping problems:

vh,n+1(T, z) = max
[
UL(z),HUL(z)

]
(4.5)

vh,n+1(t, z) = max
[
E[vh,n+1(t+ h, Z0,t,z

t+h )],Hvh,n(t, z)
]
, 0 ≤ t ≤ T − h (4.6)

vh,n+1(t, z) = vh,n+1(T − h, z), T − h < t < T

starting from vh,0(t, z) = E[UL(Z0,t,z
T )].

In Section 5, we will show that the solution vh,n of this scheme converges towards vh the

solution of the scheme (4.3)-(4.4) as n goes to infinity and that vh converges towards v

solution of (2.12) when we take h goes to zero.

Notice that at this stage, this approximation scheme is not yet fully implementable since it

requires an approximation method for the expectations arising in (4.2).

4.2 Time and Space Discretization

We consider a time step h = T/m, m ∈ N\{0} and denote by Tm = {ti = ih, i = 0, ...,m}
the regular grid over the interval [0, T ]. Thus, from the previous section, the time dis-

cretization of step h for the QVI (2.12) leads to the explicit backward scheme:

vh,n+1(tm, z) = max
[
UL(z), sup

ζ∈C(z)
UL(Γ(z, ζ))

]
(4.7)

vh,n+1(ti, z) = max
[
E[vh,n+1(ti+1, Z

0,ti,z
ti+1

)], sup
ζ∈C(z)

vh,n(ti,Γ(z, ζ))
]

(4.8)

for i = 0, ...,m− 1, z = (x, y, p) ∈ S̄ and starting from vh,0(t) = E[UL(Z0,t,z
tm )].

The above scheme involves nonlocal terms in the variable z for the solution vh in relation

with the supremum over ζ ∈ C(z) and the expectations, and thus the practical implemen-

tation requires a discretization for the state variable z together with an interpolation.

Since S̄ is unbounded, we first localize the domain by setting

S̄loc = S̄ ∩ ([xmin, xmax]× [ymin, ymax]× [pmin, pmax])
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where xmin < 0 < xmax ∈ R , ymin < 0 < ymax ∈ R and 0 ≤ pmin < pmax ∈ R are fixed

constants, and then we define the regular grid

Zl = {z = (x, y, p) ∈ Xl × Yl × Pl; z ∈ S̄loc}

where Xl is the uniform grid on [xmin, xmax] of step xmax−xmin
l (l ∈ N∗), and similarly for

Yl and Pl. For the rest of the paper we will consider that pmin = 0.

Similarly we define the regular grid of the admissible controls:

CM,R(z) = {ζi = ζmin +
i

M
(ζmax − ζmin); 0 ≤ i ≤M/Γ(z, ζi) ∈ S̄loc}

where ζmin < ζmax ∈ R and M ∈ N∗ are fixed constants.

We also consider the following projection

Π[0,pmax] : R+ → [0, pmax]

p → p1[0,pmax] + pmax1]pmax,+∞[

Further more, we define R as

R := min
(
| xmin |, | xmax |, | ymin |, | ymax |, | pmax |

)
4.3 Functional quantization of the Brownian motion

We shall now describe the numerical procedure for computing the expectations arising in

(4.8). Recalling that Z0,t,z
s = (X0,t,x

s , y, P 0,t,p
s ), this involves only the expectation with

respect to the price process, assumed here to follow a Black-Scholes model (2.4). We

shall then use a Functional quantization of the Brownian motion W which is obtained by

exploiting the Karhunen-Loève decomposition. It consists in truncating the decomposition

at a fixed order d(N) and quantizing the Rd(N)-value Gaussian vector, which is constituted

of the d(N) first coordinates of the process on its Karhunen-Loève decomposition. Then,

we get

W i(t) = W (wi, t) =

d(N)∑
k=1

ξikek(t) 1 ≤ i ≤ N

where ξi = (ξi1, ..., ξ
i
d(N)) ∈ Rd(N) quantize the d(N)-dimensional vector ξN = (ξ1, ..., ξd(N))

and where (W 1(t), ...,WN (t)) is an N -tuple of points in RN quantizing the Brownian mo-

tion. In the case of a standard Brownian motion of dimension M (in our case M = 1) on

[0, T ], the terms of the Karhunen-Loève’s sequence are explicit, thus for k ≥ 1:

ek(t) =

√
2

T
sin
(πt
T

(k − 1

2
)
)

, ξk ∼ N (0, λkIM ) , λk =

(
T

π(k − 1
2)

)2

The Karhunen-Loève quantizer is a product quantizer based on the decomposition of the

number N in a product of d(N) elements. We denote by WN
i1..id(N)

(t) the quantizer of size
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N obtained from the optimal decomposition of N = N1 × N2 × ... × Nd(N) which gives

optimal d(N) and (Nk) for a given N .

Thus, for the Brownian motion on [0, T ] we have

WN
i1..id(N)

(t) =

d(N)∑
k=1

√
λkxikek(t) =

d(N)∑
k=1

√
2T

π(k − 1
2)
xik sin (

πt

T
(k − 1

2
))

1 ≤ ik ≤ Nk ,

d(N)∏
k=1

Nk = N

where (xik) is the Nk quantizer of the standard normal distribution.

The weight associated to this quantizer is Pi1..id(N)
=

d(N)∏
j=1

P(xij ) which is the product of

the weights associated to the quantization of the normal distribution.

The optimal grid (xin) and the associated weights Pi1..id(N)
are downloaded from the web-

site: http://www.quantize.maths-fi.com/downloads.

Our choice of using the functional quantization instead of the classical quantization is due

to the fact that, to prove the stability property of the numerical scheme, we need to deal

with processes. This is insured by the very definition of the Karhunen-Loève quantizer

which is, unlike for the classical quantization where the quantizers are random variables, a

process quantizer. The last quantizer is stationary and optimal in the sense of the L2-norm

as stated in Pags and Luschgy (2002) and Pags and Luschgy (2006).

Hence, the expectations arising in (4.8) are approximated by

EN,R[vh,n(t, Z0,s,z
t )] :=

N1∑
i1=1

..

