
A Model of Optimal Portfolio Selection under

Liquidity Risk and Price Impact∗

Vathana LY VATH† Mohamed MNIF‡ Huyên PHAM §

October 2005
this version May 2006

Abstract

We study a financial model with one risk-free and one risky asset subject to liquidity
risk and price impact. In this market, an investor may transfer funds between the two
assets at any discrete time. Each purchase or sale policy decision affects the price of
the risky asset and incurs some fixed transaction cost. The objective is to maximize
the expected utility from terminal liquidation value over a finite horizon and subject
to a solvency constraint. This is formulated as an impulse control problem under state
constraint and we characterize the value function as the unique constrained viscosity
solution to the associated quasi-variational Hamilton-Jacobi-Bellman inequality.

Key words : portfolio selection, liquidity risk, impulse control, state constraint, discon-
tinuous viscosity solutions.

JEL Classification : G11.

MSC Classification (2000) : 93E20, 91B28, 60H30, 49L25.

∗We would like to thank Mihail Zervos for useful discussions.
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1 Introduction

Classical market models in mathematical finance assume perfect elasticity of traded assets :
traders act as price takers, so that they buy and sell with arbitrary size without changing
the price. However, the market microstructure literature has shown both theoretically and
empirically that large trades move the price of the underlying assets. Moreover, in practice,
investors face trading strategies constraints, typically of finite variation, and they cannot
rebalance them continuously. We then usually speak about liquidity risk or illiquid markets.
While the assumption of perfect liquidity market may not be practically important over
a very long term horizon, price impact can have a significant difference over a short time
horizon.

Several suggestions have been proposed to formalize the liquidity risk. In [25] and [3],
the impact of trading strategies on prices is explained by the presence of an insider. In
the market manipulation literature, prices are assumed to depend directly on the trading
strategies. For instance, the paper [12] considers a diffusion model for the price dynamics
with coefficients depending on the large investor’s strategy, while [17], [30], [29], [6] or [8]
develop a continuous-time model where prices depend on strategies via a reaction func-
tion. While the assumption of price-taker may not be practically important for investors
making allocation decision over a very long time horizon, price impact can make a sig-
nificant difference when investors execute large trades over a short time of horizon. The
market microstructure literature has shown both theoretically and empirically that large
trades move the price of the underlying securities. Moreover, it is also well established
that transaction costs in asset markets are an important factor in determining the trading
behavior of market participants; we mention among others [14] and [23] for the literature
on arbitrage and optimal trading policies, and [34], [26] for the literature on the impact
of transaction costs on agents’ economic behavior. Consequently, transaction costs should
affect market liquidity and asset prices. This is the point of view in the academic literature
where liquidity is defined in terms of the bid-ask spread and/or transaction costs associated
with a trading strategy. On the other hand, in the practitioner literature, illiquidity is often
viewed as the risk that a trader may not be able to extricate himself from a position quickly
when need arises. Such a situation occurs when continuous trading is not permitted, for
instance, because of fixed transaction costs.

Of course, in actual markets, both aspects of market manipulation and transaction costs
are correct and occur simultaneously. In this paper, we propose a model of liquidity risk
and price impact that adopts both these perspectives. Our model is inspired from the
recent papers [32] and [19], and may be described roughly as follows. Trading on illiquid
assets is not allowed continuously due to some fixed costs but only at any discrete times.
These liquidity constraints on strategies are in accordance with practitioner literature and
consistent with the academic literature on fixed transaction costs, see e.g. [27]. There is an
investor, who is large in the sense that his strategies affect asset prices : prices are pushed
up when buying stock shares and moved down when selling shares. In this context, we
study an optimal portfolio choice problem over a finite horizon : the investor maximizes his
expected utility from terminal liquidation wealth and under a natural economic solvency
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constraint. In some sense, our problem may be viewed as a continuous-time version of the
recent discrete-time one proposed in [9] . We mention also the paper [2], which studies an
optimal trade execution problem in a discrete time setting with permanent and temporary
market impact.

Our optimization problem is formulated as a parabolic impulse control problem with
three variables (besides time variable) related to the cash holdings, number of stock shares
and price. This problem is known to be associated by the dynamic programming principle to
a Hamilton-Jacobi-Bellman (HJB) quasi-variational inequality, see [5]. We refer to [22], [24],
[7] or [28] for some recent papers involving applications of impulse controls in finance, mostly
over an infinite horizon and in dimension 1, except [24] and [28] in dimension 2. There is
in addition, in our context, an important aspect related to the economic solvency condition
requiring that liquidation wealth is nonnegative, which is translated into a state constraint
involving a nonsmooth boundary domain. The model and the detailed description of the
liquidation value and solvency region, and its formulation as an impulse control problem
are exposed in Section 2. Our main goal is to obtain a rigorous characterization result
on the value function through the associated HJB quasi-variational inequality. The main
result is formulated in Section 3.

The features of our stochastic control problem make appear several technical difficulties
related to the nonlinearity of the impulse transaction function and the solvency constraint.
In particular, the liquidation net wealth may grow after transaction, which makes nontrivial
the finiteness of the value function. Hence, the Merton bound does not provide as e.g. in
transaction cost models, a natural upper bound on the value function. Instead, we provide
a suitable “linearization” of the liquidation value that provides a sharp upper bound of the
value function. The solvency region (or state domain) is not convex and its boundary even
not smooth, in contrast with transaction cost model (see [14]), so that continuity of the
value function is not direct. Moreover, the boundary of the solvency region is not absorbing
as in transaction cost models and singular control problems, and the value function may be
discontinuous on some parts of the boundary. Singularity of our impulse control problem
appears also at the liquidation date, which translates into discontinuity of the value function
at the terminal date. These properties of the value function are studied in Section 4.

In our general set-up, it is then natural to consider the HJB equation with the concept
of (discontinuous) viscosity solutions, which provides by now a well established method
for dealing with stochastic control problems, see e.g. the book [16]. More precisely, we
need to consider constrained viscosity solutions to handle the state constraints. Our first
main result is to prove that the value function is a constrained viscosity solution to its
associated HJB quasi-variational inequality. Our second main result is a new comparison
principle for the state constraint HJB quasi-variational inequality, which ensures a PDE
characterization for the value function of our problem. Previous comparison results derived
for variational inequality (see [20], [33]) associated to impulse problem do not apply here.
In our context, we prove that one can compare a subsolution with a supersolution to the
HJB quasi-variational inequality provided that one can compare them at the terminal date
(as usual in parabolic problems) but also on some part D0 of the solvency boundary, which
represents an original point in comparison principle for state-constraint problem. Section
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5 is devoted to the PDE viscosity characterization of the value function. We conclude in
Section 6 with some remarks.

2 The Model

This section presents the details of the model. Let (Ω,F ,P) be a probability space equipped
with a filtration (Ft)0≤t≤T supporting an one-dimensional Brownian motion W on a finite
horizon [0, T ], T < ∞. We consider a continuous time financial market model consisting of
a money market account yielding a constant interest rate r ≥ 0 and a risky asset (or stock)
of price process P = (Pt). We denote by Xt the amount of money (or cash holdings) and
by Yt the number of shares in the stock held by the investor at time t.

Liquidity constraints. We assume that the investor can only trade discretely on [0, T ).
This is modelled through an impulse control strategy α = (τn, ζn)n≥1 : τ1 ≤ . . . τn ≤ . . . <

T are stopping times representing the intervention times of the investor and ζn, n ≥ 1, are
Fτn-measurable random variables valued in R and giving the number of stock purchased if
ζn ≥ 0 or selled if ζn < 0 at these times. The sequence (τn, ζn) may be a priori finite or
infinite. The dynamics of Y is then given by :

Ys = Yτn , τn ≤ s < τn+1 (2.1)

Yτn+1 = Yτn + ζn+1. (2.2)

Notice that we do not allow trade at the terminal date T , which is the liquidation date.

Price impact. The large investor affects the price of the risky stock P by his purchases
and sales : the stock price goes up when the trader buys and goes down when he sells
and the impact is increasing with the size of the order. We then introduce a price impact
positive function Q(ζ, p) which indicates the post-trade price when the large investor trades
a position of ζ shares of stock at a pre-trade price p. In absence of price impact, we have
Q(ζ, p) = p. Here, we have Q(0, p) = p meaning that no trading incurs no impact and Q is
nondecreasing in ζ with Q(ζ, p) ≥ (resp. ≤) p for ζ ≥ (resp. ≤) 0. Actually, in the rest of
the paper, we consider a price impact function in the form

Q(ζ, p) = peλζ , where λ > 0. (2.3)

The proportionality factor eλζ represents the price increase (resp. discount) due to the ζ
shares bought (resp. sold). The positive constant λmeasures the fact that larger trades gen-
erate larger quantity impact, everything else constant. This form of price impact function
is consistent with both the asymmetric information and inventory motives in the market
microstructure literature (see [25]).

We then model the dynamics of the price impact as follows. In the absence of trading,
the price process is governed by

dPs = Ps(bds+ σdWs), τn ≤ s < τn+1, (2.4)

where b, σ are constants with σ > 0. When a discrete trading ∆Ys := Ys − Ys− = ζn+1

occurs at time s = τn+1, the price jumps to Ps = Q(∆Ys, Ps−), i.e.

Pτn+1 = Q(ζn+1, Pτ−n+1
). (2.5)
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Notice that with this modelling of price impact, the price process P is always strictly
positive, i.e. valued in R∗

+ = (0,∞).

Cash holdings. We denote by θ(ζ, p) the cost function, which indicates the amount for
a (large) investor to buy or sell ζ shares of stock when the pre-trade price is p :

θ(ζ, p) = ζQ(ζ, p).

In absence of transactions, the process X grows deterministically at exponential rate r :

dXs = rXsds, τn ≤ s < τn+1. (2.6)

When a discrete trading ∆Ys = ζn+1 occurs at time s = τn+1 with pretrade price Ps− =
Pτ−n+1

, we assume that in addition to the amount of stocks θ(∆Ys, Ps−) = θ(ζn+1, Pτ−n+1
),

there is a fixed cost k > 0 to be paid. This results in a variation of cash holdings by ∆Xs

:= Xs −Xs− = −θ(∆Ys, Ps−)− k, i.e.

Xτn+1 = Xτ−n+1
− θ(ζn+1, Pτ−n+1

)− k. (2.7)

The assumption that any trading incurs a fixed cost of money to be paid will rule out
continuous trading, i.e. optimally, the sequence (τn, ζn) is not degenerate in the sense that
for all n, τn < τn+1 and ζn 6= 0 a.s. A similar modelling of fixed transaction costs is
considered in [27] and [24].

Liquidation value and solvency constraint. The solvency constraint is a key issue in
portfolio/consumption choice problem. The point is to define in an economically mean-
ingful way what is the portfolio value of a position in cash and stocks. In our context,
we introduce the liquidation function `(y, p) representing the value that an investor would
obtained by liquidating immediately his stock position y by a single block trade, when the
pre-trade price is p. It is given by :

`(y, p) = −θ(−y, p).

If the agent has the amount x in the bank account, the number of shares y of stocks at the
pre-trade price p, i.e. a state value z = (x, y, p), his net wealth or liquidation value is given
by :

L(z) = max[L0(z), L1(z)]1y≥0 + L0(z)1y<0, (2.8)

where

L0(z) = x+ `(y, p)− k, L1(z) = x.

The interpretation is the following. L0(z) corresponds to the net wealth of the agent when
he liquidates his position in stock. Moreover, if he has a long position in stock, i.e. y ≥ 0,
he can also choose to bin his stock shares, by keeping only his cash amount, which leads to
a net wealth L1(z). This last possibility may be advantageous, i.e. L1(z) ≥ L0(z), due to
the fixed cost k. Hence, globally, his net wealth is given by (2.8). In the absence of liquidity
risk, i.e λ = 0, and fixed transaction cost, i.e. k = 0, we recover the usual definition of
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wealth L(z) = x + py. Our definition (2.8) of liquidation value is also consistent with the
one in transaction costs models where portfolio value is measured after stock position is
liquidated and rebalanced in cash, see e.g. [13] and [28]. Another alternative would be
to measure the portfolio value separately in cash and stock as in [15] for transaction costs
models. This study would lead to multidimensional utility functions and is left for future
research.

We then naturally introduce the liquidation solvency region (see Figure 1) :

S =
{
z = (x, y, p) ∈ R× R× R∗

+ : L(z) > 0
}
,

and we denote its boundary and its closure by

∂S =
{
z = (x, y, p) ∈ R× R× R∗

+ : L(z) = 0
}

and S̄ = S ∪ ∂S.

