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Abstract

We consider a market dealer acting as a liquidity provider by continuously setting
bid and ask prices for an illiquid asset in a quote-driven market. The market dealer
may benefit from the bid-ask spread but has the obligation to permanently quote both
prices while satisfying some liquidity and inventory constraints. The objective is to
maximize the expected utility from terminal liquidation value over a finite horizon and
subject to the above constraints. We characterize the value function as the unique
viscosity solution to the associated HJB equation and further enrich our study with
numerical results. The contributions of our study, as compared to previous studies [2],
[12], [15], concern both the modelling aspects and the dynamic structure of the control
strategies. Important features and constraints characterizing market making problems
are no longer ignored. Indeed, along with the obligation to continuously quote bid and
ask prices, we do not allow the market maker to stop quoting them when the stock
inventory reaches its lower or higher bound. Furthermore, we no longer assume the
existence of a reference price.
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1 Introduction

We consider a financial market with a single dealer or monopolistic market maker acting
as a liquidity provider by continuously setting bid and ask prices for an illiquid asset.
In most studies on financial markets, it is assumed that investors are price-takers, i.e.
liquidity takers, in the sense that they trade any financial asset at the available prices with
a liquidity premium that must be paid for immediacy. It is clear from the structure of
financial markets that, in addition to the presence of price-takers, there must necessarily
exist market participants who are price-setters or liquidity providers. In limit order book
markets or order-driven markets such as the NYSE, traders can post prices and quantities at
which they are willing to buy or sell while waiting for a counterparty to engage in that trade.
In dealers’ markets or quote-driven markets, for instance the Nasdaq or LSE (London Stock
Exchange), registered market makers quote bids and offers and serve as the intermediary
between public traders. More precisely, registered market makers act as counterparties when
an investor wishes to buy or sell the securities.

In this paper, we consider an equity quote-driven market with a single risky equity
assets. In the trading of most equity assets in either Nasdaq or LSE, there are several
registered market makers in competition. However, in our study, in order to focus on the
modelling of the market making strategies, we consider there is only one “representative”
registered market maker in the dealing of the equity assets. The presence of several registered
market makers dealing in a competitive environment will be studied in future research. In
conformity with a dealer market as mentioned above, we assume that the market maker
has a contractual obligation to permanently quote bid and ask prices for this security and
therefore to satisfy any sell and buy market order from investors. Indeed, in order to obtain
the role of a market maker of an assigned security, a firm has to sign an agreement with the
stock exchange which contains many obligations that the firm has to satisfy. Continuously
quoting binding bid and ask prices inside of the maximum spread is one of those obligations.
The role of the market maker is very important in the trading of illiquid assets as she acts
as a facilitator of trades between different investors. The market maker may therefore
benefit from the bid-ask spread but faces a number of constraints, in particular the liquidity
and inventory constraints. Indeed, the obligation imposed upon the market maker to meet
investors orders may make the position of the market maker very risky. For instance, when
the market maker has to buy stocks successively due to investors’ sell market orders, her
stock holding position may become very large and positive, which is very risky in the event
of a downturn of the market.

The structural constraints imposed upon market makers in dealer markets are proved
to be a major challenge. In the study of market making/dealing problems, we may refer
to Avellaneda and Stoikov [2], Ho and Stoll [12], and Mildenstein and Schleef [15]. In [2]
and [12], the authors consider a market making problem as described above but within a
financial market in which the risky assets has a reference price or a fair price St which is
assumed to follow an arithmetic brownian process. The market maker quotes her ask and
bid prices as respectively St + δat and St− δbt , where (δat , δ

b
t ) are both positive and represent

the strategy control of the market maker. The price processes, ie. bid, ask or mid prices,
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are therefore mainly driven by the reference price process. In [15], the authors consider
the existence of a constant price at which they liquidate their inventory at terminal date.
Within a multi-period setting, they determine the optimal bid and ask prices that maximize
the discounted expected cash flow.

In our study, we do not assume the existence of a reference price. The prices are therefore
uniquely driven by the equilibrium between buy and sell market orders. An imbalance
between buy and sell market orders, for instance, in the case when the arrivals of sell
orders largely exceed those of the buy orders, is expected to move down the bid and ask
prices quoted by the market maker. Our assumption realistically takes into account the very
features of the financial markets. Indeed, the assumption of the existence of a reference price
and the possibility to liquidate the inventory at that price may be suitable only in some
specific cases. It is the case when the assets security, for instance, some trackers, futures or
shares of holding companies with quoted affiliates, have highly liquid underlyings.

In terms of mathematical modelling and resolution, the most difficult challenge to over-
come is to take into account the inventory constraints that the market maker is facing.
First, we consider, as [15], that the market maker has the obligation to respect the risk
constraint imposed upon her by her company’s risk department. We may refer to [9] which
investigates the impact of the inventory constraints on the market making problem studied
in [2]. Indeed, the stock inventory of the market maker is assumed to have upper and lower
bounds which could be high enough to allow some trading flexibility to the market maker.
However, unlike in [9], once the inventory reaches the lower (upper) bound, we do not allow
the market maker to stop submitting limit ask (bid) order since allowing such move violates
the agreement that the market maker’s firm has agreed with the financial stock exchange to
continuously quote bid and ask prices. As such, in our model, the market maker complies
with both obligations to quote and to keep her stock inventory within the lower and upper
bounds. Should the market maker violate this inventory risk constraint, we may assume
that her role as the market maker is terminated by her firm and her inventory position may
be liquidated.

A second important difference with the problems studied in [2], [12] and [15], comes
from the assumption that the market maker may liquidate her stock inventory on terminal
date at the reference price or a constant price independent of the inventory. In other words,
the only inventory risk is due to either the randomness of the reference price [2], or to the
uncertainty reflected in a diffusion term of the inventory process itself, [12]. However, from
different studies on liquidation costs and price impacts, see for instance [6], [11], [14], and
[17], it is clear that the degree of ability to liquidate the stock inventory at the reference
price or the mid-price should not be ignored. In our paper, we assume that when the
market maker has to liquidate her stock inventory, she incurs a liquidity cost and the price
per share received (paid) are lower (higher) than the mid-price in the case of a long (short)
position. Our assumption on the form of liquidation function is mainly inspired by [11] and
[17]. Under this liquidation assumption, there is equally a trade-off between the gains she
could get from the bid-ask spread and the potential loss it will occur when she liquidates
her position.

Furthermore, as in [15], to take into account the microstructure of the financial markets,
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we no longer consider continuous price processes. Bid and ask prices quoted by the market
maker are realistically assumed to be discrete prices, and more precisely correspond to
multiples of a tick value. However, unlike in [15], we do not assume that prices take values
in a finite set.

In terms of market orders arrivals, we assume that the arrival of buy (and sell) market
orders submitted by investors follow a Cox process with a regime-shifting Markov intensity.
This assumption is inspired from recent literature on liquidity problems, see for instance
[2] and [7]. One may expect the regime-shifting in intensity to strongly impact the trend
of the bid and ask price processes. As in [7], [2], [12] and [15], we assume that the market
maker has access to full information on the market and may in particular observe the whole
market orders arrivals process, including the Markov intensity process. However, we may
refer to Kyle [14] and Glosten and Milgrom [8], where the authors investigate market making
problems under the context of asymmetric information. In their studies, the presence of
bid-ask spread is purely due to the presence of an insider trader.

The objective of the market maker is to maximize the expected utility of the terminal
wealth. However, we consider that the market maker should avoid, as much as possible,
violating the inventory risk constraint imposed by her firm, since her firm may terminate
her own position as a market maker. We therefore introduce, in the objective function, a
penalty cost self-imposed by the market maker herself or her firm, in order to reduce the
inventory risk. It is worth noticing that this penalty cost, together with some other features
such as the presence of the liquidation costs, largely prevent the market maker from being
able to manipulate the stock price.

The contributions of our study, as compared to previous studies [2], [12], [15], concern
both the modelling aspects and the dynamic structure of the control strategies. Important
features and constraints characterizing market making problems are no longer ignored. In-
deed, along with the obligation to continuously quote bid and ask prices, we do not allow
the market maker to stop quoting them when the inventory stock reaches its lower or higher
bound. Furthermore, we no longer assume the existence of a reference price. We equally
stop assuming that the market maker may liquidate her stock inventory at the reference
price. Such an assumption is, in our view, in contradiction with the very essence of the
studies on market liquidity risk and impact. As a result, these above additional features
turn our market making problem into a non-standard control problem under constraints
with real modelling and mathematical challenges.

We provide rigorous mathematical characterization and analysis to our control problem
by proving that our value functions are the unique viscosity solutions to the associated
HJB system. It is always a technical challenge when applying viscosity techniques to non-
standard control problems under constraints. In the proof of our comparison theorem, a
major problem is to circumvent the difficulty arising from the discontinuity of our HJB
operator on some parts of the solvency region boundary. One way to tackle this difficulty
is to build specific test functions allowing us to prove the uniqueness by contradiction.

The rest of the paper is organized as follows. We define the model and formulate our
optimal market making problem in the following section. In Sections 3 and 4, we obtain
some analytical properties and prove the dynamic programming principle related to our
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control problem. These results enable us to obtain the characterization of the solution of
the problem in terms of the unique viscosity solution to the associated HJB system. Finally,
in Section 5, we further enrich our study with numerical results.

2 Problem formulation

Let (Ω,F , P ) be a probability space equipped with a right continuous filtration F = (Ft)0≤t≤T
where T is a finite horizon. We assume that F0 contains all the P-null sets of F . We con-
sider a financial market operated as a single dealer market, in which there is a trading risky
assets. In this dealer market, there is a market maker who has the obligation to perma-
nently quote bid and ask prices and to act as a counterparty to investors’ market orders.
We equally assume that investors, considered as price-takers, may only submit either buy
or sell market orders.

2.1 Model settings

Trading orders. We denote by (θai )i≥1 (resp. (θbi )i≥1) the sequence of non-decreasing F-
stopping times corresponding to the arrivals of buy (resp. sell) market orders. From the
market maker’s point of view, both sequences of stopping times correspond to trading times,
i.e. the times when she has to act as a counterparty to investor’s market orders. We denote
by (ξi)i≥1 the sequence of these trading times. When a buy (resp. sell) market order arrives
at time θai (resp. θbj), the market maker has to sell (resp. buy) an asset at the ask (resp.
bid) price denoted by P a (resp. P b). As in [9] and [12], we assume here that transactions
are of constant size, scaled to 1.

Market making strategies. We define a strategy control as being a F-predictable pro-
cess α = (αt)(0≤t≤T ) = (εat , ε

b
t , η

a
t , η

b
t )0≤t≤T where the processes εa, εb, ηa, ηb take values in

{χmin, .., χmax}, with −χmin ∈ N and χmax ∈ N∗.
We assume that when a sell market order arrives at time θbj , the market maker may either
keep the bid and ask prices constant or decrease one or both of them by at most χmax
ticks or increase one or both of them by at most χmin ticks. Notice the market maker may
decide to change the bid/ask prices but transaction prices are assumed to be based on the
one quoted before the prices changes. In here, a tick value is denoted by a strictly positive
constant δ. On the opposite side, when a buy market order arrives at time θak, the market
maker may either keep the bid and ask prices constant or increase one or both of them by
at most χmax ticks or decrease one or both of them by at most χmin ticks .
In order to illustrate our model, in the below Figure 1, we represent a path of the bid and
ask prices for a given control process α such that (εa

θbi
, εb
θbi

)1≤i≤3 = ((1, 1); (0, 0); (1, 0)) and

(ηaθai
, ηbθai

)1≤i≤3 = ((1, 0); (0, 1); (1, 1)) .