Nd(N)∑
id(N)=1

Pi1..id(N)
vh,n(t, Z0,s,z

N,R (t)) ∀ s ≤ t (4.9)

where

Z0,s,z
N,R (t) :=

(
x, y,Π[0,pmax](p exp

{
(b− σ2

2
)(t− s) + σWN

i1..id(N)
(t− s)

}
)
)

Notations: For reading purposes, we recall the following notations :

h: the time step.

N : the number of points quantizing the brownian motion.

n: the index associated to the iterative scheme.

M : the number of admissible transactions.

R: the boundaries of the localized solvency region.
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4.4 Numerical Algorithm

Once the expectations arising in (4.8) are replaced by their approximated from (4.9) and

the domain is discretized and truncated. The scheme Sh defined in (4.2) becomes

Sh,R,N,M (t, z, g, ϕ) :=


min

[
g − EN,R[ϕ(t+ h, Z0,t,z

t+h )], g −HM,Rϕ(t, z)
]
, t ∈ [0, T − h]

min
[
g − EN,R[ϕ(T,Z0,t,z

T )], g −HM,Rϕ(t, z)
]
, t ∈ (T − h, T )

min
[
g − UL(z), g −HM,RUL(z)

]
, t = T

(4.10)

where HM,Rϕ(t, z) = sup
ζ∈CM,R(z)

ϕ(t,Γ(t, ζ)), ∀z ∈ Zl.

Thus, considering the iterative scheme defined in (4.5)-(4.6), we obtain the following back-

ward scheme:

Our Numerical Algorithm

vh,n+1(tm, z) = max
[
UL(z), sup

ζ∈CM,R(z)
UL(Γ(z, ζ))

]
(4.11)

vh,n+1(ti, z) = max
[
EN,R[vh,n+1(ti+1, Z

0,ti,z
ti+1

)], sup
ζ∈CM,R(z)

vh,n(ti,Γ(z, ζ))
]

(4.12)

for i = 0, ...,m− 1; z = (x, y, p) ∈ Zl and starting from vh,0(t, z) = EN,R[UL(Z0,t,z
T )], which

is explicit and fully implementable.

Remark 4.1 The localization argument is efficient in the sense that it allows us to obtain

the pointwise stability. Such argument was used in an earlier work of Barles et al. (1995).

In fact the proof of the stability is not obvious when we use the growth condition interpolation

(see inequality (2.17)) if z /∈ Zl. A way around this would be to truncate the interpolation

to the nearest neighbour in Zl, and then, we carry some numerical tests to show that the

error is small if Zl is large enough.

The stopping criterion for this scheme is

‖vh,n+1 − vh,n‖∞ < ε̄

where ε̄ is a strictly positive constant.

Complexity of the algorithm. Due to the high dimension of the grid, the computation

of the optimal policy on the entire grid has an expensive computational cost. Indeed, this

grid contains O(ml3) points, and at each iteration n at each point (ti, z) ∈ Tm × Zl, one

has to compute:

• The approximation of conditional expectation EN,R
[
vh,n+1(ti + h, Z0,ti,z

ti+h
)
]

that costs

O(N) unitary operations.
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• The approximation of the static supremum sup
ζ∈CM,R(z)

vh(ti,Γ(z, ζ)) , together with its

argument maximum, that costs O(M) unitary operations when using linear search1.

• The localization procedure and the interpolation procedure has constant computa-

tional cost O(1) since we have to use the nearset neighbour in Zl for teh localization

and for the interplolation, we use the eight nearest neighbours of z ∈ Zl.

Therefore, we obtain a complexity of:

Complexity = O(ml3 max(N,M))

Actually, denoting by K = max(l,m,N,M), the complexity of the algorithm at each iter-

ation n is O(K5). Yet, practical implementation of the algorithm can achieve quite better

performance. The grid computation algorithm can be parallelized easily, which is a very

desirable property when targeting an industrial application. Indeed, at each date ti the

computation of EN,R
[
vh,n+1(ti + h, Z0,ti,z

ti+h
)
]

and sup
ζ∈CM,R(z)

vh(ti,Γ(z, ζ)) can be done inde-

pendently for each (x, y, p).

Finally, the complexity displayed above represents the amount of computations needed to

build up the optimal policy. When targeting a live trading application, one can compute

off-line and store optimal policies for a given set of market parameters, and when actually

trading, one does only need to read (with constant cost) the optimal policy corresponding

to current market state.

5 Convergence analysis

We now focus on the convergence (when we take h to zero and n,M,N,R to infinity) of

the solution vh,n to (4.11)-(4.12) towards the value function v solution to our HJBQVI

(2.12). Following Barles and Souganidis (1991), we have to show that the scheme Sh,R,N,M

in (4.10) satisfies monotonicity, stability and consistency properties. We will need the

following notations

EN [vh,n(t, Z0,s,z
t )] :=

N1∑
i1=1

..

Nd(N)∑
id(N)=1

Pi1..id(N)
vh,n(t, Z0,s,z

N (t)) ∀ s ≤ t

where

Z0,s,z
N (t) :=

(
x, y, p exp

{
(b− σ2

2
)(t− s) + σWN

i1..id(N)
(t− s)

})
1Note that the supremum computation can be improved by the use of dichotomy-based search instead

of linear search if we are able to use a concavity argument on ζ 7→ v(t,Γ(x, y, p, ζ)) which would lead to a

complexity of O(ln(M)). From numerical experiments, this dichotomy search method leads to acceptable

results.
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Proposition 5.1 (Monotonicity)

For all h > 0, (t, z) ∈ [0, T ]× S̄, g ∈ R and ϕ,ψ ∈ Gγ s.t. ϕ ≤ ψ we have

Sh,R,N,M (t, z, g, ϕ) ≥ Sh,R,N,M (t, z, g, ψ)

Proof. It follows directly from the definition (4.10) of the scheme.

2

Proposition 5.2 (Consistency)

We suppose that N = exp (
1

hq
) s.t. q > 2.

