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1 Introduction

The theory of optimal stopping and its generalization, thoroughly studied in the seventies,
has received a renewed interest with a variety of applications in economics and finance.
These applications range from asset pricing (American options, swing options) to firm
investment and real options. We refer to [4] for a classical and well documented reference
on the subject.

In this paper, we consider the optimal switching problem for a one dimensional stochas-
tic process X. The diffusion process X may take a finite number of regimes that are
switched at stopping time decisions. For example in the firm’s investment problem un-
der uncertainty, a company (oil tanker, electricity station ....) manages several production
activities operating in different modes or regimes representing a number of different eco-
nomic outlooks (e.g. state of economic growth, open or closed production activity, ...). The
process X is the price of input or output goods of the firm and its dynamics may differ
according to the regimes. The firm’s project yields a running payoff that depends on the
commodity price X and on the regime choice. The transition from one regime to another
one is realized sequentially at time decisions and incurs certain fixed costs. The problem is
to find the switching strategy that maximizes the expected value of profits resulting from
the project.

Optimal switching problems were studied by several authors, see [1] or [10]. These
control problems lead via the dynamic programming principle to a system of variational
inequalities. Applications to option pricing, real options and investment under uncertainty
were considered by [2], [5] and [7]. In this last paper, the drift and volatility of the state
process depend on an uncontrolled finite-state Markov chain, and the author provides an
explicit solution to the optimal stopping problem with applications to Russian options.
In [2], an explicit solution is found for a resource extraction problem with two regimes
(open or closed field), a linear profit function and a price process following a geometric
Brownian motion. In [5], a similar model is solved with a general profit function in one
regime and equal to zero in the other regime. In both models [2], [5], there is no switching
in the diffusion process : changes of regimes only affect the payoff functions. Their method
of resolution is to construct a solution to the dynamic programming system by guessing
a priori the form of the strategy, and then validate a posteriori the optimality of their
candidate by a verification argument. Our model combines regime switchings both on the
diffusion process and on the general profit functions. We use a viscosity solutions approach
for determining the solution to the system of variational inequalities. In particular, we
derive directly the smooth-fit property of the value functions and the structure of the
switching regions. Explicit solutions are provided in the following cases : x the drift and
volatility terms of the diffusion take two different regime values, and the profit functions
are identical of power type, x there is no switching on the diffusion process, and the two
different profit functions satisfy a general condition, including typically power functions.
We also consider the cases for which both switching costs are positive, and for which one
of the two is negative. This last case is interesting in applications where a firm chooses
between an open or closed activity, and may regain a fraction of its opening costs when



it decides to close. The results of our analysis take several qualitatively different forms,
depending on model parameter values, essentially the payoff functions and the switching
costs.

The paper is organized as follows. We formulate in Section 2 the optimal switching
problem. In Section 3, we state the system of variational inequalities satisfied by the value
functions in the viscosity sense. The smooth-fit property for this problem, proved in [9],
plays an important role in our subsequent analysis. We also state some useful properties
on the switching regions. In Section 4, we explicitly solve the problem in the two-regimes
case when the state process is of geometric Brownian nature.

2 Formulation of the optimal switching problem

We consider a stochastic system that can operate in d modes or regimes. The regimes can
be switched at a sequence of stopping times decided by the operator (individual, firm, ...).
The indicator of the regimes is modeled by a cadlag process I; valued in Iy = {1,...,d}. The
stochastic system X (commodity price, salary, ...) is valued in R* = (0,00) and satisfies
the s.d.e.

dX; = b, Xydt + o, X;dWs, (2.1)

where W is a standard Brownian motion on a filtered probability space (2, F,F = (F¢)¢>0, P)
satisfying the usual conditions. b; € R, and o; > 0 are the drift and volatility of the system
X once in regime [; = ¢ at time t.

A strategy decision for the operator is an impulse control « consisting of a double
SEQUENCE T1, ..., Tpye vy Klye-wsbin,..., n € N* = N\ {0}, where 7, are stopping times, 7,
< Tp41 and 7, — 00 a.s., representing the switching regimes time decisions, and k,, are
Fr,-measurable valued in I, and representing the new value of the regime at time ¢t = 7,.
We denote by A the set of all such impulse controls. Now, for any initial condition (z, 1)
€ (0,00) x Iz, and any control a = (7, kn)n>1 € A, there exists a unique strong solution
valued in (0, 00) x Iz to the controlled stochastic system :

Xo = =z I =i (2.2)
dX; = b,{nXtdt + O Xtth, I; = kp, T <t< Tnt1, 1> 0. (23)
Here, we set 79 = 0 and kg = i. We denote by (X7, I*) this solution (as usual, we omit

the dependence in « for notational simplicity). We notice that X®* is a continuous process
and I’ is a cadlag process, possibly with a jump at time 0 if 71 = 0 and so Iy = k.