Remark 2.1 The function L is clearly continuous on {z = (x, y, p) ∈ R × R × R∗
+ : y 6=

0}. It is discontinuous on z0 = (x, 0, p) ∈ S̄, but it is easy to check that it is upper-
semicontinuous on z0, so that globally L is upper-semicontinuous. Hence S̄ is closed in
R×R×R∗

+. We also notice that L is nonlinear in the state variables, which contrasts with
transaction costs models.

Remark 2.2 For any p > 0, the function y 7→ `(y, p) = pye−λy is increasing on [0, 1/λ],
decreasing on [1/λ,∞) with l(0, p) = limy→∞ l(y, p) = 0 and l(1/λ, p) = pe−1/λ. We then
distinguish the two cases :

? if p < kλe, then l(y, p) < k for all y ≥ 0.
? if p ≥ kλe, then there exists an unique y1(p) ∈ (0, 1/λ] and y2(p) ∈ [1/λ,∞) such that

l(y1(p), p) = l(y2(p), p) = k with l(y, p) < k for all y ∈ [0, y1(p)) ∪ (y2(p),∞). Moreover,
y1(p) (resp. y2(p)) decreases to 0 (resp. increases to ∞) when p goes to infinity, while y1(p)
(resp.y2(p)) increases (resp. decreases) to 1/λ when p decreases to kλe.
The boundary of the solvency region may then be explicited as follows (see Figures 2 and
3) :

∂S = ∂−` S ∪ ∂
yS ∪ ∂x

0S ∪ ∂x
1S ∪ ∂x

2S ∪ ∂+
` S,

where

∂−` S =
{
z = (x, y, p) ∈ R× R× R∗

+ : x+ `(y, p) = k, y ≤ 0
}

∂yS =
{
z = (x, y, p) ∈ R× R× R∗

+ : 0 ≤ x < k, y = 0
}

∂x
0S =

{
z = (x, y, p) ∈ R× R× R∗

+ : x = 0, y > 0, p < kλe
}

∂x
1S =

{
z = (x, y, p) ∈ R× R× R∗

+ : x = 0, 0 < y < y1(p)), p ≥ kλe
}

∂x
2S =

{
z = (x, y, p) ∈ R× R× R∗

+ : x = 0, y > y2(p), p ≥ kλe
}

∂+
` S =

{
z = (x, y, p) ∈ R× R× R∗

+ : x+ `(y, p) = k, y1(p) ≤ y ≤ y2(p), p ≥ kλe
}
.

In the sequel, we also introduce the corner lines in ∂S :

D0 = {(0, 0)} × R∗
+ ⊂ ∂yS, Dk = {(k, 0)} × R∗

+ ⊂ ∂−` S
C1 = {(0, y1(p), p) : p ∈ R∗

+} ⊂ ∂+
` S, C2 = {(0, y2(p), p) : p ∈ R∗

+} ⊂ ∂+
` S.
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Admissible controls. Given t ∈ [0, T ], z = (x, y, p) ∈ S̄ and an initial state Zt− = z,
we say that the impulse control strategy α = (τn, ζn)n≥1 is admissible if the process Zs =
(Xs, Ys, Ps) given by (2.1)-(2.2)-(2.4)-(2.5)-(2.6)-(2.7) (with the convention τ0 = t) lies in
S̄ for all s ∈ [t, T ]. We denote by A(t, z) the set of all such policies. We shall see later that
this set of admissible controls is nonempty for all (t, z) ∈ [0, T ]× S̄.

Remark 2.3 We recall that we do not allow intervention time at T , which is the liquidation
date. This means that for all α ∈ A(t, z), the associated state process Z is continuous at
T , i.e. ZT− = ZT .

In the sequel, for t ∈ [0, T ], z = (x, y, p) ∈ S̄, we also denote Z0,t,z
s = (X0,t,x

s , y, P 0,t,p
s ),

t ≤ s ≤ T , the state process when no transaction (i.e. no impulse control) is applied
between t and T , i.e. the solution to :

dZ0
s =

 rX0
s

0
bP 0

s

 ds+

 0
0

σP 0
s

 dWs, (2.9)

starting from z at time t.

Investment problem. We consider an utility function U from R+ into R, strictly increas-
ing, concave and w.l.o.g. U(0) = 0, and s.t. there exist K ≥ 0, γ ∈ [0, 1) :

U(w) ≤ Kwγ , ∀w ≥ 0, (2.10)

We denote UL the function defined on S̄ by :

UL(z) = U(L(z)).

We study the problem of maximizing the expected utility from terminal liquidation wealth
and we then consider the value function :

v(t, z) = sup
α∈A(t,z)

E [UL(ZT )] , (t, z) ∈ [0, T ]× S̄. (2.11)

Remark 2.4 We shall see later that for all α ∈ A(t, z) 6= ∅, UL(ZT ) is integrable so that
the expectation in (2.11) is well-defined. Since U is nonnegative and nondecreasing, we
immediately get a lower bound for the value function :

v(t, z) ≥ U(0) = 0, ∀t ∈ [0, T ], z = (x, y, p) ∈ S̄.

We shall also see later that the value function v is finite in [0, T ]× S̄ by providing a sharp
upper bound.

Notice that in contrast to financial models without frictions or with proportional trans-
action costs, the dynamics of the state process Z = (X,Y, P ) is nonlinear and then the
value function v does not inherit the concavity property of the utility function. The sol-
vency region is even not convex. In particular, one cannot derive as usual the continuity of
the value function as a consequence of the concavity property. Moreover, for power-utility
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functions U(w) = Kwγ , the value function does not inherit the homogeneity property of
the utility function.

We shall adopt a dynamic programming approach to study this utility maximization
problem. We end this section by recalling the dynamic programming principle for our
stochastic control problem.

Dynamic programming principle (DPP). For all (t, z) ∈ [0, T )× S̄, we have

v(t, z) = sup
α∈A(t,z)

E [v(τ, Zτ )] , (2.12)

where τ = τ(α) is any stopping time valued in [t, T ] depending on α in (2.12). The precise
meaning is :

(i) for all α ∈ A(t, z), for all τ ∈ Tt,T , set of stopping times valued in [t, T ] :

E[v(τ, Zτ )] ≤ v(t, z) (2.13)

(ii) for all ε > 0, there exists α̂ε ∈ A(t, z) s.t. for all τ ∈ Tt,T :

v(t, z) ≤ E[v(τ, Ẑε
τ )] + ε. (2.14)

Here Ẑε denotes the state process starting from z at t and controlled by α̂ε.

3 Quasi-variational Hamilton-Jacobi-Bellman inequality and

the main result

In this section, we introduce some notations, recall the dynamic programming quasi-
variational inequality associated to the impulse control problem (2.11) and formulate the
main result.

We define the impulse transaction function from S̄ × R into R× R× R∗
+ :

Γ(z, ζ) = (x− θ(ζ, p)− k, y + ζ,Q(ζ, p)), z = (x, y, p) ∈ S̄, ζ ∈ R,

This corresponds to an immediate trading at time t of ζ shares of stock, so that from (2.2)-
(2.5)-(2.7) the state process jumps from Zt− = z ∈ S̄ to Zt = Γ(z, ζ). We then consider
the set of admissible transactions :

C(z) =
{
ζ ∈ R : Γ(z, ζ) ∈ S̄

}
= {ζ ∈ R : L(Γ(z, ζ)) ≥ 0} ,

in accordance with the solvency constraint and the set of admissibles controls A(t, z). We
introduce the impulse operator H defined by :

Hϕ(t, z) = sup
ζ∈C(z)

ϕ(t,Γ(z, ζ)), (t, z) ∈ [0, T ]× S̄,

for any measurable function ϕ on [0, T ] × S̄. If for some z ∈ S̄, the set C(z) is empty, we
denote by convention Hϕ(t, z) = −∞.
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We also define L as the infinitesimal generator associated to the system (2.9) corres-
ponding to a no-trading period :

Lϕ = rx
∂ϕ

∂x
+ bp

∂ϕ

∂p
+

1
2
σ2p2∂

2ϕ

∂p2
.

The HJB quasi-variational inequality arising from the dynamic programming principle
(2.12) is then written as :

min
[
−∂v
∂t
− Lv , v −Hv

]
= 0, on [0, T )× S. (3.1)

This divides the time-space liquidation solvency region [0, T )× S into a no-trade region

NT = {(t, z) ∈ [0, T )× S : v(t, z) > Hv(t, z)} ,

and a trade region

T = {(t, z) ∈ [0, T )× S : v(t, z) = Hv(t, z)} .

The rigorous characterization of the value function through the quasi-variational inequality
(3.1) together with the boundary and terminal conditions is stated by means of constrained
viscosity solutions. Our main result is the following theorem, which follows from the results
proved in Sections 4 and 5.

Theorem 3.1 The value function v is continuous on [0, T )×S and is the unique (in [0, T )×
S) constrained viscosity solution to (3.1) satisfying the boundary and terminal condition :

lim
(t′, z′) → (t, z)

z′ ∈ S

v(t′, z′) = 0, ∀(t, z) ∈ [0, T )×D0 (3.2)

lim
(t, z′) → (T, z)

t < T, z′ ∈ S

v(t, z′) = max[UL(z),HUL(z)], ∀z ∈ S̄, (3.3)

and the growth condition :

|v(t, z)| ≤ K
(
1 +

(
x+

p

λ

))γ
, ∀(t, z) ∈ [0, T )× S (3.4)

for some positive constant K < ∞.

Remark 3.1 Continuity and uniqueness of the value function for the HJBQVI (3.1) hold
true in [0, T )× S in the class of functions satisfying the growth condition (3.4), associated
to the terminal condition (3.3) (as usual in parabolic problems) but also to some specific
boundary condition (3.2). This last point is nonstandard in constrained control problems,
where one gets usually an uniqueness result for constrained viscosity solutions to the cor-
responding Bellman equation without any additional boundary condition, see e.g. [35] or
[28]. Here, we have to impose a boundary condition on the nonsmooth part D0 of the
solvency boundary. Notice also that the terminal condition is not given by UL. Actually, it
takes into account the fact that just before the liquidation date T , one can do an impulse
transaction : the effect is to lift-up the utility function UL through the impulse transaction
operator H.
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4 Properties of the value function

4.1 Some properties on the impulse transactions set

In order to show that the value function of problem (2.11) is finite, which is not trivial a
priori, we need to derive some preliminary properties on the set of admissible transactions
C(z). Starting from a current state z = (x, y, p) ∈ S̄, an immediate transaction of size ζ
leads to a new state z′ = (x′, y′, p′) = Γ(z, ζ). Recalling the expression (2.3) of the price
impact function, we then have :

L0(Γ(z, ζ)) = x′ + `(y′, p′)− k = x+ `(y, p)− k + pζ(e−λy − eλζ)− k

= L0(z) + pg(y, ζ)− k, (4.1)

with

g(y, ζ) = ζ(e−λy − eλζ). (4.2)

It then appears that due to the nonlinearity of the price impact function, and in contrast
with transaction costs models, the net wealth may grow after some transaction : L(Γ(z, ζ))
> L(z) for some z ∈ S̄ and ζ ∈ C(z). We first state the following useful result.

Lemma 4.1 For all z ∈ S̄, the set C(z) is compact, eventually empty. We have :

C(z) = ∅ if z ∈ ∂yS ∪ ∂x
0S ∪ ∂x

1S,

− 1
λ
∈ C(z) ⊂ (−y, 0) if z ∈ ∂x

2S,

−y ∈ C(z) ⊂

{
[0,−y] if z ∈ ∂−` S
[−y, 0) if z ∈ ∂+

` S

Moreover,

C(z) = {−y} if z ∈ (∂−` S ∪ ∂
+,λ
` S) ∩N`

where

∂+,λ
` S = ∂+

` S ∩
{
z ∈ S̄ : y ≤ 1

λ

}
, N` =

{
z ∈ S̄ : pḡ(y) < k

}
,

and ḡ(y) = maxζ∈R g(y, ζ).

The proof is based on detailed and long but elementary calculations on the liquida-
tion net wealth L(Γ(z, ζ)) = max [L0(Γ(z, ζ)), L1(Γ(z, ζ))] 1y+ζ≥0 + L0(Γ(z, ζ))1y+ζ<0 and
is rejected in Appendix.

Remark 4.1 Actually, we have a more precise result on the compactness result of C(z).
Let z ∈ S̄ and (zn)n be a sequence in S̄ converging to z. Consider any sequence (ζn)n with
ζn ∈ C(zn), i.e. L(Γ(zn, ζn)) ≥ 0 :

max [L0(zn) + png(yn, ζn)− k, x− θ(ζn, pn)− k] 1yn+ζn≥0

+ [L0(zn) + png(yn, ζn)− k] 1yn+ζn<0 ≥ 0.
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Since g(y, ζ) and −θ(ζ, p) goes to −∞ as ζ goes to infinity, and g(y, ζ) goes to −∞ as ζ
goes to −∞, this proves that the sequence (ζn) is bounded. Hence, up to a subsequence,
(ζn) converges to some ζ ∈ R. Since the function L is uppersemicontinuous, we see that
the limit ζ satisfies : L(Γ(z, ζ)) ≥ 0, i.e. ζ lies in C(z).