(i) For all (t, z) ∈ [0, T )× S̄ and Lipschitz function φ ∈ C1,2([0, T )× S̄) we have

lim sup
(h,t
′
,z
′
)→(0,t,z)

(M,N,R)→+∞

min

{
φ(t

′
, z
′
)− EN,R[φ(t

′
+ h, Z0,t

′
,z
′

t′+h
)]

h
,
(
φ(t

′
, z
′
)−HM,Rφ(t

′
, z
′
)
)}

≤ min
{(
− ∂φ

∂t
− Lφ

)
(t, z),

(
φ(t, z)−Hφ(t, z)

)}
and

lim inf
(h,t
′
,z
′
)→(0,t,z)

(M,N,R)→+∞

min

{
φ(t

′
, z
′
)− EN,R[φ(t

′
+ h, Z0,t

′
,z
′

t′+h
)]

h
,
(
φ(t

′
, z
′
)−HM,Rφ(t

′
, z
′
)
)}

≥ min
{(
− ∂φ

∂t
− Lφ

)
(t, z),

(
φ(t, z)−Hφ(t, z)

)}
(ii) For all z ∈ S̄ and Lipschitz function φ ∈ C1,2([0, T ]× S̄) we have

lim sup
(h,t
′
,z
′
)→(0,T,z)

(M,N,R)→+∞

min

{
φ(t

′
, z
′
)− UL(z

′
),
(
φ(t

′
, z
′
)−HM,RUL(z

′
)
)}

≤ min
{
φ(T, z)− UL(z),

(
φ(T, z)−HUL(z)

)}
and

lim inf
(h,t
′
,z
′
)→(0,T,z)

(M,N,R)→+∞

min

{
φ(t

′
, z
′
)− UL(z

′
),
(
φ(t

′
, z
′
)−HM,RUL(z

′
)
)}

≥ min
{
φ(T, z)− UL(z),

(
φ(T, z)−HUL(z)

)}
Proof. We only show the first inequality since the others may be obtained similarly.

We consider the following steps:

Step 1. First, we have to show that∣∣∣EN [φ(t
′
+ h, Z0,t

′
,z
′

t′+h
)]− E[φ(t

′
+ h, Z0,t

′
,z
′

t′+h
)]
∣∣∣ ≤ h ε(h)

where ε is strictly positive function, such that ε(h)→ 0 when h→ 0.
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We consider

I :=
∣∣∣EN [φ(t

′
+ h, Z0,t

′
,z
′

t′+h
)]− E[φ(t

′
+ h, Z0,t

′
,z
′

t′+h
)]
∣∣∣

=
∣∣∣E[φ

(
t
′
+ h, x

′
, y
′
, p
′
exp

{
(b− σ2

2
)h+ σWN

i1..id(N)
(h)
})

]

−E[φ
(
t
′
+ h, x

′
, y
′
, p
′
exp

{
(b− σ2

2
)h+ σW (h)

})
]
∣∣∣

≤ E[
∣∣∣[φ]

lip
p
′
exp (b− σ2

2
)h
∣∣∣× ∣∣∣ exp

(
σWN

i1..id(N)
(h)
)
− exp

(
σW (h)

)∣∣∣]. (φ lipschitz)

Using the fact that
| expx1 − expx2 |
| x1 − x2 |

≤ expx1 + expx2, we obtain

I ≤
∣∣∣[φ]

lip
p
′
exp {(b− σ2

2
)h}
∣∣∣E[
(

exp
(
σWN

i1..id(N)
(h)
)

+ exp
(
σW (h)

))∣∣∣WN
i1..id(N)

(h)−W (h)
∣∣∣]

Using Cauchy-Schwarz inequality, we may obtain

I ≤ [φ]
lip
p
′
e{(b−

σ2

2
)h}∥∥WN

i1..id(N)
(h)−W (h)

∥∥
L2

×
∥∥ exp

(
σWN

i1..id(N)
(h)
)

+ exp
(
σW (h)

)∥∥
L2

≤ [φ]lip p
′
e{(b−

σ2

2
)h}∥∥WN

i1..id(N)
(h)−W (h)

∥∥
L2

×
(∥∥ exp

(
σWN

i1..id(N)
(h)
)∥∥
L2

+
∥∥ exp

(
σW (h)

)∥∥
L2

)
(5.1)

Noticing that f : x 7→ exp(2σx) is a convex function and WN
i1..id(N)

a stationary quantizer,

we may use the Jensen inequality to obtain∥∥ exp
(
σWN

i1..id(N)
(h)
)∥∥2

L2 = E[f
(
WN
i1..id(N)

(h)
)
] = E[f

(
E
[
W (h)/WN

i1..id(N)
(h)
])

]

≤ E[
(
E
[
f

(
W (h)

)
/WN

i1..id(N)
(h)
])

] = E
[
f

(
W (h)

)]
= E

[
exp

(
2σW (h)

)]
= exp (2σ2h)

On the other hand, by the Zador theorem Pags and Luschgy (2002), we have

∥∥WN
i1..id(N)

(h)−W (h)
∥∥
L2 =

√
E[
∣∣∣WN

i1..id(N)
(h)−W (h)

∣∣∣2]

= O
( 1

(logN)
1
2

)
Since N = exp 1

hq s.t. q > 2, we obtain∥∥WN
i1..id(N)

(h)−W (h)
∥∥
L2 ≤ h ε(h),

where ε represents a strictly positive function such that ε(h)→ 0 when h→ 0.

Hence, the inequality (5.1) becomes∣∣∣EN [φ(t
′
+ h, Z0,t

′
,z
′

t′+h
)]− E[φ(t

′
+ h, Z0,t

′
,z
′

t′+h
)]
∣∣∣ ≤ 2[φ]

lip
p
′
h exp

(
(b− σ2

2
)h+ σ2h

)
ε(h)(5.2)

18



The last quantity goes to zero when h goes to zero and we have∣∣∣EN [φ(t
′
+ h, Z0,t

′
,z
′

t′+h
)]− E[φ(t

′
+ h, Z0,t

′
,z
′

t′+h
)]
∣∣∣ ≤ h ε(h) (5.3)

Step 2. We now show that
∣∣∣EN,R[φ(t

′
+ h, Z0,t

′
,z
′

t′+h
)]− EN [φ(t

′
+ h, Z0,t

′
,z
′

t′+h
)]
∣∣∣ ≤ h ε(h).