Bid-Ask spread modelling.
We denote by P a = (P at )0≤t≤T (resp. P b = (P bt )0≤t≤T ) the price quoted by the market
maker to buyers (resp. sellers). Notice that P a ≥ P b.
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Figure 1: Representation of bid and ask prices paths

The dynamics of P a,b evolves according to the following equations

dP a,bt = 0, ξi < t < ξi+1

P a,b
θbj+1

= P a,b
θb−j+1

− δεa,b
θbj+1

P a,bθak+1
= P a,b

θa−k+1

+ δηa,bθak+1
.

where i is the number of transactions before time t, j the number of buy transactions before
time t for the market maker, k the number of sell transactions before time t, and δ represents
one tick.
We denote by P the mid-price and S the bid-ask spread of the stocks. The dynamics of the
process (P, S) is given by

dPt = 0, ξi < t < ξi+1 (2.1)

Pθbj+1
= Pθb−j+1

− δ

2
(εa
θbj+1

+ εb
θbj+1

) (2.2)

Pθak+1
= Pθa−k+1

+
δ

2
(ηaθak+1

+ ηbθak+1
), (2.3)

dSt = 0, ξi < t < ξi+1 (2.4)

Sθbj+1
= Sθb−j+1

− δ(εa
θbj+1
− εb

θbj+1
) (2.5)

Sθak+1
= Sθa−k+1

+ δ(ηaθak+1
− ηbθak+1

). (2.6)

Regime switching. We first consider the tick time clock associated to a Poisson process
(Rt)0≤t≤T with deterministic intensity λ defined on [0, T ], and representing the random
times where the intensity of the orders arrival jumps.
We define a discrete-time stationary Markov chain (Îk)k∈N, valued in the finite state space
{1, ...,m}, with probability transition matrix (pij)1≤i,j≤m, i.e. P[Îk+1 = j|Îk = i] = pij s.t.
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pii = 0, independent of R. We define the process

It = ÎRt , t ≥ 0 (2.7)

(It)t is a continuous time Markov chain with intensity matrix Γ = (γij)1≤i,j≤m, where
γij = λpij for i 6= j, and γii = −

∑
j 6=i

γij .

We model the arrivals of buy and sell market orders by two Cox processes Na and N b. The
intensity rate of Na

t and N b
t is given respectively by λa(t, It, Pt, St) and λb(t, It, Pt, St) where

λa and λb are continuous functions valued in R and defined on [0, T ]×{1, ...,m}× δ
2N× δN.

Remark 2.1 The dependency of intensity rate on the assets prices is inspired by [2] and is
used by many previous papers, see for instance [4] and [9], [10].

We assume that:

λ̄ := sup
[0,T ]×{1,...,m}× δ

2
N×δN

(
max(λa, λb, λ)

)
< +∞.

We now define θak (resp. θbk) as the k
th jump time of Na (resp. N b), which corresponds to

the kth buy (sell) market order.
We introduce the following stopping times ρj(t) = inf{u ≥ t, Iu = j} and ρ(t) = inf{u ≥
t, Ru > Rt} for 0 ≤ t ≤ T and the notation Zt,i,z,α is the state process associated to the
control α such that (It, Z

t,i,z,α
t ) = (i, z).

Remark 2.2 Price process under naive strategy.
This remark is inspired by [1]. Consider the so-called naive strategy which consists in in-
creasing (resp. decreasing) both ask and bid prices by one tick when a buy (resp. sell) market
order arrives. In that case, the market maker follows the constant strategy (1, 1, 1, 1), the
spread is constant and the mid-price has the following dynamics.

dPt = 0, ξi < t < ξi+1,

Pθbj+1
= Pθb−j+1

− δ,
Pθak+1

= Pθa−k+1
+ δ.

We can show that, under some assumptions on the intensity processes of order arrivals,
the mid price weakly converges to the solution of the following stochastic differential equation
when the tick, δ goes to 0:

dP 0
t = P 0

t

(
µ(t, It, P

0
t )dt+ σ(t, It, P

0
t )dWt

)
. (2.8)

where µ and σ are defined on [0, T ] × {1, ..m} × R+. Indeed, considering a C1 function f

from R into R, we have that the infinitesimal generator associated to the mid price process
P is given by

Lf(p) = λa(t, i, p)(f(p+ δ)− f(p)) + λb(t, i, p)(f(p− δ)− f(p))

= δ[λa − λb](t, i, p)f ′(p) +
δ2

2
[λa + λb](t, i, p)f ′′(p) + δ2ε(δ).
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where ε(δ) converges to 0 when δ converges to 0. Under the following assumptions{
δ[λa − λb](t, i, p) −→ µ(t, i, p) as δ −→ 0

δ2[λa + λb](t, i, p) −→ σ2(t, i, p) as δ −→ 0,

we have

Lf(p) −→ µ(t, i, p)f
′
(p) +

σ2(t, i, p)

2
f
′′
(p), as δ −→ 0.

From Jacod and Shiryaev [13], Theorem 4.21. chapter IX, the laws of the process P converges
weakly to the law of the diffusion process solution of equation (2.8).

2.2 The control problem

Stock holdings. The number of shares held by the market maker at time t ∈ [0, T ] is
denoted by Yt, and Y satisfies the following equations

dYt = 0, ξi < t < ξi+1 (2.9)

Yθbj+1
= Yθb−j+1

+ 1 (2.10)

Yθak+1
= Yθa−k+1

− 1, (2.11)

As in [9] and [15], we consider that the market maker has the obligation to respect the
risk constraint imposed upon her by her company. Concretely, the stock inventory of the
market maker is assumed to have upper and lower bounds which could be high enough to
allow some trading flexibility to the market maker. Let ymin < 0 < ymax. We are therefore
imposing the following inventory constraint

ymin ≤ Yt ≤ ymax a.s. 0 ≤ t ≤ T. (2.12)

Cash holdings. We denote by r > 0 the instantaneous interest rate. The bank account
follows the below equation between two trading times

dXt = rXtdt, ξi < t < ξi+1. (2.13)

When a discrete trading occurs at time θbj+1 (resp. θak+1), the cash amount becomes

Xθbj+1
= Xθb−j+1

− P b
θb−j+1

(2.14)

Xθak+1
= Xθa−k+1

+ P a
θa−k+1

, (2.15)

State process. We define the state process as follows:

Z = (X, Y, P :=
P a + P b

2
, S := P a − P b). (2.16)

Cost of liquidation of the portfolio. If the current mid-price at time t < T is p and the
market maker decides to liquidate her portfolio, then we assume that the price she actually
gets is

Q(t, y, p, s) = (p− sign(y)
s

2
)f(t, y), (2.17)
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where f is an impact function defined from [0, T ]× R into R+.

We make the following assumption

Assumption (H1) The impact function f is non-negative, non-increasing in y, and satis-
fies the following conditions

f(t, y) ≤ f(t, y
′
) if y

′ ≤ y
yf(t

′
, y) ≤ yf(t, y) if t

′ ≤ t.

Remark 2.3 (H1) suggests that the further from maturity when the market maker liqui-
dates her block of shares, the more she is penalized. In addition, the bigger the block of
shares to liquidate, the more she is penalized. This form of impact function is inspired by
[11] and [17].

Liquidation value and Solvency constraints. A key issue for the market maker is to
maximize the value of the net wealth at time T. In our framework, we impose a constraint
on the spread i.e.

0 < St ≤ Kδ, 0 ≤ t ≤ T,

where K is a positive constant. This constraint is consistent with the idea to insure a good
level of liquidity in the financial market. The regulatory of the financial market has to
find a consensus between the objective of the market maker whose aim is to increase her
wealth and the liquidity of the financial market. This bid-ask spread constraint is generally
part of the commitments that market maker’s firm has taken in its contract with the Stock
Exchange. We also impose that the bid price remains positive, therefore the market maker
has to use controls such that

Pt − St/2 > 0.

When the market maker has to liquidate her portfolio at time t, her wealth will be L(t,Xt, Yt, Pt, St)

where L is the liquidation function defined as follows

L(t, x, y, p, s) = x+ yQ(t, y, p, s),

with Q as defined in 2.17.
Furthermore, we assume that in the case that the cash held by the market maker falls

below a negative constant xmin, she has to liquidate her position. This constraint on xmin
is a solvency constraint generally imposed by the market maker’s employer since they do
not have unlimited financing facilities. From the market maker’s point of view, xmin is the
threshold below which she shall not go.
We may now introduce the following state space

S = (xmin,+∞)× {ymin, ..., ymax} ×
δ

2
N× δ{1, ...,K}.
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and then the solvency region

S = {(t, x, y, p, s) ∈ [0, T ]× S : p− s

2
≥ δ}.

We denote its boundary and its closure by

∂xS =
{

(t, x, y, p, s) ∈ [0, T ]× S̄ : x = xmin

}
and S̄ = S ∪ ∂xS.

Admissible trading strategies. Given (t, z) := (t, x, y, p, s) ∈ S, we say that the strategy
α = (εau, ε

b
u, η

a
u, η

b
u)t≤u≤T is admissible, if the processes εa, εb, ηa, ηb are valued in {χmin, ..., χmax}

and for all u ∈ [t, T ], (u, Zt,i,z,αu ) ∈ S. We denote by A(t, z) the set of all these admissible
policies.

Value functions. The objective of the market maker should be to maximize the expected
utility of the terminal wealth, obtained at the expiration of the market making contract.
However, we consider that the market maker should avoid violating the inventory risk
constraint 2.12 imposed by the risk department of her firm. We therefore introduce, in
the objective function, a penalty cost self-imposed by the market maker herself in order
to reduce the inventory risk. This penalty cost does not directly impact the wealth of the
market maker, but only her control strategy in the optimization problem.

We set g a non-negative penalty function defined on {ymin, ..., ymax}. This penalty may
be compared to the holding costs function introduced in [15]. For numerical purposes, in
Section 5, we will consider as in [15] a quadratic penalty cost function.

We also consider an exponential utility function U i.e. there exists γ > 0 such that
U(x) = 1− e−γx for x ∈ R. We set UL = UoL.
As such, we consider the following value functions (vi)i∈{1,...,m} which are defined on S by

vi(t, z) := sup
α∈A(t,z)

Jαi (t, z) (2.18)

where we have set

Jαi (t, z) := Et,i,z
[
UL(T ∧ τ t,i,z,α, Zt,i,z,α

(T∧τ t,i,z,α)−)−
∫ T∧τ t,i,z,α

t
g(Y t,i,y,α

s )ds

]
,

τ t,i,z,α := inf{u ≥ t : Xt,i,x,α
u ≤ xmin or Y t,i,y,α

u ∈ {ymin − 1, ymax + 1}}.

3 Analytical properties and dynamic programming principle

We use a dynamic programming approach to derive the system of partial differential equa-
tions satisfied by the value functions. First, we state the following Proposition in which we
obtain some bounds of our value functions

Proposition 3.1 Bounds of the value functions. There exist nonnegative constants,
C1, C2 and C3, depending on the parameters of our problem, such that

1− C1 − C2e
C3p ≤ vi(t, x, y, p, s) ≤ 1, ∀(i, t, x, y, p, s) ∈ {1, ...,m} × S,
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Proof: Let i ∈ {1, ...,m}, (t, z) := (t, x, y, p, s) ∈ S and α ∈ A(t, z). As U is lower than 1 and
g positive, we obviously have vi(t, z) ≤ 1. Moreover, if we set G = supy∈{ymin,...,ymax} g(y),
we get

vi(t, z) ≥ 1− inf
α∈A(t,z)

E
[
exp

(
−γL(T ∧ τ t,i,z,α, Zt,i,z,α

(T∧τ t,i,z,α)−)
)]
−GT.

We conclude the proof by applying the following Lemma. 2

Lemma 3.1 Let β > 0. For all (i, t, z) := (i, t, x, y, p, s) ∈ {1, ...,m} × S, we have

ui(t, z) := sup
α∈A

E
[
exp

(
−βL(T ∧ τ t,i,z,α, Zt,i,z,α

(T∧τ t,i,z,α)−)
)]
≤ exp

(
−βa+ λ̄T (eβbχmax − 1)

)
eβbp,

where we have set a = xmin + yminf(0, ymin)Kδ2 and b = −yminf(0, ymin).

Proof. See Appendix.

This technical Lemma equally allows us to show the next results on the Hölder continuity
of the functions Ji and vi. We begin with the following Lemma establishing the Hölder
continuity with respect to the cash variable for the functions Jαi .

Lemma 3.2 For ξ ∈ [0,−xmine−rT ), we set

φ(ξ) = −1

r
ln

(
1− ξerT

| xmin |

)
and ψ(ξ) =

√
φ(ξ) + φ(ξ) + ξ.

Let i ∈ {1, ...,m}, (t, z) := (t, x, y, p, s) ∈ S̄ and x < x′ < x−xmine−rT . For all α ∈ A(t, z),
we have

| Jαi (t, z′)− Jαi (t, z) |≤ K1(p)ψ(x′ − x),

where K1(p) is a positive constant depending only on p and z′ = (x′, y, p, s).