We can now check that the set of admissible controls is not empty.

Corollary 4.1 For all (t, z) ∈ [0, T )× S̄, we have A(t, z) 6= ∅.

Proof. By continuity of the process Z0,t,z
s , t ≤ s ≤ T , it is clear that it suffices to prove

A(t, z) 6= ∅ for any t ∈ [0, T ) × ∂S. Fix now some arbitrary t ∈ [0, T ). From Lemma 4.1,
the set of admissible transactions C(z) contains at least one nonzero element for any z ∈
∂x

2S ∪ ∂
+
` S ∪ ∂

−
` S \Dk. So once the state process reaches this boundary part, it is possible

to jump inside the open solvency region S. Hence, we only have to check that A(t, z) is
nonempty when z ∈ ∂x

0S ∪ ∂x
1S ∪ ∂yS ∪ Dk. This is clear when z ∈ ∂yS ∪ Dk : indeed,

by doing nothing the state process Zs = Z0,t,z
s = (xer(s−t), 0, P 0,t,p

s ), t ≤ s ≤ T , obviously
stays in S̄, since x ≥ 0 and so L1(Zs) ≥ 0 for all t ≤ s ≤ T . Similarly, when z ∈ ∂x

0S ∪
∂x

1S, by doing nothing the state process Zs = Z0,t,z
s = (0, y, P 0,t,p

s ), t ≤ s ≤ T , also stays
in S̄ since y ≥ 0 and so L1(Zs) ≥ 0 for all t ≤ s ≤ T . 2

We next turn to the finiteness of the value function, which is not trivial due to the
impulse control. As mentioned above, since the net wealth may grow after transaction due
to the nonlinearity of the liquidation function, one cannot bound the value function v by
the value function of the Merton problem with liquidated net wealth. We then introduce a
suitable “linearization” of the net wealth by defining the following functions on S̄ :

L̃(z) = x+
p

λ
(1− e−λy), and L̄(z) = x+

p

λ
, z = (x, y, p) ∈ S̄.

Lemma 4.2 For all z = (x, y, p) ∈ S̄ , we have :

0 ≤ L(z) ≤ L̃(z) ≤ L̄(z) (4.3)

and for all ζ ∈ C(z)

L̃(Γ(z, ζ)) ≤ L̃(z)− k (4.4)

L̄(Γ(z, ζ)) ≤ L̄(z)− k. (4.5)

In particular, we have C(z) = ∅ for all z ∈ Ñ := {z ∈ S : L̃(z) < k}.

Proof. 1) The inequality L̃ ≤ L̄ is clear. Notice that for all y ∈ R, we have

0 ≤ 1− e−λy − λye−λy. (4.6)

This immediately implies for all z = (x, y, p) ∈ S̄,

L0(z) ≤ L̃(z). (4.7)
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If y ≥ 0, we obviously have L1(z) = x ≤ L̃(z) and so L(z) ≤ L̃(z). If y < 0, then L(z) =
L0(z) ≤ L̃(z) by (4.7).
2) For any z = (x, y, p) ∈ S̄ and ζ ∈ R, a straightforward computation shows that

L̃(Γ(z, ζ)) = L̃(z)− k +
p

λ
(eλζ − 1− λζeλζ) ≤ L̃(z)− k,

from (4.6). Similarly, we show (4.5). Finally, if z ∈ Ñ , we have from (4.5), L̃(Γ(z, ζ)) < 0
for all ζ ∈ C(z), which shows with (4.3) that C(z) = ∅. 2

As a first direct corollary, we check that the no-trade region is not empty.

Corollary 4.2 We have NT 6= ∅. More precisely, for each t ∈ [0, T ), the t-section of NT,
i.e. NT(t) = {z ∈ S : (t, z) ∈ NT} contains the nonempty subset Ñ of S.

Proof. This follows from the fact that for any z lying in the nonempty set Ñ of S, we
have C(z) = ∅. In particular, Hv(t, z) = −∞ < v(t, z) for (t, z) ∈ [0, T )× Ñ . 2

As a second corollary, we have the following uniform bound on the controlled state
process.

Corollary 4.3 For any (t, z) ∈ [0, T ]× S̄, we have almost surely for all t ≤ s ≤ T :

sup
α∈A(t,z)

L(Zs) ≤ sup
α∈A(t,z)

L̃(Zs) ≤ L̃(Z0,t,z
s ) = X0,t,x

s +
P 0,t,p

s

λ
(1− e−λy), (4.8)

sup
α∈A(t,z)

L(Zs) ≤ sup
α∈A(t,z)

L̄(Zs) ≤ L̄(Z0,t,z
s ) = X0,t,x

s +
P 0,t,p

s

λ
, (4.9)

sup
α∈A(t,z)

|Xs| ≤ e

e− 1
L̄(Z0,t,z

s ), (4.10)

sup
α∈A(t,z)

Ps ≤ λe

e− 1
L̄(Z0,t,z

s ). (4.11)

Proof. Fix (t, z) ∈ [0, T ]×S̄ and consider for any α ∈ A(t, z), the process L̃(Zs), t ≤ s ≤ T ,
which is nonnegative by (4.3). When a transaction occurs at time s, we deduce from (4.4)
that the variation ∆L̃(Zs) = L̃(Zs) − L̃(Zs−) is always negative : ∆L̃(Zs) ≤ −k ≤ 0.
Therefore, the process L̃(Zs) is smaller than its continuous part :

L(Zs) ≤ L̃(Zs) ≤ L̃(Z0,t,z
s ), t ≤ s ≤ T, a.s. (4.12)

which proves (4.8) from the arbitrariness of α. Relation (4.9) is proved similarly.
From the second inequality in (4.9), we have for all α ∈ A(t, z) :

Xs ≤ L̄(Z0,t,z
s )− Ps

λ
, t ≤ s ≤ T, a.s. (4.13)

≤ L̄(Z0,t,z
s ), t ≤ s ≤ T, a.s. (4.14)

By definition of L and using (4.13), we have :

0 ≤ L(Zs) ≤ max
(
L̄(Z0,t,z

s )− Ps

λ
(1− λYse

−λYs), L̄(Z0,t,z
s )− Ps

λ

)
≤ L̄(Z0,t,z

s )− Ps

λ

(
1− 1

e

)
, t ≤ s ≤ T, a.s.
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since the function y 7→ λye−λy is upper bounded by 1/e. We then deduce

Ps ≤ λe

e− 1
L̄(Z0,t,z

s ), t ≤ s ≤ T, a.s. (4.15)

and so (4.11) from the arbitrariness of α. By recalling that Xs +Ps/λ ≥ 0 and using (4.15),
we get

− e

e− 1
L̄(Z0,t,z

s ) ≤ Xs, t ≤ s ≤ T, a.s.

By combining with (4.14) and from the arbitrariness of α, we obtain (4.10). 2

As a third direct corollary, we state that the number of intervention times is finite.
More precisely, we have the following result :

Corollary 4.4 For any (t, z) ∈ [0, T ]×S̄, α = (τn, ζn) ∈ A(t, z), the number of intervertion
times strictly between t and T is finite a.s. :

Nt(α) := Card {n : t < τn < T}

≤ 1
k

[
L̄(Zt)− L̄(ZT−) +

∫ T

t

(
rXs +

Ps

λ

)
ds+

∫ T

t

σ

λ
PsdWs

]
<∞ a.s.(4.16)

Proof. Fix some (t, z) ∈ [0, T ] × S̄ and α ∈ A(t, z), and consider Zs = (Xs, Ys, Ps),
t ≤ s ≤ T , the associated controlled state process. By applying Itô’s formula to L̄(Zs) =
Xs + Ps/λ between t and T , we have :

0 ≤ L̄(ZT−) = L̄(Zt) +
∫ T

t

(
rXs +

Ps

λ

)
ds+

∫ T

t

σ

λ
PsdWs +

∑
t<s<T

∆L(Zs)

≤ L̄(Zt) +
∫ T

t

(
rXs +

Ps

λ

)
ds+

∫ T

t

σ

λ
PsdWs − kNt(α),

by (4.5). We deduce the required result :

Nt(α) ≤ 1
k

[
L̄(Zt)− L̄(ZT−) +

∫ T

t

(
rXs +

Ps

λ

)
ds+

∫ T

t

σ

λ
PsdWs

]
< ∞ a.s.

2

4.2 Bound on the value function

We can now give a sharp upper bound on the value function.

Proposition 4.1 For all t ∈ [0, T ], z = (x, y, p) ∈ S̄, we have

sup
α∈A(t,z)

UL (ZT ) ≤ U
(
L̃
(
Z0,t,z

T

))
∈ L1(P). (4.17)

In particular, the family {UL(ZT ), α ∈ A(t, z)} is uniformly integrable and we have

v(t, z) ≤ v0(t, z) := E
[
U
(
L̃
(
Z0,t,z

T

))]
, (t, z) ∈ [0, T ]× S̄, (4.18)
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with

v0(t, z) ≤ Keρ(T−t)L̃(z)γ , (4.19)

where ρ is a positive constant s.t.

ρ >
γ

1− γ

b2 + r2 + σ2r(1− γ)
σ2

. (4.20)

Proof. Fix (t, z) ∈ [0, T ] × S̄ and consider for some arbitrary α ∈ A(t, z), the process
L̃(Zs), t ≤ s ≤ T , which is nonnegative by (4.3). By (4.8), we have :

L(Zs) ≤ L̃(Zs) ≤ L̃(Z0,t,z
s ) = X0,t,x

s +
P 0,t,p

s

λ
(1− e−λy), t ≤ s ≤ T. (4.21)

From the arbitrariness of α and the nondecreasing property of U , we get the inequality in
(4.17). From the growth condition (2.10) on the nonnegative function U and since clearly

|X0,t,x
T |γ and (P 0,t,p

T )γ are integrable, i.e. in L1(P), we have U
(
X0,t,x

T + P 0,t,p
T
λ (1− e−λy)

)
∈ L1(P). This clearly implies (4.18).

Consider now the nonnegative function :

ϕ(t, z) = eρ(T−t)L̃(z)γ = eρ(T−t)
(
x+

p

λ
(1− e−λy)

)γ

and notice that ϕ is smooth C2 on [0, T ]× (S̄ \D0). We claim that for ρ large enough, the
function ϕ satisfies :

−∂ϕ
∂t

(t, z)− Lϕ(t, z) ≥ 0, ∀ (t, z) ∈ [0, T ]× S̄ \D0. (4.22)

Indeed, a straightforward calculation shows that for all t ∈ [0, T ), z = (x, y, p) ∈ S̄ \D0 :

−∂ϕ
∂t

(t, z)− Lϕ(t, z)

= eρ(T−t)L̃(z)γ−2

[
Ax2 +B

(p
λ

(1− e−λy)
)2

+ 2Cx
p

λ
(1− e−λy)

]
, (4.23)

where

A = ρ− rγ, B = ρ− bγ +
1
2
σ2γ(1− γ), C = ρ− (b+ r)γ

2
.

Hence, (4.22) is satisfied whenever A > 0 and BC −A2 > 0, which is the case for ρ larger
than the constant in the r.h.s. of (4.20).

Fix some (t, z) ∈ [0, T ) × S̄. If z = (0, 0, p) then we clearly have v0(t, z) = U(0) and
so inequality (4.19) follows from U(0) ≤ K1 (see (2.10)). Consider now the case where z ∈
S̄ \ D0 and notice that the process Z0,t,z

s = (X0,t,x
s , y, P 0,t,p

s ) never reaches {(0, 0)} × R∗
+.

Consider the stopping time

TR = inf
{
s ≥ t : |Z0,t,z

s | > R
}
∧ T
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so that the stopped process (Z0,t,z
s∧TR

)t≤s≤T stays in the bounded set {z = (x, y, p) ∈ S̄ \D0 :

|z| ≤ R} on which ϕ(t, .) is smooth C2 and its derivative in p,
∂ϕ

∂p
is bounded. By applying

Itô’s formula to ϕ(s, Z0,t,z
s ) between s = t and s = TR, we have :

ϕ(TR, Z
0,t,z
TR

) = ϕ(t, z) +
∫ TR

t

(
∂ϕ

∂t
+ Lϕ

)
(s, Z0,t,z

s )ds+
∫ TR

t

∂ϕ

∂p
(s, Z0,t,z

s )σP 0,t,p
s dWs.