We have ∣∣∣EN,R[φ(t
′
+ h, Z0,t

′
,z
′

t′+h
)]− EN [φ(t

′
+ h, Z0,t

′
,z
′

t′+h
)]
∣∣∣

=
∣∣∣E[φ(t′ + h, x

′
, y
′
,Π[0,pmax](p

′
exp

{
(b− σ2

2
)h+ σWN

i1..id(N)
(h)
}

)
)]

− E
[
φ
(
t
′
+ h, x

′
, y
′
, p
′
exp

{
(b− σ2

2
)h+ σWN

i1..id(N)
(h)
})]∣∣∣

≤ A + B + C

where

A :=
∣∣∣E[φ(t′ + h, x

′
, y
′
,Π[0,pmax](p

′
exp

{
(b− σ2

2
)h+ σWN

i1..id(N)
(h)
}

)
)]

− E
[
φ
(
t
′
+ h, x

′
, y
′
,Π[0,pmax](p

′
exp

{
(b− σ2

2
)h+ σW (h)

}
)
)]∣∣∣

B :=
∣∣∣E[φ(t′ + h, x

′
, y
′
,Π[0,pmax](p

′
exp

{
(b− σ2

2
)h+ σW (h)

}
)
)]

− E
[
φ
(
t
′
+ h, x

′
, y
′
, p
′
exp

{
(b− σ2

2
)h+ σW (h)

})]∣∣∣
C :=

∣∣∣E[φ(t′ + h, x
′
, y
′
, p
′
exp

{
(b− σ2

2
)h+ σWN

i1..id(N)
(h)
})]

− E
[
φ
(
t
′
+ h, x

′
, y
′
, p
′
exp

{
(b− σ2

2
)h+ σW (h)

})]∣∣∣
Using the Jensen Inequality and the Zador theorem, we obtain

A ≤ [φ]
lip

[Π[0,pmax]]lip p
′
e{(b−

σ2

2
)h} E[

∣∣∣ exp
(
σWN

i1..id(N)
(h)
)
− exp

(
σW (h)

)∣∣∣]
≤ [φ]

lip
[Π[0,pmax]]lip p

′
e{(b−

σ2

2
)h} E[

∣∣∣ exp
(
σWN

i1..id(N)
(h)
)

+ exp
(
σW (h)

)∣∣∣.∣∣∣WN
i1..id(N)

(h)−W (h)
∣∣∣]

≤ [φ]
lip

[Π[0,pmax]]lip p
′
e{(b−

σ2

2
)h}∥∥WN

i1..id(N)
(h)−W (h)

∥∥
L2

×
∥∥ exp

(
σWN

i1..id(N)
(h)
)

+ exp
(
σW (h)

)∥∥
L2

≤ [φ]lip[Π[0,pmax]]lip p
′
e{(b−

σ2

2
)h}∥∥WN

i1..id(N)
(h)−W (h)

∥∥
L2

×
(∥∥ exp

(
σWN

i1..id(N)
(h)
)∥∥
L2

+
∥∥ exp

(
σW (h)

)∥∥
L2

)
≤ 2[φ]

lip
[Π[0,pmax]]lip p

′
h exp

(
(b− σ2

2
)h+ σ2h

)
ε(h) (5.4)

From relation (5.2), we also have

B ≤ 2[φ]
lip
p
′
h exp

(
(b− σ2

2
)h+ σ2h

)
ε(h) (5.5)
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Let us now turn to the last term

C =
∣∣∣E[φ(t′ + h, x

′
, y
′
,Π[0,pmax](p

′
exp

{
(b− σ2

2
)h+ σW (h)

}
)
)]

− E
[
φ
(
t
′
+ h, x

′
, y
′
, p
′
exp

{
(b− σ2

2
)h+ σW (h)

})]∣∣∣
≤ [φ]lipE

[
p
′
e

(
(b−σ

2

2
)h+σW (h)

)
1
{p′e
(
(b−σ22 )h+σW (h)

)
>pmax}

]

≤ [φ]lipe
(b−σ

2

2
)hp
′
√
E[exp

(
2σW (h)

)
]

√
P[p′ exp

(
(b− σ2

2
)h+ σW (h)

)
> pmax]

= [φ]lipe
(b−σ

2

2
)hp
′
√
E[exp

(
2σW (h)

)
]

√
P[p′ exp

(
(b− σ2

2
)h+ σ

√
hU
)
> pmax]

= [φ]lipe
(b−σ

2

2
)hp
′
√
E[exp

(
2σW (h)

)
]
√
P[U > d]

where U ∼ N (0, 1) and d :=

log

(
pmax

p′e(b−
σ2
2 )h

)
σ
√
h

.

We have

P[U > d] = 1− P[U ≤ d] ∼ ϕ(d)

d
when d→ +∞

with ϕ is the probability density function of the standard normal distribution and that

d =

log

(
pmax

p′e(b−
σ2
2 )h

)
σ
√
h

→ +∞ when R→ +∞

and

ϕ(d)

d
=

1√
2π

exp
(
− 1

2

( log

(
pmax

p′e(b−
σ2
2 )h

)
σ
√
h

)2) σ
√
h

log

(
pmax

p′e(b−
σ2
2 )h

)
Therefore, we may obtain

C ≤ [φ]lipe
(b−σ

2

2
)hp
′
√
E[exp

(
2σW (h)

)
]

√
ϕ(d)

d
(5.6)

By sending h to 0, we obtain

ϕ(d)

h2+ηd
−→ 0, for all η > 0

which implies

ϕ(d)

d
≤ h2 ε(h)
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Combining relations (5.4), (5.5) and (5.6) we obtain that∣∣∣EN,R[φ(t
′
+ h, Z0,t

′
,z
′

t′+h
)]− EN [φ(t

′
+ h, Z0,t

′
,z
′

t′+h
)]
∣∣∣ ≤ h ε(h) (5.7)

Finally, we conclude from (5.3) and (5.7) that∣∣∣EN,R[φ(t
′
+ h, Z0,t

′
,z
′

t′+h
)]− E[φ(t

′
+ h, Z0,t

′
,z
′

t′+h
)]
∣∣∣ ≤ h ε(h) (5.8)