Proof. See Appendix.

Now we turn to the Hölder continuity of the criterium function with respect to both time
and cash variables.

Proposition 3.2
Let i ∈ {1, ...,m}, (t, z) := (t, x, y, p, s) ∈ S̄ and (t′, x′) in [0, T ]× (xmin,+∞) s.t.

x < x′ < x− xmine−rT , and (3.19)

| t− t′ |< min

(
| xmin | e−2rT

r | x′ |
,
1

r
| ln
(
| x

′

xmin
|
)
|
)
, if x′ 6= 0. (3.20)

For all α ∈ A(t ∧ t′, z) such that αs = 0 for all s ∈ [t ∧ t′, t ∨ t′], we have α ∈ A(t, z) ∩
A(t′, z′) with z′ = (x′, y, p, s) and

| Jαi (t, z)− Jαi (t′, z′) | ≤ K2(p)
(
ψ(rerT | x′(t− t′) |) + ψ(x′ − x)+ | t′ − t |

)
.

where K2(p) is a positive constant depending only on p.
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Proof. See Appendix.

Proposition 3.3 Uniform Continuity of the value functions
Let (i, y, p, s) ∈ {1, ...,m} × {ymin, .., ymax} × δ

2N
∗ × δ{1, ..K} such that p− s

2 > 0.
The function (t, x)→ vi(t, x, y, p, s) is uniformly continuous on [0, T ]× [xmin,+∞).

Proof: Throughout the proof, we set V (u, ξ) = vi(u, ξ, y, p, s) on [0, T ]× [xmin,+∞).

Let (t, z) := (t, x, y, p, s) ∈ S̄ and (t′, x′) in [0, T ]× (xmin,+∞) s.t. (t, x) and (t′, x′) satisfy
conditions (3.19) and (3.20). We shall prove that

| V (t, x)− V (t′, x′) | ≤ K2(p)
(
ψ(rerT | x′(t− t′) |) + ψ(x′ − x)+ | t′ − t |

)
.

where z′ = (x′, y, p, s) and K2(p) is a positive constant depending only on p.

Let ε > 0 and α∗′ ∈ A(t′, z′) such that V (t′, x′) ≤ Jα
∗′

i (t′, x′) + ε. For u ∈ [t ∧ t′, T ], we set
αu = α∗′u 1l{u≥t′}. We have α ∈ A(t′, z′) ∩ A(t, z) then it follows from Proposition 3.2 that

V (t′, x′)− V (t, x) ≤ Jαi (t′, x′)− Jαi (t, x) + ε

≤ K2(p)
(
ψ(rerT | x′(t− t′) |) + ψ(x′ − x)+ | t′ − t |

)
+ ε.

Now, we know that there exists α ∈ A(t, z) such that V (t, x) ≤ Jαi (t, x)+ε. For u ∈ [t∧t′, T ],
we set αu = α∗u1l{u≥t}. We have α ∈ A(t′, z′) ∩ A(t, z) then it follows from Proposition 3.2
that

V (t′, x′)− V (t, x) ≥ Jαi (t′, x′)− Jαi (t, x)− ε
≥ −K2(p)

(
ψ(rerT | x′(t− t′) |) + ψ(x′ − x)+ | t′ − t |

)
− ε.

Letting ε going to 0, we obtain the result. 2

For control problems, dynamic programming principle was frequently used by many
authors. In our context, it is formulated as:

Theorem 3.1 Dynamic programming principle (DPP)
Let (i, t, z) := (i, t, x, y, p, s) ∈ {1, ...,m} × S. Let ν be a stopping time in Tt,T , we have

vi(t, z) = sup
α∈A(t,z)

Ĵα,νi (t, z), (3.21)

where, for α ∈ A(t, z), we have set

Ĵα,νi (t, z) = E
[
− g(y)

(
ν ∧ θ̂ ∧ τ̂α − t

)
+ vIν∧θ̂

(
ν ∧ θ̂, Zt,i,z,α

ν∧θ̂

)
1l{ν∧θ̂<τ̂α}

+UL

(
τ̂α, xer(τ̂

α−t), y, p, s
)
1l{τ̂α≤ν∧θ̂}

]
, (3.22)

with τ̂α = τ t,i,z,α ∧ T , ρ = inf{u ≥ t : Ru > Ru−}, θw = inf{u ≥ t : Nw,i,t,z
u >

Nw,i,t,z
u− }, for w ∈ {a, b} and θ̂ = ρ ∧ θa ∧ θb.

Proof : To establish the Dynamic Programming Principle, we may adapt the proof of The-
orem 5.2 in [5]. The proof strongly relies on the continuity of the value functions Ji and
vi established in Propositions 3.2 and 3.3. However, for the sake of completeness, in the
Appendix, we will provide the proof of this dynamic programming principle, which is always
of interest, especially in the case of such a non-standard control problem.

12



4 Viscosity characterization of the value function

We first define the following set:

A(t, z) :=
{
α = (εa, εb, ηa, ηb) ∈ {−χmin, ..., χmax}4 s.t. p− s

2
− δεb ≥ δ,

δ ≤ s− δ(εa − εb) ≤ Kδ, and δ ≤ s+ δ(ηa − ηb) ≤ Kδ
}
.

For all (i, t, x, y, p, s) := (i, t, z) ∈ {1, ...,m} × S and α := {εa, εb, ηa, ηb) ∈ A(t, z), we
introduce the two following operators:

Avi(t, z, α) =

{
UL(t, x, ymin, p, s) if y = ymin

vi(t, x+ p+ s
2 , y − 1, p+ δ

2(ηa + ηb), s+ δ(ηa − ηb)) otherwise .

Bvi(t, z, α) =


UL(t, x, ymax, p, s) if y = ymax

UL(t, z) if x < xmin + p− s
2

UL(t, z) if x = xmin + p− s
2 < 0

vi(t, x− p+ s
2 , y + 1, p− δ

2(εa + εb), s− δ(εa − εb)) otherwise .

On the open set {1, ...,m} × S, we have:

−∂vi
∂t
−Hi(t, z, vi,

∂vi
∂x

) = 0, (t, z) ∈ S, (4.23)

where Hi is the Hamiltonian associated with state i:

Hi(t, z, vi,
∂vi
∂x

) = rx
∂vi
∂x

+
∑
j 6=i

γij (vj(t, x, y, p, s)− vi(t, x, y, p, s))− g(y)

+ sup
α∈A(t,z)

[λai (t, p, s) (Avi(t, x, y, p, s, α)− vi(t, x, y, p, s))

+ λbi(t, p, s) (Bvi(t, x, y, p, s, α)− vi(t, x, y, p, s))
]

= 0.

The boundary and terminal conditions are given by :

vi(t, xmin, y, p, s) = UL(t, xmin, y, p, s) (4.24)

vi(T, x, y, p, s) = UL(T, x, y, p, s). (4.25)

We now provide a rigorous characterization for the value function by means of viscosity
solutions to the HJB equation (4.23) together with the appropriate boundary terminal con-
ditions. The uniqueness property is particularly crucial to numerically solve the associated
HJB. Since the value functions vi is continuous, we shall work with the notion of continuous
viscosity solutions.

Definition 4.1 Viscosity properties.

i) Let (φi)1≤i≤m a family of functions defined on S. A function φ is a viscosity superso-
lution of the system of variational inequalities (4.23) on {1, ...,m} × S if,

−∂ψi0
∂t

(t0, z0)−Hi0
(
t0, z0, ψ,

∂ψ

∂x

)
≥ 0, (4.26)
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whenever, for all (j, y, p, s) ∈ {1, ..,m} × {ymin, .., ymax} × δ
2N × δ{1, ..,K}, (t, x) →

ψj(t, x, y, p, s) is a C1 function on {(t, x) ∈ [0, T ) × [xmin,+∞) : (t, x, y, p, s) ∈ S}
and φ− ψ has a global minimum at (i0, t0, z0) ∈ {1, ...,m} × S.

ii) A function φ is a viscosity subsolution of the system of variational inequalities (4.23)
on {1, ...,m} × S if,

−∂ψi0
∂t

(t0, z0)−Hi0
(
t0, z0, ψ,

∂ψ

∂x

)
≤ 0, (4.27)

whenever, for all (j, y, p, s) ∈ {1, ..,m} × {ymin, .., ymax} × δ
2N × δ{1, ..,K}, (t, x) →

ψj(t, x, y, p, s) is a C1 function on {(t, x) ∈ [0, T ) × [xmin,+∞) : (t, x, y, p, s) ∈ S}
and φ− ψ has a global maximum at (i0, t0, z0) ∈ {1, ...,m} × S.

iii) A family of functions (φi)1≤i≤m is a viscosity solution of the system of variational
inequalities (4.23) on {1, ...,m} × S if it is both supersolution and subsolution in
{1, ..,m} × S.

The following theorem relates the value function vi to the HJB (4.23) for all 1 ≤ i ≤ m.

Theorem 4.2 The family of value functions (vi)1≤i≤m is the unique family of functions
such that

i) Continuity condition: For all (i, y, p, s) ∈ {1, ..,m}×{ymin, .., ymax}× δ
2N×δ{1, ..,K},

(t, x) → vi(t, x, y, p, s) is continuous on {(t, x) ∈ [0, T ) × [xmin,+∞) : (t, x, y, p, s) ∈
S}.

ii) Growth condition: There exist C1, C2 and C3 positive constants such that

1− C1 − C2e
C3p ≤ vi(t, x, y, p, s) ≤ 1, on {1, ..,m} × S. (4.28)

iii) Boundary and terminal conditions:

vi(t, xmin, y, p, s) = UL(t, xmin, y, p, s) and vi(T, x, y, p, s) = UL(T, x, y, p, s). (4.29)

iv) Viscosity solution: (vi)1≤i≤m is a viscosity solution of the system of variational in-
equalities (4.23) on {1, ...,m} × S.

Assertions i), ii) and iii) respectively follow from Proposition 3.3, Proposition 3.1 and
the value function definition. Therefore, it just remains to establish assertion iv) and the
uniqueness result. We shall divide our proof in three lemmas: first we prove that (vi)1≤i≤m
is a viscosity subsolution (see Lemma 4.3) then a supersolution (see Lemma 4.4) and finally
we prove a comparison theorem (see Lemma 4.6) which will lead to the uniqueness result.

Lemma 4.3 The family of value functions (vi)1≤i≤m is a subsolution of the system of vari-
ational inequalities (4.23) on {1, ...,m} × S

Proof. See Appendix.
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Lemma 4.4 The family of value functions (vi)1≤i≤m is a supersolution of the system of
variational inequalities (4.23) on {1, ...,m} × S

Proof. See Appendix.
We now turn to the uniqueness result. First, we give an equivalent formulation of the
viscosity solutions which is useful to prove the comparison result, see [16].

Lemma 4.5
Let (φi)1≤i≤m a family of functions defined on S. A function φ is a viscosity supersolution
(resp. subsolution) of the system of variational inequalities (4.23) on {1, ...,m} × S if,

−∂ψi0
∂t

(t0, z0)−Hi0
(
t0, z0, φ,

∂ψ

∂x

)
≥ 0, (resp. ≤ 0) (4.30)

whenever, for all (j, y, p, s) ∈ {1, ..,m}×{ymin, .., ymax}× δ
2N×δ{1, ..,K}, (t, x)→ ψj(t, x, y, p, s)

is a C1 function on {(t, x) ∈ [0, T )× [xmin,+∞) : (t, x, y, p, s) ∈ S} and φ− ψ has a global
minimum (resp. maximum) at (i0, t0, z0) ∈ {1, ...,m} × S.

With this equivalent definition of viscosity solutions, we are now able to establish the com-
parison result. In the proof of the comparison result, a major problem is to circumvent the
difficulty arising from the discontinuity of our HJB operator on some parts of the solvency
region boundary. One way to tackle this difficulty is to build specific test functions allowing
us to prove the uniqueness by contradiction.

Lemma 4.6 Let (ui)1≤i≤m (resp. (wi))1≤i≤m) be a viscosity subsolution (resp. superso-
lution) of (4.23) on [0, T ] × S satisfying the growth condition (4.28) and such that for all
(j, y, p, s) ∈ {1, ..,m} × {ymin, .., ymax} × δ

2N × δ{1, ..,K}, (t, x) → uj(t, x, y, p, s) (resp.
wj(t, x, y, p, s)) is a continuous function on {(t, x) ∈ [0, T )× [xmin,+∞) : (t, x, y, p, s) ∈ S}.
Assume that for all (i, t, z) ∈ {1, ..,m} × S we have

ui(T, z) ≤ wi(T, z), (4.31)

ui(t, xmin, y, p, s) ≤ wi(t, xmin, y, p, s) (4.32)

then we have ui(t, z) ≤ wi(t, z), for all (i, t, z) ∈ {1, ..,m} × S.