Since the integrand in the stochastic integral is bounded, we get by taking expectation in
the last relation :

E[ϕ(TR, Z
0,t,z
TR

)] = ϕ(t, z) + E
[∫ TR

t

(
∂ϕ

∂t
+ Lϕ

)
(s, Z0,t,z

s )ds
]
≤ ϕ(t, z),

where we used in the last inequality (4.22). Now, for almost ω ∈ Ω, for R large enough (≥
R̄(ω)), we have TR = T so that ϕ(TR, ZTR

) converges a.s. to ϕ(T,ZT ). By Fatou’s lemma,
we deduce that E[ϕ(T,ZT )] ≤ ϕ(t, z). Since ϕ(T, z) = L̃(z)γ , this yields

E
[
L̃
(
Z0,t,z

T

)γ]
≤ ϕ(t, z). (4.24)

Finally, by the growth condition (2.10), this proves the required upper bound on the value
function v. 2

Remark 4.2 The upper bound of the last proposition shows that the value function lies
in the set of functions satisfying the growth condition :

Gγ([0, T ]× S̄) =

{
u : [0, T ]× S̄ −→ R, sup

[0,T ]×S̄

|u(t, z)|
1 +

(
x+ p

λ

)γ <∞

}
.

Remark 4.3 The upper bound (4.18) is sharp in the sense that when λ goes to zero (no
price impact), we find the usual Merton bound :

v(t, z) ≤ E[U(X0,t,x
T + yP 0,t,p

T )] ≤ Keρ(T−t)(x+ py)γ .

As a corollary, we can explicit the value function on the hyperplane of S̄ :

S̄y = R+ × {0} × R∗
+ ⊂ S̄,

where the agent does not hold any stock shares.

Corollary 4.5 For any t ∈ [0, T ), z = (x, 0, p) ∈ S̄y, the investor optimally does not
transact during [t, T ], i.e.

v(t, z) = E
[
U
(
X0,t,x

T

)]
= U

(
xer(T−t)

)
.

Proof. For z = (x, 0, p) ∈ S̄y, let us consider the no impulse control strategy starting from
z at t which leads at the terminal date to a net wealth L(Z0,t,z

T ) = X0,t,x
T = xer(T−t). We

then have v(t, z) ≥ E[U(X0,t,x
T )] = U(xer(T−t)). On the other hand, we have from (4.18) :

v(t, z) ≤ v0(t, z) = E[U(X0,t,x
T )]. This proves the required result. 2
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4.3 Boundary properties

We now turn to the behavior of the value function on the boundary of the solvency region.
The situation is more complex than in models with proportional transaction costs where the
boundary of the solvency region is an absorbing barrier and all transactions are stopped.
Here, the behavior depends on which part of the boundary is the state, as showed in the
following proposition.

Proposition 4.2 1) We have

v = Hv on [0, T )× (∂−` S \Dk ∪ ∂+
` S) (4.25)

and

Hv = 0 on [0, T )× (∂−` S ∪ ∂
+,λ
` S) ∩N`. (4.26)

2) We have

v > Hv on [0, T )× ∂yS ∪ ∂x
0S ∪ ∂x

1S ∪Dk. (4.27)

and

v = 0 on [0, T )×D0, (4.28)

v(t, z) = U(ker(T−t)), (t, z) ∈ [0, T ) ∈ Dk. (4.29)

Proof. 1. a) Fix some (t, z) ∈ [0, T ) × (∂−` S \Dk ∪ ∂+
` S) and consider an arbitrary α =

(τn, ζn)n≥1 ∈ A(t, z). We claim that τ1 = t a.s. i.e. one has to transact immediately at
time t in order to satisfy the solvency constraint.

? Consider first the case where z ∈ ∂−` S \Dk. Then on [t, τ1], Xs = xer(s−t), Ys = y <

0, Ps = pP 0
s , and so L(Zs) = L0(Z

0,t,z
s ). Hence, by integrating between t and τ1, we get :

0 ≤ e−r(τ1−t)L0(Z0,t,z
τ1 ) =

∫ τ1

t
e−r(u−t)P 0

uye
−λy [(b− r)du+ σdWu] . (4.30)

By Girsanov’s theorem, one can define a probability measure Q equivalent to P under which
Ŵs = Ws + (b − r)s/σ is a Brownian motion. Under this measure, the stochastic integral∫ τ1
t e−r(u−t)P 0

uye
−λyσdŴu has zero expectation from which we deduce with (4.30) that∫ τ1

t
e−r(u−t)P 0

uye
−λyσdŴu = 0 a.s.

Since y 6= 0 and P 0
s > 0 a.s., this implies τ1 = t a.s.

? Consider the case where z ∈ ∂+
` S. Then on [t, τ1], Xs = xer(s−t)< 0, Ys = y, Ps =

pP 0
s , and so L(Zs) = L0(Zs). By the same argument as above, we deduce τ1 = t. Applying

the dynamic programming principle (2.12) for τ = τ1, we clearly deduce (4.25).
b) Fix some (t, z = (x, y, p)) ∈ [0, T )× (∂−` S ∪ ∂

+,λ
` S) ∩ N`. Then, from Lemma 4.1, C(z)

= {−y} and so Hv(t, z) = v(t,Γ(z,−y)) = v(t, 0, 0, p). Now, from Corollary 4.5, we have
for all z0 = (0, 0, p) ∈ D0, v(t, z0) = U(0) = 0, which proves (4.28) and so (4.26).

2. Fix some t ∈ [0, T ) and z ∈ ∂yS ∪ ∂x
0S ∪ ∂x

1S. Then by Lemma 4.1, C(z) = ∅, hence
Hv(t, z) = −∞ and so (4.27) is trivial. For z = (k, 0, p) ∈ Dk, we have by Lemma 4.1, C(z)
= {0} and so Hv(t, z) = v(t,Γ(z, 0)) = v(t, 0, 0, p) = 0 by (4.28). Therefore, from Corollary
4.5, we have for z = (k, 0, p) ∈ Dk : v(t, z) = U(ker(T−t)) > 0 = Hv(t, z). 2
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Remark 4.4 The last proposition and its proof means that when the state reaches ∂−` S \
Dk ∪ ∂+

` S, one has to transact immediately since the no transaction strategy is not ad-
missible. Moreover, if one is in (∂−` S ∪ ∂

+,λ
` S) ∩ N`, one jumps directly to D0 where all

transactions are stopped. On the other hand, if the state is in ∂yS ∪ ∂x
0S ∪ ∂x

1S ∪Dk, one
should do not transact : admissible transaction does not exist on ∂yS ∪ ∂x

0S ∪ ∂x
1S while

the only zero admissible transaction on Dk is suboptimal with respect to the no transac-
tion control. In the remaining part ∂x

2S of the boundary, both decisions, transaction and
no-transaction, are admissible : we only know that one of these decisions should be chosen
optimally but we are not able to be explicit about which one is optimal. A representation
of the behavior of the optimal strategy on the boundary of the solvency region is depicted
in Figures 2 and 3.

The next result states the continuity of the value function on the part D0 of the solvency
boundary, as a direct consequence of (4.18) and (4.28).

Corollary 4.6 The value function v is continuous on [0, T )×D0 :

lim
(t′,z′)→(t,z)

v(t′, z′) = v(t, z) = 0, ∀(t, z) ∈ [0, T )×D0.

Remark 4.5 Notice that except on D0, the value function is in general discontinuous on
the boundary of the solvency region. More precisely, for any t ∈ [0, T ), z ∈ Dk, we have
from (4.25)-(4.26) :

lim
z′ → z

z′ ∈ ∂−
`
S \ Dk

v(t, z′) = 0,

while from Corollary 4.5 :

lim
z′ → z

z′ ∈ S̄y

v(t, z′) = U(ker(T−t)).

This shows that v is discontinuous on [0, T ) × Dk. Similarly, one can show that v is
discontinuous on [0, T )× (∂x

1S ∩ ∂
+
` S).

4.4 Terminal condition

We end this section by determining the right terminal condition of the value function. We
set

v∗(T, z) := lim sup
(t, z′) → (T, z)

t < T, z′ ∈ S

v(t, z′), v∗(T, z) := lim inf
(t, z′) → (T, z)

t < T, z′ ∈ S

v(t, z′)

Proposition 4.3 We have

v∗(T, z) = v∗(T, z) = Ū(z), ∀z ∈ S̄,

where

Ū(z) := max [UL(z),HUL(z)] .
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Proof. 1) Fix some z ∈ S̄ and consider some sequence (tm, zm)m ∈ [0, T )× S converging
to (T, z) and s.t. limm v(tm, zm) = v∗(T, z). By taking the no impulse control strategy on
[tm, T ], we have

v(tm, zm) ≥ E
[
UL(Z0,tm,zm

T )
]
.

Since Z0,tm,zm

T converges a.s. to z when m goes to infinity by continuity of the diffusion
Z0,t,z in its initial conditions (t, z), we deduce by Fatou’s lemma that :

v∗(T, z) ≥ UL(z). (4.31)

Take now some arbitrary ζ ∈ C(z). Consider first the case where L(Γ(z, ζ)) > 0. We claim
that for m large enough, ζ ∈ C(zm). Indeed,

? suppose that ζ 6= −y. Then, by continuity of the function z′ 7→ L(Γ(z′, ζ)) on {z′ =
(x′, y′, p′) : y′ 6= ζ}, we deduce that L(Γ(zm, ζ)) converges to L(Γ(z, ζ)) > 0 and so for m
large enough, ζ ∈ C(zm).

? Suppose that ζ = −y, i.e. L(Γ(z, ζ)) = x+ `(y, p)− k > 0. Notice that

L(Γ(zm, ζ)) = max
[
L0(zm)− k + pg(−y, ym), xm + ye−λypm − k

]
1ym−y≥0

+ L0(zm)1ym−y<0.

We then see that lim infm→∞ L(Γ(zm, ζ)) ≥ L(Γ(z, ζ)), and so for m large enough, ζ ∈
C(zm).
One may then consider the admissible control with immediate impulse at tm with size ζ
and no other impulse until T so that the associated state process is Ztm,zm = Z0,tm,Γ(zm,ζ)

and thus

v(tm, zm) ≥ E
[
UL

(
Z

0,tm,Γ(zm,ζ)
T

)]
.

Sending m to infinity, we obtain :

v∗(T, z) ≥ UL(Γ(z, ζ)), (4.32)

for all ζ in C(z) s.t. L(Γ(z, ζ)) > 0. This last inequality (4.32) holds obviously true when
L(Γ(z, ζ)) = 0 since in this case UL(Γ(z, ζ)) = 0 ≤ v∗(T, z). By combining with (4.31), we
get v∗(T, z) ≥ Ū(z).

2) Fix some z ∈ S̄ and consider some sequence (tm, zm)m ∈ [0, T ) × S converging to
(T, z) and s.t. limm v(tm, zm) = v∗(T, z). For any m, one can find α̂m = (τ̂m

n , ζ̂
m
n )n ∈

A(tm, zm) s.t.

v(tm, zm) ≤ E
[
UL(Ẑm

T )
]

+
1
m

(4.33)

where Ẑm = (X̂m, Ŷ m, P̂m) denotes the state process controlled by α̂m and given in T by :

Ẑm
T = Ẑm

T− = zm +
∫ T

tm

B(Ẑm
s )ds+

∫ T

tm

Σ(Ẑm
s )dWs +

∑
tm≤u<T

∆Ẑm
s

= zm + (Γ(zm, ζm
1 )− zm) 1τm

1 =tm +Rm
T (4.34)
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with B(z) = (rx, 0, bp) and Σ(z) = (0, 0, σp) and

Rm
T =

∫ T

tm

B(Ẑm
s )ds+

∫ T

tm

Σ(Ẑm
s )dWs +

∑
tm<s<T

∆Ẑm
s . (4.35)

We rewrite (4.33) as

v(tm, zm) ≤ E
[
{UL(Γ(zm, ζm

1 ) +Rm
T )− UL(zm +Rm

T )} 1τm
1 =tm

+ UL(zm +Rm
T )] +

1
m

(4.36)

We claim that Rm
T converges a.s. to 0 as m goes to infinity. Indeed, from the uniform

bounds (4.10)-(4.11), we have

|B(Ẑm
s )|+ |Σ(Ẑm

s )| ≤ (r + (b+ σ)λ)
e

e− 1
L(Z0,t,zm

s )

≤ Cte L(Z0,t,z
s ), tm ≤ s ≤ T, a.s.,

for some positive Cte independent of m. We then deduce that the Lebesgue and stochastic
integral in (4.35) converge a.s. to zero as m goes to infinity, i.e. tm goes to T . On the other
hand, by same argument as in Remark 4.1, we see that for each tm < s < T , the jump
∆Zm

s is uniformly bounded in m. Moreover, by (4.16), we have

Ntm(α̂m) ≤ 1
k

[
L̄(Ẑm

tm)− L̄(Ẑm
T−) +

∫ T

tm

(
rX̂m

s +
P̂m

s

λ

)
ds+

∫ T

tm

σ

λ
P̂m

s dWs

]
.(4.37)

Similarly as above, by the uniform bounds in (4.10)-(4.11), the integrals in (4.37) converge
to zero as m goes to infinity. From the left-continuity of the state process Ẑm and the
continuity of L̄, we deduce that L̄(Ẑm

tm) − L̄(Zm
T−) converge to zero as m goes to infinity.