Step 3. We prove now that

lim
h→0

φ(t, z)− E[φ(t+ h, Z0,t,z
t+h )]

h
= −∂φ

∂t
(t, z)− Lφ(t, z)

By applying Itô’s formula to φ(s, Z0,t,z
s ) between t and t+ h, we obtain

φ(t+ h, Z0,t,z
t+h )− φ(t, z) =

∫ t+h

t

(∂φ
∂t

(u, Z0,t,z
u ) + Lφ(u, Z0,t,z

u )
)
du

+

∫ t+h

t

∂φ

∂p
(u, Z0,t,z

u )σP 0,t,p
u dWu

Dividing the last equality by h and applying the expectations, we obtain

E[φ(t+ h, Z0,t,z
t+h )]− φ(t, z)

h
=

1

h
E[

∫ t+h

t

(∂φ
∂t

(u, Z0,t,z
u ) + Lφ(u, Z0,t,z

u )
)
du]

Thus, when h goes to 0, we have that

lim
h→0

φ(t, z)− E[φ(t+ h, Z0,t,z
t+h )]

h
≤ −∂φ

∂t
(t, z)− Lφ(t, z)

Combining the above inequality with the inequality (5.8), we may obtain

lim sup
(h,t
′
,z
′
)→(0,t,z)

(M,N,R)→+∞

φ(t
′
, z
′
)− EN,R[φ(t

′
+ h, Z0,t

′
,z
′

t′+h
)]

h
≤
(
− ∂φ

∂t
− Lφ

)
(t, z) (5.9)

Finally, noticing that
⋃+∞
M,R=1 CM,R(z) = C(z), C(z) a compact set, φ and Γ continuous

functions, we may obtain

lim
M,R→+∞

sup
ζ∈CM,R(z)

φ(t,Γ(z, ζ)) = sup
ζ∈C(z)

φ(t,Γ(z, ζ))

We may therefore derive the following inequality

lim sup
(h,t
′
,z
′
)→(0,t,z)

(M,N,R)→+∞

(
φ(t

′
, z
′
)−HM,Rφ(t

′
, z
′
)
)
≤ φ(t, z)−Hφ(t, z) (5.10)

which we combine to (5.9) to complete our proof of consistency property.

2
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Remark 5.1 To prove the pointwise consistency property, we need to take N = exp ( 1
hq ),

where q > 2. In fact, for functional quantization, the Zador theorem Pags and Luschgy

(2002) states that

∥∥WN
i1..id(N)

(h)−W (h)
∥∥
L2 =

√
E[
∣∣∣WN

i1..id(N)
(h)−W (h)

∣∣∣2]

= O
( 1

(logN)
1
2

)
= O(h

q
2 )

However, numerical experiments show that we have convergence when N = 96.

We now turn to the stability property of the discrete scheme Sh,R,N,M . However, before

doing so, we need to obtain some preliminary results. We first introduce the set of the

admissible discrete impulse control strategies

Ah,M,R(t, z) =
{
α = (τn, ζn); τn are F̂ = (F̂t)-stopping times valued in Sht,T

and ζn are F̂τn-measurable functions valued in CM,R(z)
}
, ∀(t, z) ∈ Tm × S̄loc

Here F̂ denotes the natural filtration of the quantized brownian motion WN
i1..id(N)

and Sht,T

is the set of stopping times taking values in
{
τ = t+ ih ; i ∈ {0, ..,m} and h = T−t

m

}
Then, we define the following subsets of Ah,M,R(t, z)

Ah,M,R
n (t, z) :=

{
α = (τk, ζk)k=0,..,n ∈ Ah,M,R(t, z)

}
and the corresponding discrete value function

vh,R,N,Mn (t, z) = sup
α∈Ah,M,Rn (t,z)

EN,R[UL(ZN,R(T ))]; ∀ (t, z) ∈ Tm × S̄loc (5.11)

vh,R,N,M0 (t, z) =

{
EN,R

[
UL(Z0,t,z

T )
]

if x ≥ 0, y ≥ 0

−∞ otherwise

We now turn to our preliminary results.

Lemma 5.1 For all (t, z) ∈ Tm × S̄loc

lim
n→+∞

vh,R,N,Mn (t, z) = vh,R,N,M (t, z)

where vh,R,N,M is the solution of the discrete HJB inequality without considering an iterative

scheme.
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Proof. The proof of this Lemma follows the same arguments used in Lemma 3.1.

2

Proposition 5.3 We define ϕh,R,N,Mn iteratively as a sequence of optimal stopping prob-

lems

ϕh,R,N,Mn+1 (t, z) = sup
τ∈Sht,T

EN,R[HM,Rϕh,R,N,Mn (τ, Z0,t,z
N,R (τ))] ∀ (t, z) ∈ Tm × S̄loc

ϕh,R,N,M0 (t, z) = vh,R,N,M0 (t, z) ∀ (t, z) ∈ Tm × S̄loc

Then, for all (t, z) ∈ Tm × S̄loc

ϕh,R,N,Mn (t, z) = vh,R,N,Mn (t, z)

Proof. The proof of this Proposition follows the same arguments used in Theorem 3.1.

2

Corollary 5.1 For all (t, z) ∈ Tm × S̄loc

lim
n→+∞

ϕh,R,N,Mn (t, z) = vh,R,N,M (t, z)

Proof. This result is obtained by combining Lemma 5.1 and Proposition 5.3.

2

Proposition 5.4 (Stability)

For all h > 0, there exists a unique solution vh,R,N,Mn ∈ Gγ([0, T ] × S̄) to (4.1) and the

sequence (vh,R,N,Mn )h is uniformly bounded in Gγ([0, T ]×S̄) ie there exists w ∈ Gγ([0, T ]×S̄)

s.t. |vh,R,N,Mn | ≤ |w| for all h > 0.

Proof. The uniqueness of a solution ∈ Gγ([0, T ] × S̄) to (4.1) follows from the explicit

backward scheme (4.11)-(4.12). The optimal portfolio liquidation problem associated to

the discrete impulse control problem is defined via its discrete value function by

vh,R,N,Mn (t, z) = sup
α∈Ah,M,Rn (t,z)

E[UL(ZN,R(T ))] ∀ (t, z) ∈ Tm × S̄loc.