We are given a running profit function f : Ry xI; — R and we set f;(.) = f(.,7) fori €
I;. We assume that for each i € Iz, the function f; is nonnegative and is Hélder continuous
on Ry : there exists v; € (0,1] s.t.

[fi(z) = fi(@)] < Cle—2[", Vo,&eRy, (2.4)

for some positive constant C'. Without loss of generality (see Remark 2.1), we may assume
that f;(0) = 0. We also assume that for all i € I;, the conjugate of f; is finite on (0, c0) :

fily) = Sg}g[fi(:v)—:vy] < oo, Vy>0. (2.5)
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The cost for switching from regime 7 to j is a constant equal to g;;, with the convention g;;
= 0, and we assume the triangular condition :

ik < Gij + Gjk, JF k. (2.6)

This last condition means that it is less expensive to switch directly in one step from regime
i to k than in two steps via an intermediate regime j. Notice that a switching cost g;; may
be negative, and condition (2.6) for i« = k prevents arbitrage by switching back and forth,
i.e.

gij +gji > 0, i#jel,. (2.7)
The expected total profit of running the system when initial state is (x,¢) and using the

impulse control & = (7, fn)n>1 € A is

o0

[e.@]
—rt 0 71 —7rTh
/0 € " f(Xt 7IZ)dt - Ze " g/inil,/in

n=1

Ji(x,a) = FE

Here r > 0 is a positive discount factor, and we use the convention that e "™« = (0 when
Tn(w) = 0o. We also make the standing assumption :
r > b:=maxb;. (2.8)
i€ly
The objective is to maximize this expected total profit over all strategies «. Accordingly,
we define the value functions

vi(z) = sua Ji(z,a), xeRL, iely. (2.9)
ac

We shall see in the next section that under (2.5) and (2.8), the expectation defining J;(z)
is well-defined and the value function v; is finite.

Remark 2.1 The initial values f;(0) of the running profit functions received by the firm
manager (the controller) before any decision are considered as included into the switching
costs when changing of regime. This means that w.l.o.g. we may assume that f;(0) = 0.
Indeed, for any profit function f;, and by setting f; = f; — 1i(0), we have for all z > 0, «
€ A,

Ji(x,a) = FE Z/ 77”th$fo71 1dt—Ze ' anﬁn]
- B Z/ " e—rt (f(XtIﬂ’ /{n_l) + fﬁn—1(0)> dt — Z e—TTngKnl,K"]
| n=1"Tn—1 n=1

fro (0)

= B|Y [ e e+
Tn—1

Ln=1
> —rTh fﬁn (0) - f/fn—l (O)
)

n=1

(




with modified switching costs that take into account the possibly different initial values of
the profit functions :

(0) = (0
G = gijJrfg( )Tf( ).
3 System of variational inequalities, switching regions and
viscosity solutions

We first state the linear growth property and the boundary condition on the value functions.
Lemma 3.1 We have for alli € 1 :

max[—g;;] < vi(z) < et A maxM + max[—g;;|, Vo >0, Yy > 0. (3.1)

jely r—ob jely T jely
In particular, we have v;(07) = max;er, [—gi5]-
Proof. By considering the particular strategy & = (7, k) of immediate switching from

the initial state (z,%) to state (z,j), j € Iy (eventually equal to i), at cost g;; and then
doing nothing, i.e. 71 =0, kK1 = j, T, = 00, Ky, = j for all n > 2, we have

J,(m,d) = E|:/0 eirtfj(th’j)dt — Gij|s

where X%J denotes the geometric brownian in regime j starting from z at time 0. Since fi
is nonnegative, and by the arbitrariness of j, we get the lower bound in (3.1).