Therefore,
∑

tm<s<T ∆Ẑm
s goes to zero as m goes to infinity, which proves the required zero

convergence of Rm
T .

By Remark 4.1, the sequence of jump size (ζm
1 )m is bounded, and up to a subsequence,

converges, as m goes to infinity, to some ζ ∈ C(z). Moreover, it is easy to check that the

family {U(X0,tm,xm

T + P 0,tm,pm
T

λ (1 − e−λym)),m ≥ 1} is uniformly integrable so that from
(4.17), the family {UL(Ẑm

T ),m ≥ 1} is also uniformly integrable. Therefore, we can send m
to infinity into (4.33) (or (4.36)) by the dominated convergence theorem and get :

v∗(T, z) ≤ E
[
{UL(Γ(z, ζ))− UL(z)} lim sup

m→∞
1τm

1 =tm + UL(z)
]

≤ max

{
UL(z), sup

ζ∈C(z)
UL(Γ(z, ζ))

}
.

By completing with (4.31), this proves v∗(T, z) = v∗(T, z) = Ū(z). 2

Remark 4.6 The previous result shows in particular that the value function is discontin-
uous on T . Indeed, recalling that we do not allow any impulse transaction at T , we have
v(T, z) = UL(z) for all z ∈ S̄. Moreover, by Proposition 4.3, we have v(T−, z) = Ū(z),
hence v(., z) is discontinuous on T for all z ∈ {z ∈ S̄ : HUL(z) > UL(z)} 6= ∅.
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5 Viscosity characterization

In this section, we intend to provide a rigorous characterization of the value function by
means of (constrained) viscosity solution to the quasi-variational inequality :

min
[
−∂v
∂t
− Lv, v −Hv

]
= 0, (5.1)

together with appropriate boundary and terminal conditions.

As mentioned previously, the value function is not known to be continuous a priori and
so we shall work with the notion of discontinuous viscosity solutions. For a locally bounded
function u on [0, T )× S̄ (which is the case of the value function v), we denote by u∗ (resp.
u∗) the lower semi-continuous (lsc) (resp. upper semi-continuous (usc)) envelope of u. We
recall that in general, u∗ ≤ u ≤ u∗, and that u is lsc iff u = u∗, u is scs iff u = u∗, and u is
continuous iff u∗ = u∗ (= u). We denote by LSC([0, T )× S̄) (resp. USC([0, T )× S̄)) the
set of lsc (resp. usc) functions on [0, T )× S̄.

We work with the suitable notion of constrained viscosity solutions, introduced in [31]
for first-order equations, for taking into account boundary conditions arising in state con-
straints. The use of constrained viscosity solutions was initiated in [35] for stochastic control
problems arising in optimal investment problems. The definition is given as follows :

Definition 5.1 (i) Let O ⊂ S̄. A locally bounded function u on [0, T ) × S̄ is a viscosity
subsolution (resp. supersolution) of (5.1) in [0, T )×O if for all (t̄, z̄) ∈ [0, T )×O and ϕ ∈
C1,2([0, T )× S̄) s.t. (u∗ − ϕ)(t̄, z̄) = 0 (resp. (u∗ − ϕ)(t̄, z̄) = 0) and (t̄, z̄) is a maximum
of u∗ − ϕ (resp. minimum of u∗ − ϕ) on [0, T )×O, we have

min
[
−∂ϕ
∂t

(t̄, z̄)− Lϕ(t̄, z̄), u∗(t̄, z̄)−Hu∗(t̄, z̄)
]

≤ 0 (5.2)

( resp. ≥ 0). (5.3)

(ii) A locally bounded function u on [0, T )×S̄ is a constrained viscosity solution of (5.1) in
[0, T )× S if u is a viscosity subsolution of (5.1) in [0, T )× S̄ and a viscosity supersolution
of (5.1) in [0, T )× S.

Remark 5.1 There is an equivalent formulation of viscosity solutions, which is useful for
proving uniqueness results, see [11] :

(i) Let O ⊂ S̄. A function u ∈ USC([0, T ) × S̄) is a viscosity subsolution (resp. superso-
lution) of (5.1) in [0, T )×O if

min
[
−q0 − rxq1 − bpq3 −

1
2
σ2p2M33, u(t, z)−Hu(t, z)

]
≤ 0 (5.4)

( resp. ≥ 0) (5.5)

for all (t, z = (x, y, p)) ∈ [0, T ) × O, (q0, q = (qi)1≤i≤3,M = (Mij)1≤i,j≤3) ∈ J̄2,+u(t, z)
(resp. J̄2,−u(t, z)).
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(ii) A locally bounded function u on [0, T ) × S̄ is a constrained viscosity solution to (5.1)
if u∗ satisfies (5.4) for all (t, z) ∈ [0, T )× S̄, (q0, q,M) ∈ J̄2,+u∗(t, z), and u∗ satisfies (5.5)
for all (t, z) ∈ [0, T )× S, (q0, q,M) ∈ J̄2,−u∗(t, z).

Here J2,+u(t, z) is the parabolic second order superjet defined by :

J2,+u(t, z) =
{
(q0, q,M) ∈ R× R3 × S3 :

lim sup
(t′, z′) → (t, z)

(t′, z′) ∈ [0, T ) × S

u(t′, z′)− u(t, z)− q0(t′ − t)− q.(z′ − z)− 1
2(z′ − z).M(z′ − z)

|t′ − t|+ |z′ − z|2
≤ 0

 ,

S3 is the set of symmetric 3× 3 matrices, J̄2,+u(t, z) is its closure :

J̄2,+u(t, x) =
{

(q0, q,M) = lim
m→∞

(qm
0 , q

m,Mm) with (qm
0 , q

m,Mm) ∈ J2,+u(tm, zm)

and lim
m→∞

(tm, zm, u(tm, zm)) = (t, z, u(t, z))
}
,

and J2,−u(t, x) = −J2,+(−u)(t, x), J̄2,−u(t, x) = −J̄2,+(−u)(t, x).

5.1 Viscosity property

Our first main result of this section is the following.

Theorem 5.1 The value function v is a constrained viscosity solution to (5.1) in [0, T )×S.

Remark 5.2 The state constraint and the boundary conditions is translated through the
PDE characterization via the subsolution property, which has to hold true on the whole
closed region S̄. This formalizes the property that on the boundary of the solvency region,
one of the two possible decisions, immediate impulse transaction or no-transaction, should
be chosen optimally.

We need some auxiliary results on the impulse operator H.

Lemma 5.1 Let u be a locally bounded function on [0, T )× S̄.
(i) Hu∗ ≤ (Hu)∗. Moreover, if u is lsc then Hu is also lsc.
(ii) Hu∗ is usc and (Hu)∗ ≤ Hu∗.

Proof. (i) Let (tn, zn) be a sequence in [0, T ) × S̄ converging to (t, z) and s.t. Hu(tn, zn)
converges to (Hu)∗(t, z). Then, using also the lowersemicontinuity of u∗ and the continuity
of Γ, we have :

Hu∗(t, z) = sup
ζ∈C(z)

u∗(t,Γ(z, ζ)) ≤ sup
ζ∈C(z)

lim inf
n→∞

u∗(tn,Γ(zn, ζ))

≤ lim inf
n→∞

sup
ζ∈C(z)

u∗(tn,Γ(zn, ζ)) ≤ lim
n→∞

Hu(tn, zn) = (Hu)∗(t, z).

Suppose now that u is lsc and let (t, z) ∈ [0, T ) × S̄ and let (tn, zn)n≥1 be a sequence in
[0, T )×S̄ converging to (t, z) (as n goes to infinity). By definition of the lsc envelope (Hu)∗,
we then have :

Hu(t, z) = Hu∗(t, z) ≤ (Hu)∗(t, z) ≤ lim inf
n→∞

Hu(tn, zn),
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which shows the lower-semicontinuity of Hu.
(ii) Fix some (t, z) ∈ [0, T ) × S̄ and let (tn, zn)n≥1 be a sequence in [0, T ) × S̄ converging
to (t, z) (as n goes to infinity). Since u∗ is usc, Γ is continuous, and C(zn) is compact for
each n ≥ 1, there exists a sequence (ζ̂n)n≥1 with ζ̂n ∈ C(zn) such that :

Hu∗(tn, zn) = u∗(tn,Γ(zn, ζ̂n)), ∀n ≥ 1.

By Remark 4.1, the sequence (ζ̂n)n≥1 converges, up to a subsequence, to some ζ̂ ∈ C(z).
Therefore, we get :

Hu∗(t, z) ≥ u∗(t,Γ(z, ζ̂)) ≥ lim sup
n→∞

u∗(tn,Γ(zn, ζ̂n)) = lim sup
n→∞

Hu∗(tn, zn),

which proves that Hu∗ is usc.
On the other hand, fix some (t, z) ∈ [0, T ] × S̄ and let (tn, zn)n≥1 be a sequence in

[0, T ]× S̄ converging to (t, z) and s.t. Hu(tn, zn) converges to (Hu)∗(t, z). Then, we have

(Hu)∗(t, z) = lim
n→∞

Hu(tn, zn) ≤ lim sup
n→∞

Hu∗(tn, zn) ≤ Hu∗(t, z),

which shows that (Hu)∗ ≤ Hu∗. 2

We may then prove by standard arguments, using DPP (2.13), the supersolution pro-
perty.

Proof of supersolution property on [0, T )× S.

First, for any (t, z) ∈ [0, T ]× S̄, we see, as a consequence of (DPP) (2.13) applied to τ = t,
and by choosing any admissible control α ∈ A(t, z) with immediate impulse at t of arbitrary
size ζ ∈ C(z), that v(t, z) ≥ Hv(t, z). Now, let (t̄, z̄) ∈ [0, T )× S and ϕ ∈ C1,2([0, T )× S̄)
s.t. v∗(t̄, z̄) = ϕ(t̄, z̄) and ϕ ≤ v∗ on [0, T ) × S. Since v ≥ Hv on [0, T ] × S̄, we obtain by
combining with Lemma 5.1 (i) that Hv∗(t̄, z̄) ≤ (Hv)∗(t̄, z̄) ≤ v∗(t̄, z̄), and so it remains to
show that

−∂ϕ
∂t

(t̄, z̄)− Lϕ(t̄, z̄) ≥ 0. (5.6)

From the definition of v∗, there exists a sequence (tm, zm)m≥1 ∈ [0, T )×S s.t. (tm, zm) and
v(tm, zm) converge respectively to (t̄, z̄) and v∗(t̄, z̄) as m goes to infinity. By continuity
of ϕ, we also have that γm := v(tm, zm) − ϕ(tm, zm) converges to 0 as m goes to infinity.
Since (t̄, z̄) ∈ [0, T )×S, there exists η > 0 s.t. for m large enough, tm < T and B(zm, η/2)
⊂ B(z̄, η) := {|z − z̄| < η} ⊂ S. Let us then consider the admissible control in A(tm, zm)
with no impulse until the first exit time τm before T of the associated state process Zs =
Z0,tm,zm

s from B(zm, η/2) :

τm = inf
{
s ≥ tm : |Z0,tm,zm

s − zm| ≥ η/2
}
∧ T.

Consider also a strictly positive sequence (hm)m s.t. hm and γm/hm converge to zero as m
goes to infinity. By using the dynamic programming principle (2.13) for v(tm, zm) and τ̂m
:= τm ∧ (tm + hm), we get :

v(tm, zm) = γm + ϕ(tm, zm) ≥ E[v(τ̂m, Z
0,tm,zm

τ̂m
)] ≥ E[ϕ(τ̂m, Z

0,tm,zm

τ̂m
),
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since ϕ ≤ v∗ ≤ v on [0, T ) × S. Now, by applying Itô’s formula to ϕ(s, Z0,tm,zm
s ) between

tm and τ̂m and noting that the integrand of the stochastic integral term is bounded, we
obtain by taking expectation :

γm

hm
+ E

[
1
hm

∫ τ̂m

tm

(
−∂ϕ
∂t

− Lϕ
)

(s, Z0,tm,zm
s )ds

]
≥ 0. (5.7)

By continuity a.s. of Z0,tm,zm
s , we have for m large enough, τ̂m = tm + hm, and so by the

mean-value theorem, the random variable inside the expectation in (5.7) converges a.s. to

(−∂ϕ
∂t

− Lϕ)(t̄, z̄) as m goes to infinity. Since this random variable is also bounded by a
constant independent of m, we conclude by the dominated convergence theorem and obtain
(5.6).