Proof : Let β1, β2 and β3 be positive constants such that β3 > C3. We set h(t, z) =

eβ2(T−t)
(
β1 + x2 + eβ3p

)
, for (t, z) ∈ S and wγi = (1 − γ)wi + γh for i ∈ {1, ..,m} and

γ ∈ (0, 1).
First we show that h is a supersolution of (4.23) on S. For (i, t, z) ∈ {1, ..,m}×S, we have

−∂h
∂t

(t, z)−Hi
(
t, z, h,

∂h

∂x

)
= β2e

β2(T−t)
(
β1 + x2 + eβ3p

)
− eβ2(T−t)2rx2 + g(y)

− sup
α∈A(t,z)

[
λai (t, p, s) (Ah(t, z, α)− h(t, z))

+λbi(t, p, s) (Bh(t, z, α)− h(t, z))
]
. (4.33)
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For α ∈ A(t, z) and β1 > 1, we have

Ah(t, z, α)− h(t, z) =
[
UL(t, z)− h(t, z)

]
1ly=ymin

eβ2(T−t)
[
(x+ p+

s

2
)2 + eβ3(p+

δ
2
(ηa+ηb)) − x2 − eβ3p

]
1ly 6=ymin

≤ eβ2(T−t)
[
(p+

s

2
)(2x+ p+

s

2
) + eβ3p

(
eβ3δ − 1

) ]
1ly 6=ymin (4.34)

In the same way, if we set C = {z ∈ S : y 6= ymin or x > xmin+p− s
2 or x = xmin+p− s

2 ≥ 0}
then we have

Bh(t, z, α)− h(t, z) ≤ eβ2(T−t)
[
(x− p+

s

2
)2 + eβ3(p−

δ
2
(εa+εb)) − x2 − eβ3p

]
1lz∈C

≤ eβ2(T−t)
[
(−p+

s

2
)(2x− p+

s

2
)
]
1lz∈C (4.35)

Now we plug inequalities (4.34) and (4.35) in inequality (4.33), and obtain that for β1 and
β2 great enough, there exists η > 0 such that

−∂h
∂t

(t, z)−Hi
(
t, z, h,

∂h

∂x

)
> η.

To prove Lemma 4.6, it suffices to show that for all γ ∈ (0, 1), we have

max
j∈{1,..,m}

sup
(t,z)∈S

(
uj − wγj

)
≤ 0,

since the required result is obtained by letting γ going to 0.
We shall argue by contradiction and assume that

ζ := max
j∈{1,..,m}

sup
(t,z)∈S

(
uj − wγj

)
> 0.

From the growth condition satisfied by u and w, we deduce that for all (j, t, z) ∈ {1, ..,m}×
S, (

uj − wγj
)

(t, z) ≤ C1 + C2e
C3p − γeβ2(T−t)

(
β1 + x2 + eβ3p

)
.

Hence, we have limp+x→+∞

(
uj − wγj

)
(t, z) = −∞ and this implies that there exists

(i∗, t∗, z∗) ∈ {1, ..,m} × S such that

(ui∗ − wγi∗) (t∗, z∗) = ζ > 0.

If t∗ = T or x∗ = xmin, we deduce from the boundary conditions satisfied by u and w that

0 < θ ≤ γ
[
ui∗(t

∗, z∗)− eβ2(T−t∗)β1
]
≤ 0,

since ui ≤ 1 ≤ β1. Therefore, we have t∗ < T and x∗ > xmin.
We now distinguish the following two cases.
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First case: Assume that x∗ = xmin + p∗ − s∗

2 .

We introduce a sequence (xn)n≥0 taking values in (xmin,+∞)\{x∗} and such that limn→+∞ xn =

x∗. We set zn = (xn, y
∗, p∗, s∗) and, for n ∈ N,

ζn = max
j∈{1,..,m}

sup
(t,z)∈S

[
uj(t, z)− wγj (t, z)− ‖zn − z‖

2

‖zn − z∗‖2

]
.

It follows from the growth conditions satisfied by u and w, that there exists a sequence
(i∗n, t

∗
n, z
∗
n)n≥0 taking values in {1, ..,m} × S and such that, for all n ∈ N,

ζn = ui∗n(t∗n, z
∗
n)− wγi∗n(t∗n, z

∗
n)− ‖zn − z

∗
n‖2

‖zn − z∗‖2
.

We notice that
ζ ≥ ζn ≥ (ui∗ − wγi∗) (t∗, zn).

From the continuity properties of u and w, it follows that limn→+∞ ζn = ζ > 0 and

lim
n→+∞

‖zn − z∗n‖2

‖zn − z∗‖2
≤ lim

n→+∞
ζ − ζn = 0.

Therefore, there exists N ∈ N such that, for all n ≥ N , we have ζn > 0, (y∗n, p
∗
n, s
∗
n) =

(y∗, p∗, s∗) and x∗n ∈ (xmin,+∞) \ {x∗}. Let n ≥ N , if t∗n = T , we would have the following
contradiction

0 < ζn ≤ γ
[
ui∗n(t∗n, z

∗
n)− β1

]
≤ 0.

therefore t∗n < T .

For (t, z, z′) ∈ [0, T ]× S2, we define the function:

Φn(t, z, z′) = ui∗n(t, z)− wγi∗n(t, z′)− ‖z − z
′‖2

ε
− ‖zn − z‖

2

‖zn − z∗‖2
− ‖zn − z

′‖2

‖zn − z∗‖2
,

where ε > 0.
By a classical argument in the theory of viscosity solutions, we can show that there

exists (tn(ε), z1n(ε), z2n(ε))n≥0 ∈ [0, T ]× S2 such that

Φn(tn(ε), z1n(ε), z2n(ε)) = sup
(t,z,z′)∈[0,T ]×S2

Φn(t, z, z′).

Moreover we can prove that

lim
ε→0

(tn(ε), z1n(ε), z2n(ε)) = (t∗n, z
∗
n, z
∗
n) and lim

ε→0

‖z1n(ε)− z2n(ε)‖2

ε
= 0.

To simplify notations, we shall omit to precise the dependency on ε.
Notice that y, p and s are discrete variables thus, for ε small enough, we have

(y1n, p
1
n, s

1
n) = (y∗, p∗, s∗) = (y2n, p

2
n, s

2
n).
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We introduce two functions defined on {1, ..,m} × S by

ψi(t, z) = wγi∗n(tn, z
2
n) +

‖z − z2n‖2

ε
+
‖zn − z‖2

‖zn − z∗‖2
+
‖zn − z2n‖2

‖zn − z∗‖2

φi(t, z) = ui∗n(tn, z
1
n)− ‖z

1
n − z‖2

ε
− ‖zn − z

1
n‖2

‖zn − z∗‖2
− ‖zn − z‖

2

‖zn − z∗‖2
.

From the definition of ψ and φ, u − ψ has a local maximum at (i∗n, tn, z
1
n) and wγ − φ

has a local minimum at (i∗n, tn, z
2
n), which implies from the equivalent formulation of the

viscosity solutions that

−
∂ψi∗n
∂t

(tn, z
1
n)−Hi∗n

(
tn, z

1
n, u,

∂ψ

∂x

)
≤ 0, (4.36)

−
∂φi∗n
∂t

(tn, z
2
n)−Hi∗n

(
tn, z

2
n, w

γ ,
∂φ

∂x

)
≥ γη > 0. (4.37)

From inequalities (4.36) and (4.37), we have

−γη ≥ −
∂ψi∗n
∂t

(tn, z
1
n) +

∂φi∗n
∂t

(t2n, z
2
n)−Hi∗n

(
tn, z

1
n, u,

∂ψ

∂x

)
+Hi∗n

(
tn, z

2
n, w

γ ,
∂φ

∂x

)
≥ ∆1 + ∆2 + ∆3, (4.38)

where we have set

∆1 = −
∂ψi∗n
∂t

(tn, z
1
n) +

∂φi∗n
∂t

(tn, z
2
n)− rx1n

∂ψi∗n
∂x

(tn, z
1
n) + rx2n

∂φi∗n
∂x

(tn, z
2
n)

= −2r

ε
(x1n − x2n)2 +

2r

(xn − x∗)2
(
x1n(xn − x1n)− x2n(xn − x2n)

)
,

∆2 =
∑
j 6=i∗n

γi∗n,j

([
ui∗n(tn, z

1
n)− wγi∗n(tn, z

2
n)
]
−
[
uj(tn, z

1
n)− wγj (tn, z

2
n)
])
≥ 0

∆3 = sup
α∈A(tn,p∗,s∗)

[
λa,∗n

(
Awγi∗n(tn, z

2
n, α)− wγi∗n(tn, z

2
n)
)

+ λb,∗n

(
Bwγi∗n(tn, z

2
n, α)− wγi∗n(tn, z

2
n)
) ]

− sup
α∈A(tn,p∗,s∗)

[
λa,∗n

(
Aui∗n(tn, z

1
n, α)− ui∗n(tn, z

1
n)
)

+ λb,∗n
(
Bui∗n(tn, z

1
n, α)− ui∗n(tn, z

1
n)
) ]

,

with λa,∗n = λai∗n(tn, p
∗, s∗) and λb,∗n = λbi∗n(tn, p

∗, s∗). We have limε→0 ∆1 = 0 and limε→0 ∆2 ≥
0. Indeed, we have

lim
ε→0

∆2 =
∑
j 6=i∗n

γi∗n,j

([
ui∗n(t∗n, z

∗
n)− wγi∗n(t∗n, z

2
n)
]
−
[
uj(t

∗
n, z
∗
n)− wγj (t∗n, z

∗
n)
])

=
∑
j 6=i∗n

γi∗n,j

(
ζn −

[
uj(t

∗
n, z
∗
n)− wγj (t∗n, z

∗
n)− ‖zn − z

∗
n‖2

‖zn − z∗‖2
])

≥ 0.

Wemay conclude the proof by proving that lim infε→0 ∆3 ≥ 0.As (y1n, p
1
n, s

1
n) = (y∗, p∗, s∗) =

(y2n, p
2
n, s

2
n), there exists α∗ ∈ A(tn, z

1
n) = A(tn, z

2
n) such that ∆3 ≥ λa,∗n δ1 + λb,∗n δ2, where

δ1 =
[
Awγi∗n(tn, z

2
n, α

∗)− wγi∗n(tn, z
2
n)
]
−
[
Aui∗n(tn, z

1
n, α

∗)− ui∗n(tn, z
1
n)
]

δ2 =
[
Bwγi∗n(tn, z

2
n, α

∗)− wγi∗n(tn, z
2
n)
]
−
[
Bui∗n(tn, z

1
n, α

∗)− ui∗n(tn, z
1
n)
]
.
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We set α∗ = (εa, εb, ηa, ηb) and for z = (x, y, p, s) ∈ S, we shall use the following notations:

z̄ =

(
x+ p+

s

2
, y − 1, p+

δ

2
(ηa + ηb), s+ δ(ηa − ηb)

)

ẑ =

(
x− p+

s

2
, y + 1, p− δ

2
(εa + εb), s+ δ(εa − εb)

)
.

If y∗ = ymin, we have

lim
ε→0

δ1 = lim
ε→0

[
UL(tn, z

2
n)− wγi∗n(tn, z

2
n)
]
−
[
UL(tn, z

1
n)− ui∗n(tn, z

1
n)
]

= lim
ε→0

[
ui∗n(tn, z

1
n)− wγi∗n(tn, z

2
n)
]

= ui∗n(t∗n, z
∗
n)− wγi∗n(t∗n, z

∗
n)

= ζn +
‖zn − z∗n‖2

‖zn − z∗‖2
> 0.

If y∗ > ymin, we then have

lim
ε→0

δ1 = lim
ε→0

[
wγi∗n(tn, z̄

2
n)− wγi∗n(tn, z

2
n)
]
−
[
ui∗n(tn, z̄

1
n)− ui∗n(tn, z

1
n)
]

= ζn −
[
ui∗n(t∗, z̄∗n)− wγi∗n(t∗n, z̄

∗
n)
]

+
‖zn − z∗n‖2

‖zn − z∗‖2
≥ ζn − ζ.