Given an initial state (Xo, [p-) = (z,7) and an arbitrary impulse control o = (7, kp),
we get from the dynamics (2.2)-(2.3), the following explicit expression of X% :

Xpt = avi(i)
n—1
= (H eb“l(”*lTl)Zfll’THl) eb“"(th”)Zf;t, Tn <t <Tpt1, neN, (3.2)
=0
where
. o2
Zl, = exp aj(Wt—Ws)—Ej(t—s) , 0<s<t, jelg (3.3)

Here, we used the convention that 79 = 0, k9 = 4, and the product term from [ to n — 1
in (3.2) is equal to 1 when n = 1. We then deduce the inequality X;”" < zeb* M, for all t,
where

n—1
Mt = (H Z"I:llﬂ'l«H) Zf:,t? Tn <t < Tn+l, N E N. (34)
=0

Now, we notice that (M;) is a martingale obtained by continuously patching the martingales
(ZEm=1)) and (Z7r,) at the stopping times 7,, n > 1. In particular, we have E[M;] = My

Tn—1,t

=1 for all ¢.



We set f(y) = ma,Xje]Idfi(y), y > 0, and we notice by definition of f; in (2.5) that
F(XP' 1) < yXP' + f(y) for all t,y. Moreover, we show by induction on N that for all N
>1l,n<...<1N,kg=1, kp €Elg,n=1,...,N :

E —TT
— e ngﬁnfl,ﬁn < Ijnéﬁ{[_g”]’ a.s.

Indeed, the above assertion is obviously true for N = 1. Suppose now it holds true at
step N. Then, at step N + 1, we distinguish two cases : If Grnmn i > 0, then we have

— SN =g G o S — SN e 9., .n, and we conclude by the induction hypothesis
at step N. If g, . <0, then by (2.6), and since 7y < Tn41, we have —e™"™NVg, = —
eirTN—Hg"N»"NJrl < eirTNg"”"Nfl’“N+l’ and so — ZT]:H-ll eirTngnnfl,nn < — ZnN:1 eirTnanfl,Rn7
with &, = Kk, for n = 1,...,N — 1, Ry = kny+1. We then conclude by the induction
hypothesis at step V.

It follows that

[ee] ~
Ji(z,a) < E [ / et (ywetht +f (y)) dt + maX[—gz'j]}
0 Jj€lqg
= / e(rb)tya:E[Mt]dt—i-/ e~ f(y)dt + max[—gi;]
0 0 Jj€lq

_wy ) o
EEEUAREER al

From the arbitrariness of «, this shows the upper bound for v;.

By sending x to zero and then y to infinity into the r.h.s. of (3.1), and recalling that
fi(oo) = fi(0) = 0 for i € Iz, we conclude that v; goes to maxjer,[—gi;] when z tends to
Zero. |

We next show the Holder continuity of the value functions.
Lemma 3.2 For all i € 1y, v; is Hélder continuous on (0,00) :
lvi(z) —vi(2)] < Clz—2z|", Ve,z € (0,00), with |z —2| <1,
for some positive constant C, and where v = min;ey, v; of condition (2.4).

Proof. By definition (2.9) of v; and under condition (2.4), we have for all z,& € (0, 00),
with |z —2| < 1:

vi(z) —vi(2)] < sup |Ji(z, @) — Ji(Z, )|
acA
o0 . N
< supE / e "X - (X ) dt}
acA 0
o .
< CsupE[/ XD - X “ tdt]
acA 0
* Yri Vi
- Csup/ E[e*”|x—5;| 5y, (6) dt}
acAJO
< Clz—z|" sup/ e~ Ot M| i dt (3.5)
acAJO
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by (3.2) and (3.4). For any a = (7, kn)n € ‘A, by the independence of (Zf»_ ), in (3.3),

Tn,yTn+1
and since
e Ven ‘7,24,1
E |:’ZT:,T»,L+1 anj| = F exp f}/fﬁn (/Yﬁn - 1)T(Tn+1 - Tn) an S 1, a.s.,
we clearly see that E\Mtﬂf? < 1 for all t > 0. We thus conclude with (3.5). O

The dynamic programming principle combined with the notion of viscosity solutions
are known to be a general and powerful tool for characterizing the value function of a
stochastic control problem via a PDE representation, see [6]. We recall the definition of
viscosity solutions for a P.D.E in the form

H(z,v,Dmv,D3v) = 0, z€ O, (3.6)

where O is an open subset in R” and H is a continuous function and noninceasing in its
last argument (with respect to the order of symmetric matrices).

Definition 3.1 Let v be a continuous function on O. We say that v is a viscosity solution
to (3.6) on O if it is

(i) a viscosity supersolution to (3.6) on O : for any * € O and any C? function ¢ in a
neighborhood of T s.t. Z is a local minimum of v — @, we have :

H(z,v(2), Dap(@), D3pp(2)) > 0.

and

(ii) a viscosity subsolution to (3.6) on O : for any T € O and any C? function ¢ in a
neighborhood of T s.t. T is a local mazimum of v — ¢, we have :

H(z,v(2), Dap(z), D2,0(z)) < 0.