We next prove the subsolution property, by using DPP (2.14) and contraposition argu-
ment.

Proof of subsolution property on [0, T )× S̄.

Let (t̄, z̄) ∈ [0, T )×S̄ and ϕ ∈ C1,2([0, T )×S̄) s.t. v∗(t̄, z̄) = ϕ(t̄, z̄) and ϕ ≥ v∗ on [0, T )×S̄.
If v∗(t̄, z̄) ≤ Hv∗(t̄, z̄) then the subsolution inequality holds trivially. Consider now the case
where v∗(t̄, z̄) > Hv∗(t̄, z̄) and argue by contradiction by assuming on the contrary that

η := −∂ϕ
∂t

(t̄, z̄)− Lϕ(t̄, z̄) > 0.

By continuity of ϕ and its derivatives, there exists some δ0 > 0 s.t. t̄+ δ0 < T and for all
0 < δ ≤ δ0 :

−∂ϕ
∂t

(t, z)− Lϕ(t, z) >
η

2
, ∀ (t, z) ∈ ((t̄− δ)+, t̄+ δ)×B(z̄, δ) ∩ S̄. (5.8)

From the definition of v∗, there exists a sequence (tm, zm)m≥1 ∈ ((t̄ − δ/2)+, t̄ + δ/2) ×
B(z̄, δ/2) ∩ S̄ s.t. (tm, zm) and v(tm, zm) converge respectively to (t̄, z̄) and v∗(t̄, z̄) as m
goes to infinity. By continuity of ϕ, we also have that γm := v(tm, zm)−ϕ(tm, zm) converges
to 0 as m goes to infinity. By the dynamic programming principle (2.14), given m ≥ 1,
there exists α̂m = (τ̂m

n , ζ̂
m
n )n≥1 s.t. for any stopping time τ valued in [tm, T ], we have

v(tm, zm) ≤ E[v(τ, Ẑm
τ )] +

1
m
.

Here Ẑm is the state process, starting from zm at tm, and controlled by α̂m. By choosing
τ = τ̄m : = τ̂m

1 ∧ τm
δ where

τm
δ = inf

{
s ≥ tm : Ẑm

s /∈ B(zm, δ/2)
}
∧ (tm + δ/2)

is the first exit time before tm + δ/2 of Ẑm from the open ball B(zm, δ/2), we then get :

v(tm, zm) ≤ E[v(τ̄m, Ẑτ̄m,−)1τm
δ <τ̂m

1
] + E[v(τ̄m,Γ(Ẑτ̄m,− , ζ̂m

1 ))1τ̂m
1 ≤τm

δ
] +

1
m

≤ E[v(τ̄m, Ẑτ̄m,−)1τm
δ <τ̂m

1
] + E[Hv(τ̄m, Ẑτ̄m,−)1τ̂m

1 ≤τm
δ

] +
1
m
. (5.9)
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Now, since Hv ≤ v ≤ v∗ ≤ ϕ on [0, T )× S̄, we obtain :

ϕ(tm, zm) + γm ≤ E[ϕ(τ̄m, Ẑτ̄m,−)] +
1
m
.

By applying Itô’s formula to ϕ(s, Ẑm
s ) between tm and τ̄m, we then get :

γm ≤ E
[∫ τ̄m

tm

(
∂ϕ

∂t
+ Lϕ

)
(s, Ẑm

s )ds
]

+
1
m

≤ −η
2

E[τ̄m − tm] +
1
m
,

from (5.8). This implies

lim
m→∞

E[τ̄m] = t̄. (5.10)

On the other hand, we have by (5.9)

v(tm, zm) ≤ sup
|t′ − t| < δ

|z′ − z| < δ

v(t′, z′)P[τm
δ < τ̂m

1 ] + sup
|t′ − t| < δ

|z′ − z| < δ

Hv(t′, z′)P[τ̂m
1 ≤ τm

δ ] +
1
m
.

From (5.10), we then get by sending m to infinity :

v∗(t̄, z̄) ≤ sup
|t′ − t| < δ

|z′ − z| < δ

Hv(t′, z′).

Hence, sending δ to zero and by Lemma 5.1 (ii), we have

v∗(t̄, z̄) ≤ lim
δ↓0

sup
|t′ − t| < δ

|z′ − z| < δ

Hv(t′, z′) = (Hv)∗(t̄, z̄) ≤ H∗v(t̄, z̄),

which is the required contradiction.

5.2 Comparison principle

We finally turn to uniqueness question. Our next main result is a comparison principle for
constrained (discontinuous) viscosity solutions to the quasi-variational inequality (5.1). It
states that we can compare a viscosity subsolution to (5.1) on [0, T ) × S̄ and a viscosity
supersolution to (5.1) on [0, T ) × S, provided that we can compare them at the terminal
date (as usual in parabolic problems) but also on the part D0 of the solvency boundary.

Theorem 5.2 Suppose u ∈ Gγ([0, T ]× S̄) ∩ USC([0, T )× S̄) is a viscosity subsolution to
(5.1) in [0, T )× S̄ and w ∈ Gγ([0, T ]× S̄) ∩ LSC([0, T )× S̄) is a viscosity supersolution to
(5.1) in [0, T )× S such that :

u(t, z) ≤ lim inf
(t′, z′) → (t, z)

w(t′, z′), ∀ (t, z) ∈ [0, T )×D0,(5.11)

u(T, z) := lim sup
(t, z′) → (T, z)

t < T, z′ ∈ S

u(t, z′) ≤ w(T, z) := lim inf
(t, z′) → (T, z)

t < T, z′ ∈ S

w(t, z′), ∀ z ∈ S̄. (5.12)

Then,

u ≤ w on [0, T ]× S.
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Remark 5.3 Notice that one cannot hope to derive a comparison principle in the whole
closed region S̄ since it would imply the continuity of the value function on S̄, which is not
true, see Remark 4.5.

In order to deal with the impulse obstacle in the comparison principle, we first produce
some suitable perturbation of viscosity supersolutions. This strict viscosity supersolution
argument was introduced by [21], and used e.g. in [1] for dealing with gradient constraints
in singular control problem.

Lemma 5.2 Let γ′ ∈ (0, 1) and choose ρ′ s.t.

ρ′ >
γ′

1− γ′
b2 + r2 + σ2r(1− γ′)

σ2
∨ b ∨ (σ2 − b)

Given ν ≥ 0, consider the perturbation smooth function on [0, T ]× S̄ :

φν(t, z) = eρ
′(T−t)

[
L̃(z)γ′ + ν

(
eλy

p
+ pe−λy

)]
. (5.13)

Let w ∈ LSC([0, T ) × S̄) be a viscosity supersolution to (5.1) in [0, T ) × S. Then for any
m ≥ 1, any compact set K of R× R× R∗

+, the usc function

wm = w +
1
m
φν

is a strict viscosity supersolution to (5.1) in [0, T ) × S ∩ K : there exists some constant δ
(depending on K) s.t.

min
[
−q0 − rxq1 − bpq3 −

1
2
σ2p2M33, wm(t, z)−Hwm(t, z)

]
≥ δ

m
, (5.14)

for all (t, z = (x, y, p)) ∈ [0, T )×S∩K, (q0, q = (qi)1≤i≤3,M = (Mij)1≤i,j≤3) ∈ J̄2,−wm(t, z).
Moreover, for γ ∈ (0, γ′) and ν > 0, if w ∈ Gγ([0, T ] × S̄), and u is also a function in
Gγ([0, T ]× S̄), then for any t ∈ [0, T ], m ≥ 1,

lim
|z|→∞

(u− wm)(t, z) = −∞. (5.15)

Proof. We set

f1(t, z) = eρ
′(T−t)L̃(z)γ′ , f2(t, z) = eρ

′(T−t)

(
eλy

p
+ pe−λy

)
.

From (4.4), we have for all t ∈ [0, T ), z ∈ S \ Ñ = {z ∈ S : L̃(z) ≥ k} :

f1(t,Γ(z, ζ)) ≤ eρ
′(T−t)(L̃(z)− k)γ′ , ∀ζ ∈ C(z),

and so

(f1 −Hf1)(t, z) ≥ eρ
′(T−t)

[
L̃(z)γ′ − (L̃(z)− k)γ′

]
> 0 (5.16)
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Notice that relation (5.16) holds trivially true when z ∈ N since in this case C(z) = ∅ and
so Hf(t, z) = −∞. We then deduce that for any compact set K of R×R×R∗

+, there exists
some constant δ0 > 0 s.t.

f1 −Hf1 ≥ δ0, on [0, T )× S ∩ K.

Moreover, a direct calculation shows that for all (t, z) ∈ [0, T ]× S̄, ζ ∈ C(z), f2(t,Γ(z, ζ))
= f2(t, z), and so

f2 −Hf2 = 0.

This implies

φν −Hφν = f1 + νf2 − H(f1 + νf2) ≥ (f1 −Hf1) + ν(f2 −Hf2)

≥ δ0, on [0, T )× S ∩ K. (5.17)

On the other hand, the same calculation as in (4.23) shows that for ρ′ large enough, actually

strictly larger than γ′

1−γ′
b2+r2+σ2r(1−γ′)

σ2 , we have −∂f1

∂t
−Lf1 > 0 on [0, T )×S. Hence, for

any compact set K of R× R× R∗
+, there exists some constant δ1 > 0 s.t.

−∂f1

∂t
− Lf1 ≥ δ1 on [0, T )× S ∩ K.

A direct calculation also shows that for all (t, z) ∈ [0, T ]× S̄ :

−∂f2

∂t
(t, z)− Lf2(t, z) = eρ

′(T−t)

[
(ρ′ + b− σ2)

eλy

p
+ (ρ′ − b)pe−λy

]
≥ 0,

since ρ′ ≥ (σ2− b)∨ b. This implies that for any compact set K of R×R×R∗
+, there exists

some constant δ1 > 0 s.t.

−∂φν

∂t
− Lφν = −∂f1

∂t
− Lf1 + ν

(
−∂f2

∂t
− Lf2

)
≥ δ1 on [0, T )× S ∩ K. (5.18)

By writing the viscosity supersolution property of w, we deduce from the inequalities (5.17)-
(5.18) the viscosity supersolution of wm to

min
[
−∂wm

∂t
− Lwm, wm −Hwm

]
≥ δ

m
on [0, T )× S ∩ K,

and so (5.14), where we set δ = δ0 ∧ δ1. Finally, since u,w ∈ Gγ([0, T ] × S̄), we have for
some positive constant K :

(u− wm)(t, z) ≤ K
[
1 +

(
x+

p

λ

)γ]
− 1
m

[(
x+

p

λ

)γ′

+ ν

(
eλy

p
+ pe−λy

)]
−→ −∞, as |z| → ∞,

since γ′ > γ and ν > 0. 2
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We now follow general viscosity solution technique, based on the Ishii technique (see
[11]) and adapt arguments from [20], [28] for handling with specificities coming from the
nonlocal intervention operator H and [4], [1] for the boundary conditions. The general idea
is to build a test function so that the minimum associated with the (strict) supersolution
cannot be on the boundary. However, the usual method in [31] does not apply here since
it requires the continuity of the supersolution on the boundary, which is precisely not the
case in our model. Instead, we adapt a method in [4], which requires the smoothness of the
boundary. This is the case here except on the part D0 of the boundary, but for which one
has proved directly in Corollary 4.6 the continuity of the value function.

Proof of Theorem 5.2
Let u and w as in Theorem 5.2. We (re)define w on [0, T )× ∂S by :

w(t, z) = lim inf
(t′, z′) → (t, z)

(t′, z′) ∈ [̄0, T ) × S

w(t′, z′), ∀(t, z) ∈ [0, T )× ∂S, (5.19)

and construct a strict viscosity supersolution to (5.1) according to Lemma 5.2, by consi-
dering for m ≥ 1, the usc function on [0, T )× S̄ :

wm = w +
1
m
φν , (5.20)

where φν is given in (5.13) for some given ν > 0. Recalling the definitions (5.12) of u and
w on {T}× S̄, we have then an extension of u and wm, which are usc and lsc on [0, T ]× S̄.
In order to prove the comparison principle, it is sufficient to show that sup[0,T ]×S̄(u−wm)
≤ 0 for all m ≥ 1, since the required result is obtained by letting m to infinity. We argue
by contradiction and suppose that there exists some m ≥ 1 s.t.

µ := sup
[0,T ]×S̄

(u− wm) > 0.

Since u−wm is usc on [0, T ]× S̄, lim|z|→∞(u−wm)(z) = −∞ by (5.15), (u−wm)(T, .) ≤
0 by (5.12), and (u−wm)(t, z) ≤ 0 for (t, z) ∈ [0, T )×D0 by (5.11), there exists a an open
set K of R× R× R∗

+ with closure K̄ compact s.t.