If y∗ = ymax or x∗n < xmin + p∗ − s∗

2 , then, for n large enough, we get

lim
ε→0

δ2 = lim
ε→0

[
UL(tn, z

2
n)− wγi∗n(tn, z

2
n)
]
−
[
UL(tn, z

1
n)− ui∗n(tn, z

1
n)
]
≥ ζn > 0.

Moreover, if y∗ < ymax and x∗n > xmin + p∗ − s∗

2 , we obtain

lim
ε→0

δ2 = lim
ε→0

[
wγi∗n(tn, ẑ

2
n)− wγi∗n(tn, z

2
n)
]
−
[
ui∗n(tn, ẑ

1
n)− ui∗(tn, z1n)

]
≥ ζn −

[
ui∗n(t∗, ẑ∗n)− wγi∗n(t∗n, ẑ

∗
n)
]

≥ ζn − ζ.

Hence, if we let ε going to 0 in inequality (4.38), we get −γη ≥ 2(ζn − ζ). We obtain a
contradiction by letting n going to +∞.

Second case: We assume that x∗ 6= xmin + p∗ − s∗

2 . As we shall work far from the set of
discontinuity of the operator B, this case is more simple and we just give the sketch of the
proof. For (t, z, z′) ∈ [0, T ]× S2, we define the function:

Φ(t, z, z′) = ui∗(t, z)− wγi∗(t, z
′)− ‖z − z

′‖2

ε
,

where ε > 0.
By a classical argument in the theory of viscosity solutions, we can show that there

exists (t(ε), z1(ε), z2(ε)) ∈ [0, T ]× S2 such that

Φ(t(ε), z1(ε), z2(ε)) = sup
(t,z,z′)∈[0,T ]×S2

Φ(t, z, z′).
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Moreover we can prove that

lim
ε→0

(t(ε), z1(ε), z2(ε)) = (t∗, z∗, z∗) and lim
ε→0

‖z1(ε)− z2(ε)‖2

ε
= 0.

The function φ̂ and ψ̂ defined by

ψ̂i(t, z) = wγi∗(t(ε), z
2(ε)) +

‖z − z2(ε)‖2

ε

φ̂i(t, z) = ui∗(t(ε), z
1(ε))− ‖z

1(ε)− z‖2

ε

are respectively super and sub solution of equation (4.23) then we get

−γη ≥ −∂ψ̂i
∗

∂t
(t(ε), z1(ε))+

∂φ̂i∗

∂t
(t(ε), z2(ε))−Hi∗

(
t(ε), z1(ε), u,

∂ψ̂

∂x

)
+Hi∗

(
t(ε), z2(ε), wγ ,

∂φ̂

∂x

)
.

We conclude the proof by letting ε going to and get the following contradiction 0 > −γη ≥ 0

2

5 Numerical Results

In this paragraph, we present the results of the numerical method we used to approximate
the solution of the system of equations (4.23).

5.1 Numerical scheme

To solve the HJB equation (4.23) arising from the stochastic control problem (3.21), one can
use either probabilistic or deterministic numerical method. We choose to use a deterministic
method based on a finite difference scheme, which is well known to have the monotonicity,
consistency and stability properties. These properties ensure the convergence of this scheme,
see [3].

To compute numerically the value function, we usued the following iterative scheme
allowing us to obtain the HJB (4.23) as a limit of HJB equations :
∀i ∈ {1, ...,m}

v0i (t, z) = UL(t, z), (t, z) ∈ S̄

−∂v
n
i

∂t
− Ĥi(t, z, vni , vn−1i ,

∂vni
∂x

) = 0, (t, z) ∈ S,

where Ĥi is the Hamiltonian associated with state i and defined as follows:

Ĥi(t, z, vni , vn−1i ,
∂vni
∂x

) = rx
∂vni
∂x

+
∑
j 6=i

γij
(
vnj (t, x, y, p, s)− vni (t, x, y, p, s)

)
− g(y)

+ sup
α∈A(t,z)

[
λai (p, s)

(
Avn−1i (t, x, y, p, s, α)− vni (t, x, y, p, s)

)
+ λbi(p, s)

(
Bvn−1i (t, x, y, p, s, α)− vni (t, x, y, p, s)

)]
.
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The boundary and terminal conditions are given by :

vni (t, xmin, y, p, s) = UL(t, xmin, y, p, s)

vni (T, p, s, x, y) = UL(T, x, y, p, s).

After localizing the problem on the discretized grid [0, T )×(xmin, xmax]×{ymin, ..., ymax}×
[pmin, pmax] × δ{1, ...,K}, where pmin and pmax are nonnegative constants, and xmax >

xmin, each HJB equation is approximated by a finite difference scheme assuming a Dirichlet
boundary condition on the localized boundary

vni (t, xmax, y, p, s) = UL(t, xmax, y, p, s).

Let h and dx be, respectively, the time discretization step and the space disretization step in
the direction x. For (t, z) in the time-space grid described above, we consider approximations
of the following form :

∂vni
∂t

(t, x, y, p, s) ∼ vni (t+ h, x, y, p, s)− vni (t, x, y, p, s)

h
∂vni
∂x

(t, x, y, p, s) ∼ ±v
n
i (t, x± dx, y, p, s)− vni (t, x, y, p, s)

dx
.

Considering a two-regime case, the HJB relative to the regime 1, can be rewritten as follows:

vn1 (t+ h, x, y, p, s)− vn1 (t, x, y, p, s)

h
+ rx

(
vn1 (t, x, y, p, s)− vn1 (t, x− dx, y, p, s)

dx

)
1l{x<0}

+rx

(
vn1 (t, x+ dx, y, p, s)− vn1 (t, x, y, p, s)

dx

)
1l{x≥0}

+γ12 (vn2 (t, x, y, p, s)− vn1 (t, x, y, p, s))− g(y)

+ sup
α∈A(t,z)

[
λa1(p, s)

(
Avn−11 (t, x, y, p, s, α)− vn1 (t, x, y, p, s)

)
+ λb1(p, s)

(
Bvn−11 (t, x, y, p, s, α)− vn1 (t, x, y, p, s)

)]
= 0.

Which leads to

vn1 (t, z) =
C1
1 (t, z)C2

2 (t, z) + C1
2 (t, z)

1− C1
1 (t, z)C2

1 (t, z)

vn2 (t, z) = C2
1 (t, z)vn1 (t, z) + C2

2 (t, z)

where:

Ci1(t, z) = C(i, t, z)γ12dxh,

Ci2(t, z) = C(i, t, z)
{
dxv

n
i (t+ h, x, y, p, s)± rxhvni (t, x± dx, y, p, s)− dxhg(y)

+ dxh sup
α∈A(t,z)

[λai (p, s)Avn−1i (t, x, y, p, s, α) + λbi(p, s)Bvn−1i (t, x, y, p, s, α)]
}
,

C(i, t, z) =

(
dx ± rxh+ dxh

(
γ12 + λai (p, s) + λbi(p, s)

))−1
,

such that i ∈ {1, 2}.
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5.2 Numerical computation and results

The approximated value function is now explicit and can be computed numerically. Numer-
ical tests are performed for a two-regime case with the following numerical data:

• Market values:

→ Initial conditions: x = 4, y = 2, p = 1, s = 0.02.

→ r = 0.05, δ = 0.018, λ = 20.

→ Impact function: f(t, y) = exp (−0.09y).

→ Intensity functions:

λai (p, s) =
ψai
p

exp (− s− 0.01(p− 1))

λbi(p, s) = ψbip exp (− s+ 0.01(p− 1)),

where ψa1 = 120, ψa2 = 80, ψb1 = 80, ψb2 = 120.

• Constraints:

→ xmin = −2, ymin = −10, ymax = 10, K = 5, T = 1.
→ Penalty function: g(y) = y2 × 10−3.

→ Utility function: U(l) = 1− e−0.01l i.e. γ = 0.01.

• Numerical values:

→ Localisation: xmax = 18, pmin = 1− 20× δ
2 , pmax = 1 + 20× δ

2 .
→ Discretization: nx = 100 and nt = 20.
→ Transition probabilities: p12 = p21 = 0.5.

Remark 5.4 1.) The impact function f and the intensity functions λai and λbi are respec-
tively inspired from the models studied in [11] and [2].
2.) With these choices of λa and λb, we suggest that the intensity of the buy market orders
is non-increasing with respect to the mid price while the intensity of the sell market orders
is non-decreasing with respect to the mid price. Both intensities are non-increasing with
respect to the spread.
3.) These choices have the following financial assumption: when prices get higher, there are
likely to have many more investors willing to sell and fewer willing to buy. In other way
around, when the spread gets higher, fewer trading orders are expected.

Shape of the value function
We represent in Figure 2 (resp. Figure 3) the shape of the value function associated to the
regime 1 for fixed (t, x, y) such that y is positive (resp. y is negative).

Remark 5.5 (On the shape of the value function)
- The value function is non-decreasing (non-increasing) in P , the mid-price of the assets,

22



when the stockholding, y, is positive (negative).
- The value function is non-decreasing in S, the bid-ask spread, but only up to a threshold,
beyond which the value function would start to decrease. This is a clear evidence that the
optimal strategy for the market maker is not necessarily to increase the bid-ask spread.
Indeed, a high spread will negatively impact on the frequency of the trades, in order words,
investors may turn away from illiquid assets. This is precisely the reason why the Stock
Exchange sets a maximum level of bid-ask spread beyond which the market maker may not
allow to go.

Figure 2: Value function for y ≥ 0

Figure 3: Value function for y ≤ 0
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Optimal market making strategies

Figure 4 describes the optimal control strategies for the market marker when a sell
market order arrives and when the market maker’s inventory is around zero. In our model,
the market maker has to adjust optimally the bid and ask prices in order to maximize its
objective function. To achieve that aim, the idea for the market maker is to incite trades in
both directions. The best scenario is to get alternately buy and sell market orders in order
earn the bid-ask spread while maintaining her inventory close to zero.

In the case showed in Figure 4, after the arrival of sell market order, the market maker
should act in a way to encourage the arrival of a buy market order, i.e., increasing the buy
market order arrival intensity relatively to the intensity of the sell market order. Given the
properties of the intensity functions, one needs to decrease the mid-price.

Figure 4: Optimal strategy when a sell market order arrives

From Figure 4, we may make the following observations:

• when the spread is very low, the market maker has to decrease the bid price more
than the ask price, see region where the spread value is below 0.07.

• when the spread is high and close to the maximum spread allowed, the market maker
should decrease the ask price. She should decrease the spread in order to encourage
trades.

Notice that the market maker may make a profit of 3 ticks in the favorable case, i.e., the
next market order is a buy order.
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Figure 5: Optimal strategy when a buy market order arrives

Figure 5 shows the symmetric case when a buy market order arrives.

Some simulated paths

To obtain these below simulated paths, we compute the optimal strategy of the market
maker via the numerical procedure described above. Then, we simulate the regime switching
(the Poisson process R) and the order arrivals (the Cox processes Na and N b with intensities
λa(t, It, Pt, St) and λb(t, It, Pt, St) respectively). We adjust the mid-price and the spread of
the market maker according to her optimal strategy and take into account her new cash
and stock inventory positions after each order arrival.
We represent in Figure 6 and 7 simulated trajectories of the bid-ask prices and her stock
inventory.

Remark 5.6

• Figure 7 shows that between t = 0.20 and t = 0.32, there is clearly an imbalance
between buy and sell market orders (with sell market orders largely exceeding buy or-
ders). Therefore, the market maker has to buy the stock in order to satisfy those sell
market orders, resulting in a decrease of the bid and ask prices (see Figure 6).

• Between t = 0.32 and t = 0.45, there is a reversal of the situation with an imbalance of
orders in favor of the buy market orders. The market maker takes that opportunity to
sell back the shares and controls her inventory risk by keeping her stockholder position
near to zero.

• Between t = 0.45 and t = 1, there seems to be a fair balance between buy and sell
markets.
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Figure 6: Bid and Ask Price Paths

Figure 7: A simulated trajectory of the market maker’s stock inventory position
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Market maker’s net wealth and comparison with naive strategy

In Figure 8, we represent the mean, over 1000 trajectories, of the market maker’s net wealth
obtained via the optimal strategies and the naive strategy.