Remark 3.1 1. By misuse of notation, we shall say that v is viscosity supersolutin (resp.
subsolution) to (3.6) by writing :

H(z,v, Dyv, D?,v) > (resp. <) 0, z¢€ O, (3.7)

2. We recall that if v is a smooth C? function on O, supersolution (resp. subsolution) in
the classical sense to (3.7), then v is a viscosity supersolution (resp. subsolution) to (3.7).
3. There is an equivalent formulation of viscosity solutions, which is useful for proving
uniqueness results, see [3] :

(i) A continuous function v on O is a viscosity supersolution to (3.6) if

H(z,v(z),p, M) > 0, VYxeO,Y(p,M)cJ> v(x).
(ii) A continuous function v on O is a viscosity subsolution to (3.6) if

H(z,v(z),p,M) < 0, VzeO,V(p,M)e J* ().



Here J?%v(z) is the second order superjet defined by :
J>Tu(x) = {(p,M)eR" x S" :

v(@) —v(z) —p.(2/ —z) — §(2' — 2).M(2/ — )

lim su 0
. zp ‘SL" _ m‘Q — )
z e O
S™ is the set of symmetric n x n matrices, and J% v(z) = —J>F(—v)(x).

In the sequel, we shall denote by £; the second order operator associated to the diffusion
X when we are in regime i : for any C? function ¢ on (0, c0),
1 2.2 1 !
Lip = 20T + bizy'.
We then have the following PDE characterization of the value functions v; by means of
viscosity solutions.

Theorem 3.1 The value functions v;, © € Iy, are the unique viscosity solutions with linear
growth condition on (0,00) and boundary condition v;(0") = maxjer,[—gi;] to the system
of variational inequalities :

min {rvi — Ly — fi, vi — m;mx(vj - gij)} = 0, z€(0,00), i€ly. (3.8)
J#i

This means
(1) Viscosity property : for each i € 1y, v; is a viscosity solution to

min {rvi — Liv; — fi, vi — mix(vj - gij)} = 0, z€(0,00). (3.9)
JF

(2) Uniqueness property : if w;, i € 1y, are viscosity solutions with linear growth conditions

on (0,00) and boundary conditions w;(07) = maxjer,[—gij] to the system of variational
inequalities (3.8) , then v; = w; on (0,00).

Proof. (1) The viscosity property follows from the dynamic programming principle and is

proved in [9].

(2) Uniqueness results for switching problems has been proved in [10] in the finite horizon

case under different conditions. For sake of completeness, we provide in Appendix a proof

of comparison principle in our infinite horizon context, which implies the uniqueness result.
O

Remark 3.2 For fixed ¢ € [, we also have uniqueness of viscosity solution to equation
(3.9) in the class of continuous functions with linear growth condition on (0, c0) and given
boundary condition on 0. In the next section, we shall use either uniqueness of viscosity
solutions to the system (3.8) or for fixed i to equation (3.9), for the identification of an
explicit solution in the two-regimes case d = 2.



We shall also combine the uniqueness result for the viscosity solutions with the smoooth-
fit property on the value functions that we state below.

For any regime ¢ € Iz, we introduce the switching region :

S = {re(0,00) i) = max(v; — gij)(x) -
{ 3 }

S; is a closed subset of (0,00) and corresponds to the region where it is optimal for the
operator to change of regime. The complement set C; of S; in (0,00) is the so-called
continuation region :

Ci = qz€(0,00) :vi(z) > max(v; — gij)(z) ¢,
{ J# }

where the operator remains in regime . In this open domain, the value function v; is
smooth C? on C; and satisfies in a classical sense :

rvi(z) — Livi(z) — fi(x) = 0, z€C,.

As a consequence of the condition (2.6), we have the following elementary partition property
of the switching regions, see Lemma 4.2 in [9] :

Si = UjxSij, i€l
where
S;i = {g; c Cj : vz(:zz) = (Uj - gz])(x)}

S;; represents the region where it is optimal to switch from regime i to regime j and stay
here for a moment, i.e. without changing instantaneously from regime j to another regime.
The following Lemma gives some partial information about the structure of the switching
regions.