Arg max
[0,T ]×S̄

(u− wm) 6= ∅ ⊂ [0, T )× S̄ \D0 ∩ K.

Take then some (t0, z0) ∈ [0, T )× S̄ \D0 ∩K s.t. µ = (u−wm)(t0, z0) and distinguish the
two cases :

• Case 1. : z0 ∈ ∂S \D0 ∩ K.
? From (5.19), there exists a sequence (ti, zi)i≥1 in [0, T )×S ∩K converging to (t0, z0) s.t.
wm(ti, zi) tends to wm(t0, z0) when i goes to infinity. We then set βi = |ti−t0|, εi = |zi−z0|
and consider the function Φi defined on [0, T ]2 × (S̄ ∩ K̄)2 by :

Φi(t, t′, z, z′) = u(t, z)− wm(t′, z′)− ϕi(t, t′, z, z′) (5.21)

ϕi(t, t′, z, z′) = |t− t0|2 + |z − z0|4 +
|t− t′|2

2βi
+
|z − z′|2

2εi
+
(
d(z′)
d(zi)

− 1
)4

.
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Here d(z) denotes the distance from z to ∂S. We claim that for z0 /∈ D0, there exists an
open neighborhood V0 ⊂ K of z0 in which this distance function d(.) is twice continuously
differentiable with bounded derivatives. This is well-known (see e.g. [18]) when z0 lies
in the smooth parts ∂S \ (Dk ∪ C1 ∪ C2) of the boundary ∂S. This is also true for z0 ∈
Dk ∪C1 ∪C2. Indeed, at these corner lines of the boundary, the inner normal vectors form
an acute angle (positive scalar product) and thus one can extend from z0 the boundary
to a smooth boundary so that the distance d is equal, locally on a neighborhood of z0, to
the distance to this smooth boundary. Notice that this is not true when z0 ∈ D0, which
forms a right angle. Now, since Φi is usc on the compact set [0, T ]2× (S̄ ∩ K̄)2, there exists
(t̂i, t̂′i, ẑi, ẑ

′
i) ∈ [0, T ]2 × (S̄ ∩ K̄)2 that attains its maximum on [0, T ]2 × (S̄ ∩ K̄)2 :

µi := sup
[0,T ]2×(S̄∩K)2

Φi(t, t′, z, z′) = Φi(t̂i, t̂′i, ẑi, ẑ
′
i).

Moreover, there exists a subsequence, still denoted (t̂i, t̂′i, ẑi, ẑ
′
i)i≥1, converging to some

(t̂0, t̂′0, ẑ0, ẑ
′
0) ∈ [0, T ]2 × (S̄ ∩ K̄)2. By writing that Φi(t0, ti, z0, zi) ≤ Φi(t̂i, t̂′i, ẑi, ẑ

′
i), we

have :

u(t0, z0)− wm(ti, zi)−
1
2

(|ti − t0|+ |zi − z0|) (5.22)

≤ µi = u(t̂i, ẑi)− wm(t̂′i, ẑ
′
i)−

(
|t̂i − t0|2 + |ẑi − z0|4

)
−Ri (5.23)

≤ u(t̂i, ẑi)− wm(t̂′i, ẑ
′
i)−

(
|t̂i − t0|2 + |ẑi − z0|4

)
, (5.24)

where we set

Ri =
|t̂i − t̂′i|2

2βi
+
|ẑi − ẑ′i|2

2εi
+
(
d(ẑ′i)
d(zi)

− 1
)4

.

From the boundedness of u, wm on [0, T ] × S̄ ∩ K̄, we deduce by inequality (5.23) the
boundedness of the sequence (Ri)i≥1, which implies t̂0 = t̂′0 and ẑ0 = ẑ′0. Then, by sending
i to infinity into (5.22) and (5.24), with the uppersemicontinuity (resp. lowersemicontinuity)
of u (resp. wm), we obtain µ = u(t0, z0) − wm(t0, z0) ≤ u(t̂0, ẑ0) − wm(t̂0, ẑ0) − |t̂0 − t0|2

− |ẑ0 − z0|4. By the definition of µ, this shows :

t̂0 = t̂′0 = t0, ẑ0 = ẑ′0 = z0. (5.25)

Sending again i to infinity into (5.22)-(5.23)-(5.24), we thus derive that µ ≤ limi µi = µ −
limiRi ≤ µ, and so

µi −→ µ (5.26)

|t̂i − t̂′i|2

2βi
+
|ẑi − ẑ′i|2

2εi
+
(
d(ẑ′i)
d(zi)

− 1
)4

→ 0, (5.27)

as i goes to infinity. In particular, for i large enough , we have t̂i, t̂′i < T (since t0 < T ),
d(ẑ′i) ≥ d(zi)/2 > 0, and so ẑ′i ∈ S. For i large enough, we may also assume that ẑi, ẑ′i lie
in the neighborhood V0 of z0 so that the derivatives upon order 2 of d at ẑi and ẑ′i exist
and are bounded.
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? We may then apply Ishii’s lemma (see Theorem 8.3 in [11]) to (t̂i, t̂′i, ẑi, ẑ
′
i) ∈ [0, T ) ×

[0, T )× S̄ ∩ V0×S ∩V0 that attains the maximum of Φi in (5.21). Hence, there exist 3× 3
matrices M = (Mjl)1≤j,l≤3 and M ′ = (M ′

jl)1≤j,l≤3 s.t. :

(q0, q,M) ∈ J̄2,+u(t̂i, ẑi),(
q′0, q

′,M ′) ∈ J̄2,−wm(t̂′i, ẑ
′
i)

where

q0 =
∂ϕi

∂t
(t̂i, t̂′i, ẑ,t̂

′
i), q = (qj)1≤j≤3 = Dzϕi(t̂i, t̂′i, ẑi, ẑ

′
i) (5.28)

q′0 = −∂ϕi

∂t
(t̂i, t̂′i, ẑ,t̂

′
i), q′ = (q′j)1≤j≤3 = −Dz′ϕi(t̂i, t̂′i, ẑi, ẑ

′
i). (5.29)

and (
M 0
0 −M ′

)
≤ D2

z,z′ϕi(t̂i, t̂′i, ẑi, ẑ
′
i) + εi

(
D2

z,z′ϕi(t̂i, t̂′i, ẑi, ẑ
′
i)
)2 (5.30)

By writing the viscosity subsolution property (5.4) of u and the strict viscosity supersolution
(5.14) of wm, we have :

min
[
−q0 − rx̂iq1 − bp̂iq3 −

1
2
σ2p̂2

iM33, u(t̂i, ẑi)−Hu(t̂i, ẑi)
]

≤ 0 (5.31)

min
[
−q′0 − rx̂′iq

′
1 − bp̂′iq

′
3 −

1
2
σ2p̂′2i M

′
33, wm(t̂′i, ẑ

′
i)−Hwm(t̂′i, ẑ

′
i)
]

≥ δ

m
. (5.32)

We then distinguish the following two possibilities in (5.31) :

1. u(t̂i, ẑi)−Hu(t̂i, ẑi) ≤ 0.
Since, from (5.32), we also have: wm(t̂′i, ẑ

′
i) − Hwm(t̂′i, ẑ

′
i) ≥ δ

m , we obtain by combining
these two inequalities :

µi ≤ u(t̂i, ẑi)− wm(t̂′i, ẑ
′
i) ≤ Hu(t̂i, ẑi)−Hwm(t̂′i, ẑ

′
i)−

δ

m

Sending i to ∞, and by (5.26), we obtain :

µ ≤ lim sup
i→∞

Hu(t̂i, ẑi)− lim inf
i→∞

Hwm(t̂′i, ẑ
′
i)−

δ

m

≤ Hu(t0, z0)−Hwm(t0, z0)−
δ

m
,

from (5.25) and where we used the upper-semicontinuity ofHu and the lower-semicontinuity
of Hwm (see Lemma 5.1). By compactness of C(z0), and since u is usc, there exists some
ζ0 ∈ C(z0) s.t. Hu(t0, z0) = u(t0,Γ(z0, ζ0)). We then get the desired contradiction :

µ ≤ Hu(t0, z0)−Hwm(t0, z0)−
δ

m

≤ u(t0,Γ(z0, ζ0))− wm(t0,Γ(z0, ζ0))−
δ

m
≤ µ− δ

m
.

2. −q0 − rx̂iq1 − bp̂iq3 − 1
2σ

2p̂2
iM33 ≤ 0.
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Since, from (5.32), we also have: −q′0 − rx̂′iq
′
1 − bp̂′iq

′
3 − 1

2σ
2p̂′2i M

′
33 ≥ δ

m , we obtain by
combining these two inequalities :

−(q0 − q′0)− r(x̂iq1 − x̂′iq
′
1)− b(p̂iq3 − p̂′iq

′
3)−

1
2
σ2(p̂2

iM33 − p̂′2i M
′
33) ≤ − δ

m
.(5.33)

Now, from (5.28)-(5.29), we explicit :

q0 = 2(t̂i − t0) +
(t̂i − t̂′i)
βi

, q = 4(ẑi − z0)|ẑi − z0|2 +
(ẑi − ẑ′i)

εi

q′0 =
(t̂i − t̂′i)
βi

, q′ =
(ẑi − ẑ′i)

εi
− 4Dd(ẑ′i)

(
d(ẑ′i)
d(zi)

− 1
)3

and we see by (5.25) and (5.27) that q0 − q′0, x̂iq1 − x̂′iq
′
1 and p̂iq3 − p̂′iq

′
3 converge to zero

when i goes to infinity. Moreover, from (5.30), we have :

1
2
σ2p̂2

iM33 −
1
2
σ2p̂′2i M

′
33 ≤ Ei, (5.34)

where

Ei = Ai

(
D2

z,z′ϕi(t̂i, t̂′i, ẑi, ẑ
′
i) + εi

(
D2

z,z′ϕi(t̂i, t̂′i, ẑi, ẑ
′
i)
)2)

Aᵀ

i

= Ai

( 1
εi
I3 + Pi − 1

εi
I3

− 1
εi
I3

1
εi
I3 +Qi

)
+ εi

(
1
εi
I3 + Pi − 1

εi
I3

− 1
εi
I3

1
εi
I3 +Qi

)2
Aᵀ

i

with

Ai =
(
0, 0, p̂i, 0, 0, p̂′i

)
, Pi = 4|ẑi − z0|2I3 + 8(ẑi − z0)(ẑi − z0)ᵀ

Qi = 12
(
d(ẑ′i)
d(ẑ′i)

− 1
)2

Dd(ẑ′i)Dd(ẑ
′
i)

ᵀ + 4
(
d(ẑ′i)
d(ẑ′i)

− 1
)3

D2d(ẑ′i).

Here ᵀ denotes the transpose operator. After some straightforward calculation, we then
get :

Ei = 3
(p̂′i − p̂i)2

εi
+Ai

((
3Pi −2Qi

−2Pi 3Qi

)
+ εi

(
P 2

i 0
0 Q2

i

))
Aᵀ

i ,

which converges also to zero from (5.25) and (5.27). Therefore, by sending i to infinity
into (5.33), we see that the lim sup of its l.h.s. is nonnegative, which gives the required
contradiction : 0 ≤ −δ/m.

• Case 2. : z0 ∈ S ∩ K.
This case is dealt similarly as in Case 1. and its proof is omitted. It suffices e.g. to consider
the function

Ψi(t, z, z′) = u(t, z)− wm(t, z′)− ψi(t, z, z′)

ψi(t, z, z′) = |t− t0|2 + |z − z0|4 +
i

2
|z − z′|2,
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for i ≥ 1, and to take a maximum (t̃i, z̃i, z̃′i) of Ψi. We then show that the sequence
(t̃i, z̃i, z̃′i)i≥1 converges to (t0, z0, z0) as i goes to infinity and we apply Ishii’s lemma to get
the required contradiction.

By combining previous results, we then finally obtain the following PDE characterization
of the value function.

Corollary 5.1 The value function v is continuous on [0, T ) × S and is the unique (in
[0, T )× S) constrained viscosity solution to (5.1) lying in Gγ([0, T ]× S̄) and satisfying the
boundary condition :

lim
(t′,z′)→(t,z)

v(t′, z′) = 0, ∀(t, z) ∈ [0, T )×D0,

and the terminal condition

v(T−, z) := lim
(t, z′) → (T, z)

t < T, z′ ∈ S

v(t, z′) = Ū(z), ∀z ∈ S̄.