Figure 8: Optimal strategy v.s. Naive strategy

In the case of the naive strategy, we assume that the market maker behaves in a trivial
way by replacing her optimal strategy α = (αt)(0≤t≤T ) = (εat , ε

b
t , η

a
t , η

b
t )0≤t≤T with the

strategy denoted α̂ = (α̂t)(0≤t≤T ) = (1, 1, 1, 1), as mentioned in Remark 2.2.

Remark 5.7 As expected, Figure 8 shows that

• the trend of the market maker’s net wealth using her optimal strategy is positive which
means that she is able to increase her initial wealth smoothly throughout maturity while
satisfying all the constraints.

• the optimal strategy we computed via our numerical procedure is by far a better strategy
for the market maker than the naive one.

6 Conclusion

We have formulated a market making model in a dealer market. We have studied our
problem by addressing the following three main aspects. First, the modelling aspect which
includes important features and constraints characterizing market making problems. Then,
we have rigourously characterized the value function as the unique constrained viscosity
solution to a system of variational Hamilton-Jacobi-Bellman inequalities. In this problem, a
major challenge to overcome is to take into account the inventory constraints that the market
maker is facing. Finally, we completed our studies with numerical results by solving the
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HJB equation (4.23) arising from the stochastic control problem (3.21) using a deterministic
method based on a finite difference scheme.

This paper is our first contribution in the study of market making problems. We will
further investigate several natural theoretical questions in future research. An interesting
extension is to relax the assumption regarding full information access on the market and in
particular the observability of the Markov intensity process. One way to tackle the problem
with an unobservable Markov process It is to use filtering theory and draw information
for the intensity process given the observation of the market orders. Another natural ex-
tension of our study is to consider a competitive market making problem under inventory
constraints, with the presence of several market makers in the market.

Appendix

Proof of Lemma 3.1.
Let i ∈ {1, ...,m}, (t, z) := (t, x, y, p, s) ∈ S and α ∈ A(t, z). We have

0 ≤ St,i,s,α
(T∧τ t,i,z,α)− ≤ Kδ, ymin ≤ Y t,i,y,α

(T∧τ t,i,z,α)− ≤ ymax and xmin ≤ Xt,i,x,α
(T∧τ t,i,z,α)− .

Hence, we get

L
(
T ∧ τ t,i,z,α, Zt,i,x,α

(T∧τ t,i,z,α)−

)
≥ xmin + yminf(0, ymin)(P t,i,p,α

(T∧τ t,i,z,α)− +
Kδ

2
)

≥ a− bP t,i,z,α
(T∧τ t,i,z,α)− ,

where a = xmin+yminf(0, ymin)Kδ2 and b = −yminf(0, ymin) > 0. Moreover, it follows from
the definition of P that P t,i,z,α

(T∧τ t,i,z,α)− ≤ p+ χmaxN
a,t,i,z,α
(T∧τ t,i,z,α)− . Therefore, we obtain

E
[
exp

(
−βL(T ∧ τ t,i,z,α, Zt,i,z,α

(T∧τ t,i,z,α)−)
)]
≤ e−β(a−bp)E

[
exp

(
βbχmaxN

a,t,i,z,α
(T∧τ t,z,α)−)

)]
≤ e−β(a−bp)E

[
exp

(
βbχmaxN̄T )

)]
,

where N̄ is a Poisson process with intensity λ̄. we conclude the proof by observing that
E
[
exp

(
βbχmaxN̄T )

)]
= exp

(
(λ̄T (eβbχmax − 1)

)
. 2

Proof of Lemma 3.2.
Let α ∈ A(t, z) = A(t, z′). To simplify notations, we set τ = τ t,i,z,α and τ ′ = τ t,i,z

′,α.
We first notice that τ ≤ τ ′, then (Y t,i,z,α

τ , P t,i,z,ατ , St,i,z,ατ ) = (Y t,i,z′,α
τ , P t,i,z

′,α
τ , St,i,z

′,α
τ ).

Therefore we get:

∆Jαi := Jαi (t, z′)− Jαi (t, z)

= E

[
UL

(
T ∧ τ ′, Zt,i,z

′,α
(T∧τ ′)−

)
− UL

(
T ∧ τ, Zt,i,z,α

(T∧τ)−

)
−
∫ T∧τ ′

T∧τ
g(Y t,i,z,α

u ) du

]

≥ E

[(
UL

(
T ∧ τ ′, Zt,i,z

′,α
(T∧τ ′)−

)
− UL

(
τ, Zt,i,z,α

τ−

)
−
∫ T∧τ ′

τ
g(Y t,i,z,α

u ) du

)
1l{τ<T∧τ ′}

]
.
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Indeed, on {τ ∧ T = τ ′ ∧ T}, we have

U(L(T ∧ τ ′, Zt,i,z
′,α

(T∧τ ′)−)) = U((x′ − x)er(T∧τ−t) +L(T ∧ τ, Zt,i,z,α
(T∧τ)−)) ≥ U(L(T ∧ τ, Zt,i,z,α

(T∧τ)−)).

Notice that on {τ < τ ′}, we have ymin ≤ Y t,i,z,α
τ ≤ ymax and therefore Xt,i,z,α

τ ≤ xmin.
We introduce θ the first order arrival time after τ :

θ := inf{u > τ : Na
u > Na

u− or N b
u > N b

u−}.

As xmine−rτ∧T + (x′ − x)e−rt ≤ e−rt(xmine
−r(T−t) + x′ − x) < 0, we can also define the

following stopping time, greater than τ :

ν := τ − 1

r
ln

(
1− (x′ − x)er(T−t)

| xmin |

)
.

As g is bounded by G > 0 and U ≤ 1, we get ∆Jαi ≥ δ1 − δ2 + δ3 − δ4 where

δ1 := E
[(
UL

(
T ∧ τ ′, Zt,i,z

′,α
(T∧τ ′)−

)
− UL

(
τ, Zt,i,z,α

τ−

))
1l{τ<T∧τ ′}1l{ν<θ}

]
δ2 := E

[∫ T∧τ ′

τ
g(Y t,i,z,α

u ) du1l{τ<T∧τ ′}1l{ν<θ}

]
δ3 := E

[(
UL

(
T ∧ τ ′, Zt,i,z

′,α
(T∧τ ′)−

)
− UL

(
τ, Zt,i,z,α

τ−

))
1l{τ<T∧τ ′}1l{θ≤ν}

]
δ4 := E

[∫ T∧τ ′

τ
g(Y t,i,z,α

u ) du1l{τ<T∧τ ′}1l{θ≤ν}

]
.

We first find a lower bound for δ1 and an upper bound for δ2. On {ν < θ} ∩ {τ < τ ′ ∧ T},
we have

Xt,i,z′,α
ν = (x′ − x)er(ν−t) +Xt,i,z,α

τ er(ν−τ)

≤ erν
(
(x′ − x)e−rt + xmine

−rτ)
≤ xmin

(x′ − x)er(τ−t) + xmin

(x′ − x)er(T−t) + xmin
≤ xmin,

where the second inequality is deduced from the definition of ν.
Hence, on {ν < θ}∩{τ < τ ′∧T}, we have τ ′ ≤ ν < θ and it follows from the monotonicity

of the function: t→ yf(t, y), see Assumption (H1).

L(T ∧ τ ′, Zt,i,z
′,α

(T∧τ ′)−) ≥ xmin + y(p− sign(y)
s

2
)f(T ∧ τ ′, y)

≥ xmin + y(p− sign(y)
s

2
)f(τ, y)

≥ L(τ, Zt,i,z,ατ ).

Since U is non-decreasing, we have δ1 ≥ 0. Moreover g is non-negative, as such, we get

δ2 ≤ GE[(ν − τ)1l{τ<T∧τ ′}1l{ν<θ}] ≤ −
G

r
ln

(
1− (x′ − x)er(T−t)

| xmin |

)
.
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Now we find a lower bound for δ3 − δ4. As g is bounded by G > 0 and U ≤ 1, we get

δ3 − δ4 ≥ E
[
UL

(
T ∧ τ ′, Zt,i,z

′,α
(T∧τ ′)−

)
1l{τ<T∧τ ′}1l{θ≤ν}

]
− (1 + TG)P(θ ≤ ν).

Therefore, we deduce from Cauchy-Schwarz inequality that

δ3 − δ4 ≥ −E
[(
UL

(
T ∧ τ ′, Zt,i,z

′,α
(T∧τ ′)−

))2] 1
2

(P(θ ≤ ν))
1
2 − (1 + TG)P(θ ≤ ν).

Applying Lemma 3.1 with β = 2γ, we show that there exists C(p) > 0 such that.

E
[(
UL

(
T ∧ τ ′, Zt,i,z

′,α
(T∧τ ′)−

))2]
≤ 1 + E[exp

(
−2γL

(
T ∧ τ ′, Zt,i,z

′,α
(T∧τ ′)−

))
]

≤ 1 + C(p).

Hence, we get δ3 − δ4 ≥ −(1 +C(p))
1
2 (P(θ ≤ ν))

1
2 − (1 + TG)P(θ ≤ ν). Moreover, we have

P(θ ≤ ν) ≤ P(Na
ν −Na

τ > 0) + P(N b
ν −N b

τ > 0)

≤ 2P(N̄ν − N̄τ > 0)

≤ −2λ̄

r
ln

(
1− (x′ − x)er(T−t)

| xmin |

)
,

where N̄ is a Poisson process with intensity λ̄. To conclude, as φ(x′−x) = −1
r ln

(
1− (x′−x)er(T−t)

|xmin|

)
,

we have shown that

∆Jαi ≥ −Gφ(x′ − x)− (2λ̄(1 + C(p)))
1
2
(
φ(x′ − x)

) 1
2 − 2λ̄(1 + TG)φ(x′ − x).

It remains to find an upper bound for ∆Jαi . As g is positive, we have

∆Jαi ≤ E
[
UL

(
T ∧ τ ′, Zt,i,z

′,α
(T∧τ ′)−

)
− UL

(
T ∧ τ, Zt,i,z,α

(T∧τ)−

)]
≤ δ̂1(α) + δ̂2(α),

where we have set

δ̂1(α) := E
[(
UL

(
T ∧ τ ′, Zt,i,z

′,α
(T∧τ ′)−

)
− UL

(
T ∧ τ, Zt,i,z,α

(T∧τ)−

))
1l{ν<θ}

]
δ̂2(α) := E

[(
UL

(
T ∧ τ ′, Zt,i,z

′,α
(T∧τ ′)−

)
− UL

(
T ∧ τ, Zt,i,z,α

(T∧τ)−

))
1l{θ≤ν}

]
On {ν < θ}, we have seen that

L
(
T ∧ τ ′, Zt,i,z

′,α
(T∧τ ′)−

)
= (x′ − x)erτ

′
+ L

(
T ∧ τ, Zt,i,z,α

(T∧τ)−

)
.

Hence, it follows from the concavity of U and its monotony that

δ̂1(α) ≤ (x′ − x)erTE
[
U ′
(
L
(
T ∧ τ, Zt,i,z,αT∧τ

))
1l{ν<θ}

]
≤ (x′ − x)erTE

[
U ′
(
L
(
T ∧ τ, Zt,i,z,αT∧τ

))]
= γ(x′ − x)erTE

[
exp

(
−γL

(
T ∧ τ, Zt,i,z,αT∧τ

))]
.
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From Lemma 3.1, it follows that there exists C(p) > 0 such that δ̂1(α) ≤ C(p)(x′ − x).

Finally, we deduce from Cauchy-Schwarz inequality and Lemma 3.1 that there exists C(p) >

0 such that

δ̂2(α) ≤ P(θ ≤ ν) +
(
E
[
(UL

(
T ∧ τ, Zt,i,z,α

(T∧τ)−

)
)2
]) 1

2
(P(θ ≤ ν))

1
2

≤ 2λ̄φ(x′ − x) + C(p)(2λ̄φ(x′ − x))
1
2 .