This numerical scheme is well defined. Let’s show that vh,R,N,Mn is bounded independently

from h,R,M and N . Indeed, using the assumption (2.10) and recalling that the domain is

truncated, we have that

E[UL(ZN,R(T ))] ≤ E[UL(ZN (T ))] ∀ α ∈ Ah,M,R
n (t, z)

≤ KE[
(
L(ZN (T ))

)γ
] ∀ α ∈ Ah,M,R

n (t, z)

where ZN is the controlled quantized state process associated to α ∈ Ah,M,R
n (t, z).

Recalling from Ly Vath, Mnif and Pham (2007) that

sup
α∈A(t,z)

L(Zs) ≤ sup
α∈A(t,z)

L̄(Zs) ≤ L̄(Z0,t,z
s ) = X0,t,x

s +
P 0,t,p
s

λ
; ∀ z = (x, y, p) ∈ S̄

23



where

L̄(z) := x+
p

λ

and noticing that Ah,M,R(t, z) ⊂ A(t, z) and ZN is a quantizer process, we obtain

E[UL(ZN,R(T ))] ≤ KE[
(
L̄(Z0,t,z

N (T ))
)γ

]; ∀ α ∈ Ah,M,R
n (t, z)

The use of functional quantization is crucial to derive the last inequality.

From the arbitrariness of α and recalling that WN
i1..id(N)

is a stationary quantizer, we obtain

vh,R,N,M (t, z) ≤ KE[
(
L̄(Z0,t,z

N (T ))
)γ

]

≤ K
(
E[L̄(Z0,t,z

N (T ))]
)γ

≤ K
(
x+ E[

P 0,t,p
N (T )

λ
]
)γ

≤ K
(
x+ E[

P 0,t,p
T

λ
]
)γ

≤ K(x+
p

λ
e(b−σ

2

2
+σ)(T−t))γ

≤ w(t, z)

where w ∈ Gγ([0, T ]× S̄) is a function independent from h,R,M and N .

2

We now have proved that our numerical scheme verifies monotonicity, consistency and

stability properties. Before proving the convergence of the discrete value function towards

the real value function, we need to introduce the following proposition.

Proposition 5.5 (i) A locally bounded function v is a viscosity supersolution of (2.12)

on [0, T ) × S if and only if for all (t̄, z̄) ∈ [0, T ) × S and for all φ ∈ C1,2(N(t̄, z̄))

(N(x):neighborhood of x) such that v∗−φ has a global minimum at (t̄, z̄) and (v∗−φ)(t̄, z̄) =

0, we have

min

[
−∂φ
∂t

(t̄, z̄)− Lφ(t̄, z̄), φ(t̄, z̄)−Hφ(t̄, z̄)

]
≥ 0

(ii) A locally bounded function v is a viscosity subsolution of (2.12) on [0, T ) × S̄ if and

only if for all (t̄, z̄) ∈ [0, T )× S̄ and for all φ ∈ C1,2(N(t̄, z̄)) such that v∗ − φ has a global

maximum at (t̄, z̄) and (v∗ − φ)(t̄, z̄) = 0, we have

min

[
−∂φ
∂t

(t̄, z̄)− Lφ(t̄, z̄), φ(t̄, z̄)−Hφ(t̄, z̄)

]
≤ 0

(iii) The function v is said to be a viscosity solution of (2.12), if it is both sub- and super-

solution of (2.12).

( f∗(x) = lim sup
y→x

f(y) and f∗(x) = lim inf
y→x

f(y) )
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Proof. We will only show (ii) since (i) is derived similarly.

1.) Suppose that v is a viscosity subsolution of (2.12) on [0, T )× S̄.

If (−∂φ
∂t

(t̄, z̄)− Lφ(t̄, z̄) ≤ 0) then we have immediately that

min

[
−∂φ
∂t

(t̄, z̄)− Lφ(t̄, z̄), φ(t̄, z̄)−Hφ(t̄, z̄)

]
≤ 0

If (v∗(t̄, z̄)−Hv∗(t̄, z̄) ≤ 0), since v∗(t̄, z̄) = φ(t̄, z̄) and v∗ < φ on [0, T )× S̄ \{t̄, z̄} implying

that Hv∗(t̄, z̄) ≤ Hφ(t̄, z̄), we obtain that φ(t̄, z̄)−Hφ(t̄, z̄) ≤ 0 which means that

min

[
−∂φ
∂t

(t̄, z̄)− Lφ(t̄, z̄), φ(t̄, z̄)−Hφ(t̄, z̄)

]
≤ 0

2.) Suppose now that we have min

[
−∂φ
∂t

(t̄, z̄)− Lφ(t̄, z̄), φ(t̄, z̄)−Hφ(t̄, z̄)

]
≤ 0 where

(t̄, z̄) ∈ [0, T )× S̄ and φ ∈ C1,2(N(t̄, z̄)) such that (v∗ − φ)(t̄, z̄) = max(v∗ − φ) = 0.

Let us consider two strictly positive real numbers ξ1 and ξ2 and define

φξ1,ξ2(t, z) :=

{
φ(t, z) if (t, z) ∈ B

(
(t̄, z̄), ξ1

)
v∗(t, z) + ξ2 if (t, z) /∈ B

(
(t̄, z̄), ξ1

)
Hence, we have that φξ1,ξ2(t̄, z̄) = φ(t̄, z̄) = v∗(t̄, z̄) and so by hypothesis we obtain

min

[
−
∂φξ1,ξ2
∂t

(t̄, z̄)− Lφξ1,ξ2(t̄, z̄), φξ1,ξ2(t̄, z̄)−Hφξ1,ξ2(t̄, z̄)

]
≤ 0

So if −
∂φξ1,ξ2
∂t

(t̄, z̄)− Lφξ1,ξ2(t̄, z̄) ≤ 0, then we have that −∂φ
∂t

(t̄, z̄)− Lφ(t̄, z̄) ≤ 0, and it

is obvious that

min

[
−∂φ
∂t

(t̄, z̄)− Lφ(t̄, z̄), v∗(t̄, z̄)−Hv∗(t̄, z̄)
]
≤ 0

Else, if φξ1,ξ2(t̄, z̄)−Hφξ1,ξ2(t̄, z̄) ≤ 0, we obtain

v∗(t̄, z̄) = φξ1,ξ2(t̄, z̄) ≤ Hφξ1,ξ2(t̄, z̄)