Proof. From Theorem 5.1, v∗ is an usc viscosity subsolution to (5.1) in [0, T ) × S̄ and
v∗ is a lsc viscosity supersolution to (5.1) in [0, T ) × S. Moreover, by Corollary 4.6 and
Proposition 4.3, we have v∗(t, z) = v∗(t, z) = 0 for all (t, z) ∈ [0, T ) ×D0, and v∗(T, z) =
v∗(T, z) = Ū(z) for all z ∈ S̄. Then by Theorem 5.2, we deduce v∗ ≤ v∗ on [0, T ]×S, which
proves the continuity of v on [0, T ) × S. On the other hand, suppose that ṽ is another
constrained viscosity solution to (5.1) with lim(t′,z′)→(t,z) v(t′, z′) = 0 for (t, z) ∈ [0, T )×D0

and ṽ(T−, z) = Ū(z) for z ∈ S̄. Then, ṽ∗(t, z) = v∗(t, z) = v∗(t, z) = ṽ∗(t, z) for (t, z) ∈
[0, T ) × D0 and ṽ∗(T, z) = v∗(T, z) = v∗(T, z) = ṽ∗(T, z) for z in S̄. We then deduce by
Theorem 5.2 that v∗ ≤ ṽ∗ ≤ ṽ∗ ≤ v∗ on [0, T ]× S. This proves v = ṽ on [0, T )× S. 2

6 Conclusion

We formulated a model for optimal portfolio selection under liquidity risk and price impact.
Our main result is a characterization of the value function as the unique constrained visco-
sity solution to the quasi-variational Hamilton-Jacobi-Bellman inequality associated to this
impulse control problem under solvency constraint. The main technical difficulties come
from the nonlinearity due to price impact, and the state constraint. They are overcomed
with the specific exponential form of the price impact function : a natural theoretical
question is to extend our results for general price impact functions. Once we have provided
a complete PDE characterization of the value function, the next step, from an applied
view point, is to numerically solve this quasi-variational inequality. This can be realized for
instance by iterated optimal stopping problems as done in [10]. Moreover, from an economic
viewpoint, it would be of course interesting to analyse the effects of liquidity risk and price
impact in our model on the optimal portfolio in a classical market without frictions, e.g.
the Merton model. These numerical and economical studies are in current investigation.
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Appendix : Proof of Lemma 4.1

We first prove the following elementary lemma.

Lemma A.1 For any y ∈ R, there exists an unique ζ̄(y) ∈ R s.t.

ḡ(y) := max
ζ∈R

g(y, ζ) = ζ̄(y)(e−λy − eλζ̄(y)). (A.1)

The function ḡ is differentiable, decreasing on (−∞, 0), increasing on (0,∞), with ḡ(0) =
0, limy→−∞ ḡ(y) = ∞ , limy→∞ ḡ(y) = e−1/λ, and for all p > 0,

`(y, p) + pḡ(y) < 0 if y < 0 and −`(y, p) + pḡ(y) < 0 if 0 < y ≤ 1
λ
.
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Proof. (i) For fixed y, a straightforward study of the differentiable function ζ → gy(ζ) :=
g(y, ζ) shows that there exists an unique ζ̄(y) ∈ R such that :

G(y, ζ̄(y)) = g′y(ζ̄(y)) = e−λy − eλζ̄(y)(1 + λζ̄(y)) = 0,

g′y(ζ) > ( resp. <) 0 ⇐⇒ ζ < ( resp. >) ζ̄(y)

This proves that gy is increasing on (−∞, ζ̄(y)) and decreasing on (ζ̄(y),∞) with

max
ζ∈R

gy(ζ) = gy(ζ̄(y)) := ḡ(y),

i.e. (A.1). Since g′y(−1/λ) = e−λy > 0, we notice that ζ̄(y) is valued in (−1/λ,∞) for all y
∈ R. Moreover, since the differentiable function (y, ζ) → G(y, ζ) := g′y(ζ) is decreasing in

y on R :
∂G

∂y
< 0 and decreasing in ζ on (−1/λ,∞) :

∂G

∂ζ
< 0, we derive by the implicit

functions theorem that ζ̄(y) is a differentiable decreasing function on R. Since G(y,−1/λ)
= e−λy goes to zero as y goes to infinity, we also obtain that ζ̄(y) goes to −1/λ as y goes
to infinity. By noting that for all ζ, G(y, ζ) goes to ∞ when y goes to −∞, we deduce that
ζ̄(y) goes to ∞ as y goes to −∞. Since G(0, 0) = 0, we also have ζ̄(0) = 0. Notice also
that G(y,−y) = λye−λy : hence, when y < 0, G(y,−y) < 0 = G(y, ζ̄(y)) so that ζ̄(y) <
−y, and when y > 0, G(y,−y) > 0 = G(y, ζ̄(y)) so that ζ̄(y) > −y.

(ii) By the envelope theorem, the function ḡ defined by ḡ(y) = maxζ∈R g(y, ζ) =
g(y, ζ̄(y)) is differentiable on R with

ḡ′(y) =
∂g

∂y
(y, ζ̄(y)) = −λζ̄(y)e−λζ̄(y), y ∈ R.

Since ζ̄(y) > (resp. <) 0 iff y < (resp. >) 0 with ζ̄(0) = 0, we deduce the decreasing (resp.
increasing) property of ḡ on (−∞, 0) (resp. (0,∞)) with ḡ(0) = 0. Since ζ̄(y) converges to
−1/λ as y goes to infinity, we immediately see from expression (A.1) of ḡ that ḡ(y) converges
to e−1/λ as y goes to infinity. For y < 0 and by taking ζ = −y/2 in the maximum in (A.1),
we have ḡ(y) ≥ −y(e−λy − e−λy/2)/2, which shows that ḡ(y) goes to infinity as y goes to
−∞. When y < 0, we have 0 < ζ̄(y) < −y, and thus by (A.1), we get :

ḡ(y) < −y
(
e−λy − eλζ̄(y)

)
,

and so `(y, p)+ pḡ(y) < pyeλζ̄(y) < 0 for all p > 0. When y > 0, we have ζ̄(y) < 0 and thus
by (A.1), we get : ḡ(y) < −ζ̄(y)eλζ̄(y). Now, since the function ζ 7→ −ζeλζ is decreasing on
[−1/λ, 0], we have for all 0 < y ≤ 1/λ, −1/λ ≤ −y < ζ̄(y) and so

ḡ(y) < ye−λy.

This proves pḡ(y) ≤ `(y, p) for all 0 < y ≤ 1/λ and p > 0. 2

Proof of Lemma 4.1. For any z ∈ S̄, we write C(z) = C0(z) ∪ C1(z) where C0(z) =
{ζ ∈ R : L0(Γ(z, ζ)) ≥ 0} and C1(z) = {ζ ∈ R : L1(Γ(z, ζ)) ≥ 0, y + ζ ≥ 0}. From
(4.1) and by noting that the function ζ 7→ pg(y, ζ) goes to −∞ as |ζ| goes to infinity, we
see that C0(z) is bounded. Since the function ζ 7→ pθ(ζ, p) goes to infinity as ζ goes to
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infinity, we also see that C1(z) is bounded. Hence, C(z) is bounded. Moreover, for any z =
(x, y, p) ∈ S̄, the function ζ 7→ L(Γ(z, ζ)) is uppersemicontinuous : it is indeed continuous
on R \ {−y} and uppersemicontinuous on −y. This implies the closure property and then
the compactness of C(z).
? Fix some arbitrary z ∈ ∂yS. Then, for any ζ ∈ R, we have L0(Γ(z, ζ)) = x−k+pg(0, ζ)−k.
Since g(0, ζ) ≤ 0 for all ζ ∈ R and x ≤ k, we see that L(Γ(z, ζ)) < 0 for all ζ ∈ R. On
the other hand, we have L1(Γ(z, ζ)) = x − θ(ζ, p) − k. Since θ(ζ, p) ≥ 0 for all ζ ≥ 0,
and recalling that x < k, we also see that L1(Γ(z, ζ)) = x − θ(ζ, p) − k < 0 for all ζ ≥ 0.
Therefore L(Γ(z, ζ)) < 0 for all ζ ∈ R and so C(z) is empty.

? Fix some arbitrary z ∈ ∂x
0S. Then, for any ζ ∈ R, we have L0(Γ(z, ζ)) = `(y, p) − k +

pg(y, ζ) − k. Now, we recall from Remark 2.2 that `(y, p) ≤ p/(λe) < k. Moreover, by
Lemma A.1, we have pg(y, ζ) ≤ pḡ(y) ≤ p/(λe) < k. This implies L0(Γ(z, ζ)) < 0 for any
ζ ∈ R. On the other hand, we have L1(Γ(z, ζ)) = −θ(ζ, p)− k. Since θ(ζ, p) ≥ −p/(λe) for
all ζ ∈ R, we get L1(Γ(z, ζ)) ≤ p/(λe)− k < 0. Therefore C(z) is empty.

? Fix some arbitrary z ∈ ∂x
1S. Then, for any ζ ∈ R, we have L0(Γ(z, ζ)) = `(y, p) − k +

pg(y, ζ) − k. Now, we recall from Remark 2.2 that `(y, p) < k. Moreover, since 0 < y ≤
1/λ, we get from Lemma A.1 : pg(y, ζ) ≤ pḡ(y) < `(y, p) < k for all ζ ∈ R. This implies
L0(Γ(z, ζ)) < 0 for any ζ ∈ R. On the other hand, we have L1(Γ(z, ζ)) = −θ(ζ, p) − k.
Since the function ζ 7→ θ(ζ, p) is increasing on [−1/λ,∞) and y < 1/λ, we have for all ζ
≥ −y, θ(ζ, p) ≥ θ(−y, p) = −`(y, p), and so −θ(ζ, p) − k ≤ `(y, p) − k < 0. This implies
L1(Γ(z, ζ)) < 0 for all ζ ∈ R and thus C(z) is empty.

? Fix some arbitrary z ∈ ∂x
2S. Then for ζ = −1/λ, we have θ(ζ, p) = −p/(λe) and y + ζ

> 0 (see Remark 2.2). Hence, L(Γ(z,−1/λ)) ≥ L1(Γ(z,−1/λ)) ≥ 0 and so −1/λ ∈ C(z).
Moreover, take some arbitrary ζ ∈ C(z) = C0(z) ∪ C1(z). In the case where ζ ∈ C0(z),
i.e. L0(Γ(z, ζ)) = `(y, p) − k + pg(y, ζ) − k ≥ 0, and recalling that `(y, p) < k, we must
have necessarily g(y, ζ) > 0. This implies −y < ζ < 0. Similarly, when ζ ∈ C1(z), i.e.
−θ(ζ, p)− k ≥ 0 and y + ζ ≥ 0, we must have −y < ζ < 0. Therefore, C(z) ⊂ (−y, 0).

? Fix some arbitrary z ∈ ∂−` S ∪ ∂+
` S. Then we have L(Γ(z,−y)) = L1(Γ(z,−y)) = 0,

which shows that ζ = −y ∈ C(z). Consider now the case where z ∈ ∂−` S ∪ ∂+,λ
` S. We

claim that C1(z) = {−y}. Indeed, take some ζ ∈ C1(z), i.e. x − θ(ζ, p) − k ≥ 0 and y + ζ

≥ 0. Then, θ(ζ, p) ≥ θ(−y, p) = −`(y, p) (since ζ 7→ θ(ζ, p) is increasing on [−1/λ,∞) and
−y ≥ −1/λ) and so 0 ≤ x− θ(ζ, p)−k ≤ x+ `(y, p)−k = 0. Hence, we must have ζ = −y.
Take now some arbitrary ζ ∈ C0(z). Hence, L0(Γ(z, ζ)) = pg(y, ζ) − k ≥ 0, and we must
have necessarily g(y, ζ) ≥ 0. Since y ≤ 0, this implies 0 ≤ ζ ≤ −y. We have then showed
that C(z) ⊂ [−y, 0]. Consider now the case where z ∈ ∂+

` S and take some arbitrary ζ ∈
C(z) = C0(z) ∪ C1(z). If ζ ∈ C0(z), then similarly as above, we must have pg(y, ζ)− k ≥ 0.
Since y > 0, this implies −y ≤ ζ < 0. If ζ ∈ C1(z), i.e. x− θ(ζ, p)− k ≥ 0 and y + ζ ≥ 0,
and recalling that x < k, we must have also −y ≤ ζ < 0. We have then showed that C(z)
⊂ [−y, 0).

Notice that for z ∈ (∂−` S ∪ ∂+
` S) ∩ N`, we have L0(Γ(z, ζ)) ≤ pḡ(y) − k < 0 for all ζ

∈ R. Hence, C0(z) = ∅. We have already seen that C1(z) = {−y} when z ∈ ∂−` S ∪ ∂+,λ
` S

and so C(z) = {−y} when z ∈ (∂−` S ∪ ∂+,λ
` S) ∩ N`.
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