2

Proof of Proposition 3.2.
Let α ∈ A(t ∧ t′, z) s. t. α|[t∧t′,t∨t′] = 0. As y, p and s are fixed, we will write Jαi (t, ζ)

instead of Jαi (t, ζ, y, p, s) for ζ ∈ [xmin,+∞).
We set x̂′ := x′er(t−t

′
). We have | x′ − x̂′ |≤| x′ | rerT | t− t′ | since | eζ − 1 |≤| ζ | e|ζ|. As

such, from the condition on |t− t′| in (3.20), we may apply Lemma 3.2 and obtain

| Jαi (t
′
, x′)− Jαi (t, x) | ≤ | Jαi (t

′
, x′)− Jαi (t, x̂′) |

+ | Jαi (t, x̂′)− Jαi (t, x′) | + | Jαi (t, x′)− Jαi (t, x) |
≤ | Jαi (t

′
, x′)− Jαi (t, x̂′) |

+K1(p)
(
ψ(| x′ − x̂′ |) + ψ(x′ − x)

)
.

As ψ is increasing, we have

ψ(| x′ − x̂′ |) ≤ ψ(rerT | x′(t− t′) |).

Therefore, we just have to prove that there exists C(p) > 0 such that:

| Jαi (t
′
, x′)− Jαi (t, x̂′) |≤ C(p) | t′ − t | . (6.39)

We first set t0 = min(t, t
′
), t1 = max(t, t

′
) and

xk = x′ exp
(r

2
(t− t′ − (−1)k(t1 − t0))

)
for k ∈ {0, 1}.

With these notations, if t0 = t
′ then x0 = x′ and x1 = x̂′ else t1 = t

′ , x1 = x′ and x0 = x̂′.
Hence, we aim at proving that

| Jαi (t1, z1)− Jαi (t0, z0) |≤ C(p)(t1− t0) with x1 = x0e
r(t1−t0), zk = (xk, y, p, s) ∀k ∈ {0, 1}.

To simplify notations, we set τ1 = τ t1,i,z1,α and τ0 = τ t0,i,z0,α. As α ∈ A(t0, z0), we have

Jαi (t0, z0) = E

[
UL

(
T ∧ τ0, Zt0,i,z0,α

(T∧τ0)−

)
−
∫ T∧τ0

t0

g(Y t0,i,z0,α
u ) du

]
.

Now, if we set θ̂ := inf{u ≥ t0 : Na
u > Na

u− or N b
u > N b

u− or Ru > Ru−}. We have

Jαi (t0, z0) = E

[(
UL

(
T ∧ τ0, Zt0,i,z0,α

(T∧τ0)−

)
−
∫ T∧τ0

t0

g(Y t0,i,z0,α
u ) du

)
1l{θ̂≤t1}

]

+E

[
E

[(
UL

(
T ∧ τ0, Zt0,i,z0,α

(T∧τ0)−

)
−
∫ T∧τ0

t1

g(Y t0,i,z0,α
u ) du

)
|Ft1

]
1l{t1<θ̂}

]

−E
[(∫ t1

t0

g(Y t0,i,z0,α
u ) du

)
1l{t1<θ̂}

]
.
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We can notice that on {t1 < θ̂}, we have

It1 = i, τ1 = τ0 and ∀u ∈ [t1, T ∧ τ1], Zt0,i,z0,αu = Zt1,i,z1,αu .

Therefore, we deduce from the Markov property that

Jαi (t0, z0) = E

[(
UL

(
T ∧ τ0, Zt0,i,z0,α

(T∧τ0)−

)
−
∫ T∧τ0

t0

g(Y t0,i,z0,α
u ) du

)
1l{θ̂≤t1}

]

+Jαi (t1, z1)P(t1 < θ̂)− E
[(∫ t1

t0

g(Y t0,i,z0,α
u ) du

)
1l{t1<θ̂}

]
.

Then, it follows from Cauchy-Schwarz inequality and Lemma 3.1 that there exists C(p) > 0

such that

Jαi (t0, z0) ≥ −E
[(
UL

(
T ∧ τ0, Zt0,i,z0,α

(T∧τ0)−

))2] 1
2 (

P(θ̂ ≤ t1)
) 1

2

−TGP(θ̂ ≤ t1) + Jαi (t1, z1)P(t1 < θ̂)−G(t1 − t0)

≥ −C(p)
(
P(θ̂ ≤ t1)

) 1
2 − TGP(θ̂ ≤ t1) + Jαi (t1, z1)P(t1 < θ̂)−G(t1 − t0).

Recalling that Jαi (t1, z1) ≤ 1, we get

Jαi (t1, z1)− Jαi (t0, z0) ≤ C(p)
(
P(θ̂ ≤ t1)

) 1
2

+ (Jαi (t1, z1) + TG)P(θ̂ ≤ t1) +G(t1 − t0)

≤ C(p)(3λ̄)
1
2 | t1 − t0 |

1
2 +(3(1 + TG)λ̄+G) | t1 − t0 | .

The last inequality follows from the following one:

P(θ̂ ≤ t1) ≤ P(Na
t1 > Na

t0) + P(N b
t1 > N b

t0) + P(Rt1 > Rt0)

≤ 3P(N̄t1 > N̄t0)

≤ 3λ̄(t1 − t0).

Now we follow the same idea to find a lower bound for Jαi (t1, z1)− Jαi (t0, z0). We have

Jαi (t0, z0) = E

[
UL(T ∧ τ0, Zt0,i,z0,α

(T∧τ0)−)−
∫ T∧τ0

t0

g(Y t0,i,z0,α
s )ds

]
.

Once again, we notice that on {t1 < θ̂}, we have

It1 = i, τ1 = τ0 and ∀u ∈ [t1, T ∧ τ1], Zt0,i,z0,αu = Zt1,i,z1,αu .

Therefore, it follows from Markov property again that

Jαi (t0, z0) ≤ E
[(
UL

(
T ∧ τ0, Zt0,i,z0,α(T∧τ0)−

)
−
∫ T∧τ0

t0

g(Y t0,i,z0,α
u ) du

)
1l{θ̂≤t1}

]
+E

[
UL(T ∧ τ1, Zt1,i,z1,α(T∧τ1)−)−

∫ T∧τ1

t1

g(Y t1,i,z1,α
s )ds

]
P(t1 < θ̂)

≤ E
[(
UL

(
T ∧ τ0, Zt0,i,z0,α(T∧τ0)−

)
−
∫ T∧τ0

t0

g(Y t0,i,z0,α
u ) du

)
1l{θ̂≤t1}

]
+Jαi (t1, z1)P(t1 < θ̂).
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As U ≤ 1 and g ≥ 0, we obtain

Jαi (t0, z0) ≤ P(θ̂ ≤ t1) + Jαi (t1, z1)P(t1 < θ̂).

Hence, from the proof of Proposition 3.1, we know that there exists C(p) > 0 such that

Jαi (t1, z1)− Jαi (t0, z0) ≥ (Jαi (t1, z1)− 1)P(θ̂ ≤ t1)
≥ −(C(p) + 1)P(θ̂ ≤ t1)
≥ −3(C(p) + 1)λ̄(t1 − t0).

2

Proof of Lemma 4.3.
Proof : Let (i, t, z) ∈ {1, ..,m} × S and (ψj)1≤j≤m a family of functions such that for all
(j, ζ, π, σ) ∈ {1, ..,m} × {ymin, .., ymax} × δ

2N × δ{1, ..,K}, (u, ξ) → ψj(u, ξ, ζ, π, σ) is a C1

function on {(u, ξ) ∈ [0, T )×[xmin,+∞) : (u, ξ, ζ, π, σ) ∈ S} and v−ψ has a global maximum
at (i, t, z) ∈ {1, ...,m} × S. Without loss of generality we assume that 0 = (v − ψ)(i, t, z).

Let 0 < h < T − t such that

If x < xmin + p− s
2 then xeru < xmin + p− s

2
for all u ∈ [0, h] (6.40)

If x > xmin + p− s
2 then xeru > xmin + p− s

2
for all u ∈ [0, h].

Notice that if x = xmin + p − s
2 < 0 then xeru < xmin + p − s

2 for all u ∈ (0, h] and if
x = xmin + p− s

2 ≥ 0 then xeru ≥ xmin + p− s
2 for all u ∈ [0, h].

We choose an admissible strategy α ∈ A(t, z) and set τ̂α := τ i,t,z,α∧T such that the dynamic
programming principle (3.21) implies

ψi(t, z) = vi(t, z)

≤ E
[
− g(y) (ν − t) + vI(t+h)∧θ̂

(
(t+ h) ∧ θ̂, Zt,i,z,α

(t+h)∧θ̂

)
1l{(t+h)∧θ̂<τ̂α}

+UL

(
τ̂α, xer(τ̂

α−t), y, p, s
)
1l{τ̂α≤(t+h)∧θ̂}

]
+ h2,

≤ E
[
− g(y)

(
(t+ h) ∧ θ̂ ∧ τ̂α − t

)
+ ψIν (ν, Zν) (6.41)

+
(
UL

(
τ̂α, xer(τ̂

α−t), y, p, s
)
− ψi(τ̂α, xer(τ̂

α−t), y, p, s)
)
1l{τ̂α≤(t+h)∧θ̂}

]
+ h2,

where we have set ν := (t + h) ∧ θ̂ ∧ τ̂α−. Applying Itô’s formula to ψIu(u, Zu) between t
and ν , we have

ψIν (ν, Zν) = ψi(t, z) +

∫ ν

t

∂ψi
∂t

(u, Zu)du+

∫ ν

t

∂ψi
∂x

(u, Zu)rXudu

+
∑
t≤u≤ν

(
ψIu(u, Zu)− ψIu− (u, Zu−)

)
= ψi(t, z) +

∫ ν

t

∂ψi
∂t

(u, Zu)du+

∫ ν

t

∂ψi
∂x

(u, Zu)rXudu
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+

∫ ν

t

(
ψIu(u, Zu)− ψi(u, Zu−)

)
dNa

u +

∫ ν

t

(
ψIu(u, Zu)− ψi(u, Zu−)

)
dN b

u

+

∫ ν

t

(
ψIu(u, Zu)− ψi(u, Zu−)

)
dRu.

By taking expectation, we obtain

E[ψIν (ν, Zν)] = ψi(t, z) + E
[ ∫ ν

t

∂ψi
∂t

(u, Zu)du+

∫ ν

t

∂ψi
∂x

(u, Zu)rXudu
]

(6.42)

+ E
[ ∫ ν

t
λai (t, p, s)

(
ψi(u,Xu− + p+

s

2
, y − 1, p+

δ

2
(ηau + ηbu), s+ δ(ηau − ηbu))

−ψ(u,Xu−, y, p, s)
)
1l{y>ymin}du

]
+ E

[ ∫ ν

t
λbi(t, p, s)

(
ψ(u,Xu− − p+

s

2
, y + 1, p− δ

2
(ηau + ηbu), s− δ(ηau − ηbu))

−ψ(u,Xu−, y, p, s)
)
1l{y<ymax and Xu−−p+ s

2
≥xmin}du

]
+

∑
j 6=i

E
[ ∫ ν

t
γi,j

(
ψj(u, Zu)− ψi(u, Zu)

)
du
]
.

Plugging (6.42) into (6.41), we obtain

ψi(t, z) ≤ E[−g(y) (ν − t)] + ψi(t, z) (6.43)

+ E
[ ∫ ν

t

∂ψi
∂t

(u, Zu)du+

∫ ν

t

∂ψi
∂x

(u, Zu)rXudu
]

+ E
[ ∫ ν

t
λai (t, p, s)

(
ψi(u,Xu− + p+

s

2
, y − 1, p+

δ

2
(ηau + ηbu), s+ δ(ηau − ηbu))

−ψi(u,Xu−, y, p, s)
)
1l{y>ymin}du

]
+ E

[ ∫ ν

t
λbi(t, p, s)

(
ψi(u,Xu− − p+

s

2
, y + 1, p− δ

2
(ηau + ηbu), s− δ(ηau − ηbu))

−ψi(u,Xu−, y, p, s)
)
1l{y<ymax and Xu−−p+ s

2
≥xmin}du

]
+

∑
j 6=i

E
[ ∫ ν

t
γi,j

(
ψj(u, Zu)− ψi(u, Zu)

)
du
]

+ Ri(t, z) + h2,

where we have set

Ri(t, z) = E
[ (
UL

(
τ̂α, xer(τ̂

α−t), y, p, s
)
− ψi(τ̂α, xer(τ̂

α−t), y, p, s)
)
1l{τ̂α≤(t+h)∧θ̂}

]
.