≤ lim sup
ξ1,ξ2→0

Hφξ1,ξ2(t̄, z̄)

≤ H lim sup
ξ1,ξ2→0

φξ1,ξ2(t̄, z̄)

(see Lemma 5.1 Ly Vath, Mnif and Pham (2007) for the proof)

= Hv∗(t̄, z̄)

Hence, v∗(t̄, z̄)−Hv∗(t̄, z̄) ≤ 0 and we obtain

min

[
−∂φ
∂t

(t̄, z̄)− Lφ(t̄, z̄), v∗(t̄, z̄)−Hv∗(t̄, z̄)
]
≤ 0

which completes the proof.

2
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Theorem 5.1 (Convergence)

For all (t, z) ∈ [0, T )× S we have that

lim
(t
′
,z
′
)→(t,z)

(h,M,N,R)→(0,+∞)
(t′,z′)∈Tm×Zl

vh,M,N,R(t′, z′) = v(t, z)

where vh,R,N,M is the solution of the discrete HJB inequality without considering an iterative

scheme and v is the solution of (2.12).

Here, (h,M,N,R)→ (0,+∞) stands for h→ 0, M → +∞, N → +∞ and R→ +∞. This

notation will be used in the following proof.

Proof. Let v and v be defined by

v(t, z) = lim sup
(t
′
,z
′
)→(t,z)

(h,M,N,R)→(0,+∞)

vh,M,N,R(t
′
, z
′
) and v(t, z) = lim inf

(t
′
,z
′
)→(t,z)

(h,M,N,R)→(0,+∞)

vh,M,N,R(t
′
, z
′
) (5.12)

We suppose that v and v are respectively sub- and supersolution of (2.12). Assume for the

moment that this claim is true, then, since v and v are respectively upper semi-continuous

(usc) and lower semi-continuous (lsc), the comparison principle proved in Ly Vath, Mnif

and Pham (2007) yields v ≤ v on [0, T ]×S. Although the opposite inequality is obvious by

the very definition of v and v, hence v = v ≡ v is the unique continuous solution of (2.12)

which combined with (5.12) implies the uniform convergence of vh,M,N,R to v.

Next we prove the above claim. Here we only consider the v case, since the argument

for v is identical. To this end, let (t̄, z̄) be a global maximum of v − ϕ on [0, T ] × S̄ for

some ϕ ∈ C1,2([0, T ] × S̄). Without any loss of generality, we may assume that (t̄, z̄) is a

strict global maximum such that v(t, z) − ϕ(t, z) ≤ v(t̄, z̄) − ϕ(t̄, z̄) = 0 in [0, T ] × S̄. We

suppose also that ϕ ≥ C(1 + (x+ p
λ))γ + 1 outside the ball B((t̄, z̄), r) where C is a positive

constant and r > 0. From the stability property, having that vh,M,N,R ≤ w s.t w ∈ Gγ , we

obtain that vh,M,N,R − ϕ ≤ −1, which yields v − ϕ ≤ −1 outside B((t̄, z̄), r). Notice here

that C was chosen in such a way that w ≤ C(1 + (x+ p
λ))γ .

We also have that 0 ≥ (v − ϕ)(t, z) for all (t, z) ∈ [0, T ] × S̄. Since v − ϕ is upper

semi-continuous, there exists 0 < r
′
< r such that

0 ≥ (v − ϕ)(t, z) ≥ −1, ∀ (t, z) ∈ B((t̄, z̄), r
′
)

0 ≥ vh,M,N,R(t, z)− ϕ(t, z) ≥ −1, ∀ (t, z) ∈ B((t̄, z̄), r
′
)

For convenience, we denote ρ := (h,M,N,R). Let (tρ, zρ) be the maximum of vρ − ϕ
over the closed ball B((t̄, z̄), r

′
) which is a global maximum on [0, T ] × S̄ and let (t̂, ẑ) be

the limit of the subsequence also denoted (tρ, zρ), which exists due to the boundedness of
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(tρ, zρ). So, by the definition of (tρ, zρ) and (t̄, z̄) we may obtain

0 = (v̄ − ϕ)(t̄, z̄) = lim sup
ρ→(0,+∞)

(t
′
,z
′
)→(t̄,z̄)

(t′,z′)∈B((t̄,z̄),r
′
)

(vρ − ϕ)(t
′
, z
′
)

≤ lim sup
ρ→(0,+∞)

(t
′
,z
′
)→(tρ,zρ)

(t′,z′)∈B((t̄,z̄),r
′
)

(vρ − ϕ)(t
′
, z
′
)

= lim sup
ρ→(0,+∞)

(t
′
,z
′
)→(t̂,ẑ)

(t′,z′)∈B((t̄,z̄),r
′
)

(vρ − ϕ)(t
′
, z
′
)

= (v̄ − ϕ)(t̂, ẑ) ≤ 0

which means that (v−ϕ)(t̂, ẑ) = 0. On the other hand, noticing that (v−ϕ)(t̄, z̄) = 0 and

that (t̄, z̄) is a strict global maximum, then t̄ = t̂ and z̄ = ẑ.

Hence, we have shown that there exists a subsequence (tρ, zρ) which is a global maximum

on [0, T ]× S̄ of vρ − ϕ, such that

(tρ, zρ) −→ (t̄, z̄) when ρ −→ (0,+∞)

Since ϕ ∈ C1,2([0, T ]× S̄) and vh,M,N,R ≤ w, we have then

v(t̄, z̄) = ϕ(t̄, z̄) = lim
ρ→(0,+∞)

ϕ(tρ, zρ) = lim
ρ→(0,+∞)

vρ(tρ, zρ)

We define

ξρ := vρ(tρ, zρ)− ϕ(tρ, zρ).