As x > xmin, we have xer(τ̂α−t) > xmin on {τ̂α ≤ t + h} for h small enough. Hence, we
have:

Ri(t, z) = E
[
[UL − ψi]

(
θa, xer(θ

a−t), ymin, p, s
)
1l{τ̂α=θa≤(t+h)∧θ̂; y=ymin}

]
+E
[
[UL − ψi]

(
θb, xer(θ

b−t), y, p, s
)
1l{τ̂α=θb≤(t+h)∧θ̂; y=ymax or xer(τ̂α−t)<xmin+p− s2}

]
= E

[ ∫ ν

t
λai (t, p, s)

[
UL − ψi

]
(u,Xu−, y, p, s)1l{y=ymin}du

]
(6.44)

+E
[ ∫ ν

t
λbi(t, p, s)

[
UL − ψi

]
(u,Xu−, y, p, s)

)
1l{y=ymax or xer(u−t)<xmin+p− s2}du

]
.
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At this point, we remark that, for u ∈ (t, ν],

1l{xer(u−t)≥xmin+p− s2} = 1{x>xmin+p− s2 or x=xmin+p− s2≥0}
1l{xer(u−t)<xmin+p− s2} = 1{x<xmin+p− s2 or x=xmin+p− s2<0}.

Therefore, plugging (6.44) into (6.43), it follows from the definition of the Hamiltonian that

0 ≤ E[

∫ ν

t
−g(y) +Hi(u, Zu−, ψ,

∂ψ

∂x
) du].

From the right continuity of the processes (Rt)t, (Na
t )t and (N b

t )t, we get

lim
h→0+

1

h
[

∫ ν

t
−g(y) +Hi(u, Zu−, ψ,

∂ψ

∂x
) du] = −g(y) +Hi(t, z, ψ,

∂ψ

∂x
) a.s.

Since ψ is smooth with respect to the variables t and x and the process (u, Zu)t≤u≤t+h is
bounded on {u ≤ ν}, we deduce from the dominated convergence theorem that :

0 ≤ lim
h→0+

1

h
E[

∫ ν

t
−g(y) +Hi(u, Zu−, ψ,

∂ψ

∂x
) du] = −g(y) +Hi(t, z, ψ,

∂ψ

∂x
).

Therefore (vi)1≤i≤m is a subsolution of the system of variational inequalities (4.23) on
{1, ...,m} × S.

2

Proof of Lemma 4.4.
Proof : The proof is very similar to the one of the previous Lemma. Indeed, let (i, t, z) ∈
{1, ..,m}× S and (ψj)1≤j≤m a family of functions such that for all (j, ζ, π, σ) ∈ {1, ..,m}×
{ymin, .., ymax} × δ

2N × δ{1, ..,K}, (u, ξ) → ψj(u, ξ, ζ, π, σ) is a C1 function on {(u, ξ) ∈
[0, T ) × [xmin,+∞) : (u, ξ, ζ, π, σ) ∈ S} and v − ψ has a global minimum at (i, t, z) ∈
{1, ...,m} × S. Without loss of generality we assume that 0 = (v − ψ)(i, t, z).
Let 0 < h < T − t, α ∈ A(t, z) an admissible strategy and set τ̂α := τ i,t,z,α ∧ T . The
dynamic programming principle (3.21) implies the opposite inequality of (6.41) without the
term h2. Then, we may apply Itô’s formula to ψIu(u, Zu) between t and ν and by taking
expectation, we obtain equation (6.42). Finally, we obtain the opposite inequality of (6.43)
for any admissible strategy. Therefore, we get

0 ≥ E[

∫ ν

t
−g(y) +Hi(u, Zu−, ψ,

∂ψ

∂x
) du]

and we conclude by dividing by h and letting h going to 0.
2

Proof of Theorem 3.1.
First step: We prove that vi(t, z) ≤ sup

α∈A(t,z)
Ĵα,νi (t, z).

Let α ∈ A(t, z). We have

Jαi (t, z) = E
[
UL(τ̂α, Zt,i,z,α

τ̂α− )−
∫ τ̂α

t
g(Y t,i,y,α

s )ds

]
= E

[
E
[
UL(τ̂α, Zt,i,z,α

τ̂α− )−
∫ τ̂α

t
g(Y t,i,y,α

s )ds|Fν∧θ̂

]
1l{ν∧θ̂<τ̂α}

]
+E

[(
UL(τ̂α, xer(τ̂

α−t), y, p, s)− g(y)(τ̂α − t)
)
1l{τ̂α≤ν∧θ̂}

]
.
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Now, we shall work on {ν ∧ θ̂ < τ̂α} and we have:

E
[
UL(τ̂α, Zt,i,z,α

τ̂α− )−
∫ τ̂α

t
g(Y t,i,y,α

s )ds|Fν∧θ̂

]
≤ vIν∧θ̂

(
ν ∧ θ̂, Zt,i,z,α

ν∧θ̂

)
− (ν ∧ θ̂ − t)g(y).

Second step: We prove that v̂ν(i, t, z) := sup
α∈A(t,z)

Ĵα,νi (t, z) ≤ vi(t, z).

Let ε > 0. We first notice that

Xt,i,z,α

ν∧θ̂
≤ x+erT + p+

K

2
δ and P t,i,z,α

ν∧θ̂
≤ p+ δ.

Therefore (ν ∧ θ̂, Zt,i,z,α
ν∧θ̂

) takes values in the bounded set B(t, x, p) where

B(t, x, p) =

{
(u, ξ, ζ, π, σ) ∈ [t, T ]× S : ξ ≤ x+erT + p+

K

2
and π ≤ p+ δ

}
.

We now define a countable partition of B(t, x, p) with Borel subsets Bk such that for all
k ∈ N, Bk = I×J×{a}×{b}×{c} where I×J ⊂ [t, T ]× (xmin,+∞), a ∈ {ymin, ..., ymax},
b ∈ δ

2N and c ∈ δ, ...,Kδ}. For k ∈ N, we choose ((tk, zk) := (tk, xk, yk, pk, sk) ∈ B̄k such
that tk is the largest time in the trace of B̄k in [t, T ].
From Propositions 3.2 and 3.3, we can choose B = (Bk)k such that for all k ∈ N, all
i ∈ {1, ...,m}, all (u, ξ, ζ, π, σ) in Bk and all α ∈ A(u, zk) s.t. α|[u,tk] = 0, we have

|vi(u, ξ, ζ, π, σ)− vi(tk, zk)|+ |Jαi (u, ξ, ζ, π, σ)− Jαi (tk, zk)| ≤ ε. (6.45)

Let α ∈ A(t, z) such that

v̂ν(i, t, z) ≤ ε+ Ĵα,νi (t, z).

As (Bk)k∈N is a partition of [t, T ]× S, we get

v̂ν(i, t, z) ≤ ε+

+∞∑
k=0

E
[
vIν∧θ̂

(
ν ∧ θ̂, Zt,i,z,α

ν∧θ̂

)
1l{ν∧θ̂<τ̂α}1l{(ν∧θ̂, Zt,i,z,α

ν∧θ̂
)∈Bk}

]
+E
[
− g(y)

(
ν ∧ θ̂ ∧ τ̂α − t

)
+ UL

(
τ̂α, xer(τ̂

α−t), y, p, s
)
1l{τ̂α≤ν∧θ̂}

]
≤ 2ε+

+∞∑
k=0

E
[
vIν∧θ̂ (tk, zk) 1l{ν∧θ̂<τ̂α}1l{(ν∧θ̂, Zt,i,z,α

ν∧θ̂
)∈Bk}

]
+E
[
− g(y)

(
ν ∧ θ̂ ∧ τ̂α − t

)
+ UL

(
τ̂α, xer(τ̂

α−t), y, p, s
)
1l{τ̂α≤ν∧θ̂}

]
,

where the latter inequality derives from (6.45).
Now, for j ∈ {1, ...,m} and k ∈ N, we introduce αj,k ∈ A(tk, j, zk) such that

vj(tk, zk) ≤ ε+ Jα
j,k

j (tk, zk).

Let k ∈ N, we get

Vk := E
[
vIν∧θ̂ (tk, zk) 1l{ν∧θ̂<τ̂α}1l{(ν∧θ̂, Zt,i,z,α

ν∧θ̂
)∈Bk}

]
≤

m∑
j=1

E
[ (
ε+ Jα

j,k

j (tk, zk)
)
1l{Iν∧θ̂=j}1l{ν∧θ̂<τ̂α}1l{(ν∧θ̂, Zt,i,z,α

ν∧θ̂
)∈Bk}

]
.
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Now, we define the random variable κ with values in N, null on {ν ∧ θ̂ ≥ τ̂α} and such that
for ω ∈ {ν ∧ θ̂ < τ̂α}, (ν ∧ θ̂, Zt,i,z,α

ν∧θ̂
)(ω) ∈ Bκ(ω). Notice that κ is Fν∧θ̂-measurable.

For ω ∈ {ν ∧ θ̂ < τ̂α}, we set:

α̂s(ω) :=


αs(ω) if t ≤ s ≤ ν ∧ θ̂(ω)

0 if ν ∧ θ̂(ω) < s < tκ(ω)

α
j,κ(ω)
s (ω) if tκ(ω) ≤ s and Iν∧θ̂(ω) = j.

(6.46)

On {ν ∧ θ̂ ≥ τ̂α}, we set α̂ = α. To simplify notations, we shall write α̂ for α̂|[tκ,T ] and
α̂|[ν∧θ̂,T ]. We get

Vk ≤ E
[ (
ε+ J α̂Iν∧θ̂

(tκ, zκ)
)
1l{ν∧θ̂<τ̂α}1l{(ν∧θ̂, Zt,i,z,α

ν∧θ̂
)∈Bκ}

]
.

From the definition of α̂, we have α̂ ∈ A
(
ν ∧ θ̂, Iν∧θ̂, Z

t,i,z,α

ν∧θ̂

)
, therefore we deduce from the

last inequality that
+∞∑
k=0

Vk ≤ ε+
+∞∑
k=0

E
[
J α̂Iν∧θ̂

(tκ, zκ) 1l{ν∧θ̂<τ̂α}1l{(ν∧θ̂, Zt,i,z,α
ν∧θ̂

)∈Bκ}

]
≤ 2ε+

+∞∑
k=0

E
[
J α̂Iν∧θ̂

(
ν ∧ θ̂, Zt,i,z,α

ν∧θ̂

)
1l{ν∧θ̂<τ̂α}1l{(ν∧θ̂, Zt,i,z,α

ν∧θ̂
)∈Bκ}

]
= 2ε+ E

[
J α̂Iν∧θ̂

(
ν ∧ θ̂, Zt,i,z,α

ν∧θ̂

)
1l{ν∧θ̂<τ̂α}

]
= 2ε+ E

[(
UL(τ̂ α̂, Z

ν∧θ̂,Iν∧θ̂,Z
t,i,z,α

ν∧θ̂
,α̂

τ̂ α̂−
)−

∫ τ̂ α̂

ν∧θ̂
g(Y

ν∧θ̂,Iν∧θ̂,Z
t,i,z,α

ν∧θ̂
,α̂

s )ds

)
1l{ν∧θ̂<τ̂α}

]
= 2ε+ E

[(
UL(τ̂ α̂, Zt,i,z,α̂

τ̂ α̂−
)−

∫ τ̂ α̂

ν∧θ̂
g(Y t,i,z,α̂

s )ds

)
1l{ν∧θ̂<τ̂α}

]
,

where the last equality is obtained from the definition in (6.46) To conclude we notice that
on {τ̂α ≤ ν ∧ θ̂}, we have τ̂α = τ̂ α̂ and then

v̂ν(i, t, z) ≤ 4ε+ E
[
− g(y)

(
ν ∧ θ̂ ∧ τ̂α − t

)
+ UL

(
τ̂α, xer(τ̂

α−t), y, p, s
)
1l{τ̂α≤ν∧θ̂}

]
+E
[(

UL(τ̂ α̂, Zt,i,z,α̂
τ̂ α̂−

)−
∫ τ̂ α̂

ν∧θ̂
g(Y t,i,z,α̂

s )ds

)
1l{ν∧θ̂<τ̂α}

]
= 4ε+ E

[
UL(τ̂ α̂, Zt,i,z,α̂

τ̂ α̂−
)−

∫ τ̂ α̂

t
g(Y t,i,z,α̂

s )ds
]

= 4ε+ J α̂i (t, z)

≤ 4ε+ vi(t, z).

Sending ε to zero, we may conclude the proof. 2
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