Having that (tρ, zρ) is a global maximum we have that (vρ−ϕ)(t, z) ≤ (vρ−ϕ)(tρ, zρ) = ξρ
and so vρ(t, z) ≤ ϕ(t, z) + ξρ for all (t, z) ∈ [0, T ] × S̄. Hence, by the monotonicity of the

numerical scheme Sρ defined in (4.10) we obtain

0 =
Sρ
(
tρ, zρ, v

ρ(tρ, zρ), v
ρ
)

h
≥

Sρ
(
tρ, zρ, v

ρ(tρ, zρ), ϕ+ ξρ

)
h

=
Sρ
(
tρ, zρ, ϕ(tρ, zρ) + ξρ, ϕ+ ξρ

)
h

Taking limits in the last inequality and using the consistency of Sρ we get

0 ≥ lim inf
ρ→(0,+∞)

Sρ
(
tρ, zρ, ϕ(tρ, zρ) + ξρ, ϕ+ ξρ

)
h

≥ lim inf
(t,z,ξ)→(t̄,z̄,0)
ρ→(0,+∞)

Sρ
(
t, z, ϕ(t, z) + ξ, ϕ+ ξ

)
h

≥ min

[
−∂ϕ
∂t

(t̄, z̄)− Lϕ(t̄, z̄), ϕ(t̄, z̄)−Hϕ(t̄, z̄)

]
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The last inequality combined to the Proposition 5.5 shows that v is a subsolution of

(2.12). 2

6 Numerical Results

In this section, we present numerical results, such as the value function and the optimal

transaction strategy, obtained by applying the numerical procedure (4.11)-(4.12) described

in Section 4. The parameter values used to perform the numerical tests are shown in the

below Table 1 :

Parameter Value Parameter Value

Maturity 1 year xmin -100

λ 5.00E(-07) xmax 200

γ 0.5 ymin -4

σ 0.25 ymax 20

b 0.1 pmin 0

k 1 pmax 50

l 20

m 40

M 100

N 96

ε̄ 10−3

Table 1 : Parameters

Using the above parameters, about 8 minutes are necessary to do the whole computation

using Intelr Core 2 Duo at 2.00 Ghz CPU with 2.96 Go of RAM. The convergence is

obtained after 13 iterations of the iterative scheme.

In the three below figures, we plot our numerical results (the value function and the asso-

ciated optimal trading strategies for two different values of price impact λ) for l = 40.

Figure 1: The shape of the optimal transaction strategy (different regions).

We plot the shape of the optimal trading strategy (the policy) sliced in the plane (x, y)

for a fixed (t, p). We can see four regions : a Buy region (denoted B on the graph), a Sell

region (denoted S on the graph), a No-Transaction region (denoted N.T. on the graph) and

a region where we are outside the domain S̄ (denoted O.D. on the graph).

The financial interpretations of these results are as follows: when x is big and y is small,

the investor has enough cash to buy shares of the risky asset in order to profit from an

increased exposure. When y is large and x is small, the investor has to reduce exposure to

the risky asset as well as to match the terminal liquidation constraint.

Figure 2: The Value function.

We plot the shape of the value function sliced in the plane (x, y) for a fixed (t, p). This

figure is a typical pattern of the value function.
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Figure 1: The optimal policy sliced in XY

Figure 2: Value function sliced in XY
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Figure 3: The shape of the optimal transaction strategy with a higher price

impact (λ).

We plot the shape of the optimal consumption strategy sliced in the plane (x, y) for a fixed

(t, p) and for a much higher price impact (λ = 5.00E(−03)) than in figure 1. We can see

that the no trade region is larger than the one in figure 1 which is natural. Indeed, trading

activities should be kept to a minimum when the liquidity price impact is high.

Figure 3: Shape of the optimal policy for λ = 5.00E(−03).

Tables 2, 3, 4 and 5: Convergence analysis in function of N , M and R

In Table 2 and 3, we show some values of the value function for different values of N and

M at a time t = 0.05, and for fixed nodes of the grid z1 = (x1, y1, p1) = (42.10, 7.36, 23.68)

and z2 = (x2, y2, p2) = (121.052, 13.68, 36.84).

N 96 200

v(t, z1) 15.8841 15.8807

v(t, z2) 26.3895 26.3867

Table 2 : Values of the value function for different values of N and z.

M 200 250

v(t, z1) 15.8825 15.8849

v(t, z2) 26.3990 26.4011

Table 3 : Values of the value function for different values of M and z.

In Table 4, we show the number of iterations that the algorithm needs to converge when

we vary the parameters N and M . Here, we choose the value of the discretization step in

time and the number l of the grid’s nodes as in Table 1.
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M=200 M=250 N=96 N=200

Number of iterations 13 Iterations 13 Iterations 13 Iterations 13 Iterations

Table 4 : Number of iterations for different values of N and M .

In Table 5, we show some values of the value function for two different values R1 and R2 of

R ( ie the boundaries ) at a time t = 0.05, and for fixed nodes of the grid z3 = (x3, y3, p3) =

(57.89, 8.63, 36.84) and z4 = (x4, y4, p4) = (184.21, 18.73, 21.05). Here, we choose the value

of the discretization step in time, the number l of the grid’s nodes and R1 as in Table 1

and we choose R2 as follows:

R2 = min
(
| xmin = −257.90 |, | xmax = 342.10 |, | ymin = −16.63 |, | ymax = 31.36 |, | pmax = 100 |

)
R R1 R2

v(t, z3) 20.0038 19.9966

v(t, z4) 24.5429 24.5340

Table 5 : Values of the value function for different values of R and z.

Figures 4 and 5: Relative error analysis of the value function for different values

of N and M

In figure 4 (resp. 5), we plot the shape of the relative error between the value function

computed for N = 96 (resp. M = 200) and the value function computed for N = 200 (resp.

M = 250). The error is sliced in the plane (x, y) for a fixed (t, p). Figures 4 and 5 show that

the convergence of the discrete value function, solution of our numerical algorithm (4.11)-

(4.12), towards the real value function, solution of the HJB (2.12), can be obtained with

only 96 points of quantization and 200 nodes of the discrete set of admissible strategies.

Figure 4: Relative error of the value function computed when N = 96 Vs. N = 200.
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Figure 5: Relative error of the value function when M = 200 Vs. M = 250.
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