Lemma 3.3 For all i # j in 1z, we have
Sij C Qiji={z€C; : (L£; — Li)vj(x) + (f; — fi)(@) —rgi; = 0}

Proof. Let x € S;;. By setting ¢; = v; — g;;, this means that = is a minimum of v; — ¢;
with v;(x) = ¢;(z). Moreover, since z lies in the open set C; where v; is smooth, we have
that ¢; is C? in a neighborhood of x. By the supersolution viscosity property of v; to the
PDE (3.8), this yields :

roj(x) — Lipj(x) — fi(x) > 0. (3.10)
Now recall that for x € C;, we have
rvj(x) — Ljvj(z) — fi(z) = 0,
so that by substituting into (3.10), we obtain :
(Lj — Li)vj(x) + (fy — fi)(@) —rgy; = 0,
which is the required result. O

We quote the smooth fit property on the value functions, proved in [9].



Theorem 3.2 For alli € 1, the value function v; is continuously differentiable on (0, 00).

Remark 3.3 In a given regime 4, the variational inequality satisfied by the value function
v; is a free-boundary problem as in optimal stopping problem, which divides the state
space into the switching region (stopping region in pure optimal stopping problem) and
the continuation region. The main difficulty with regard to optimal stopping problems for
proving the smooth-fit property through the boundaries of the switching regions, comes
from the fact that the switching region for the value function v; depends also on the other
value functions v;. The method in [9] use viscosity solutions arguments and the condition
of one-dimensional state space is critical for proving the smooth-fit property. The crucial
conditions in this paper require that the diffusion coefficient in any regime of the system X
is strictly positive on the interior the the state space, which is the case here since o; > 0 for
all ¢ € Iy, and a triangular condition (2.6) on the switching costs. Under these conditions,
on a point x of the switching region S; for regime i, there exists some j # i s.t. x € S,
i.e. v;(z) = vj(x) — gij, and the C! property of the value functions is written as : v(z) =
Ué- (x) since g;; is constant.

The next result provides suitable conditions for determining a viscosity solution to the
variational inequality type arising in our switching problem.

Lemma 3.4 Fizi € 1;. Let C be an open set in (0,00), S = (0,00) \ C supposed to be an
union of a finite number of closed intervals in (0,00), and w, h two continuous functions
on (0,00), with w = h on S such that

w is C1' ondS (3.11)
w > h on C, (3.12)

w is C% on C, solution to
rw—Lw—f; = 0 on C, (3.13)

and w is a viscosity supersolution to
rw—Liw—f; > 0 on int(S). (3.14)

Here int(S) is the interior of S and S = S\ int(S) its boundary. Then, w is a viscosity
solution to

min{rw — Liw — fi,w—h} = 0 on (0,00). (3.15)

Proof. Take some = € (0,00) and distinguish the following cases :

x Z € C. Since w = v is C? on C and satisfies rw(z) — L;w(Z) — fi(Z) = 0 by (3.13), and
recalling w(z) > h(Z) by (3.12), we obtain the classical solution property, and so a fortiori
the viscosity solution property (3.15) of w at Z.

* T € §. Then w(z) = h(Z) and the viscosity subsolution property is trivial at z.
It remains to show the viscosity supersolution property at . If € int(S), this follows
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directly from (3.14). Suppose now Z € 9S8, and to fix the idea, we consider that = is on the
left-boundary of & so that from the assumption on the form of S, there exists € > 0 s.t.
(z — &,7) C C on which w is smooth C? (the same argument holds true when Z is on the
right-boundary of S). Take some smooth C? function ¢ s.t. Z is a local minimum of w — ¢.
Since w is C! by (3.11), we have ¢'(z) = w/(Z). We may also assume w.l.o.g (by taking
e small enough) that (w — ¢)(z) < (w — ¢)(x) for € (z —e,z). Moreover, by Taylor’s

formula, we have :

so that
1
/cp'(x—tn)—w’(a:—tn)dt > 0, YVO<np<e.
0

Since ¢'(Z) = w'(Z), this last inequality is written as

/1 '@ —tn) —¢' @) w'(@—1tn) —uw'(z)
0 n n

dt > 0, YVO<n<e, (3.16)

Now, from (3.13), we have rw(x) — Lyw(z) — fi(x) = 0 for z € (z — €,z). By sending =

towards Z into this last equality, this shows that w"(27) = lim, -z w"(z) exists, and
1
rw(z) — bizw'(Z) — 503@%”(@‘) — fi(®) = o. (3.17)

Moreover, by sending 1 to zero into (3.16), we obtain :

1
/0 H— (@) +w" @t > 0,

and so ¢"(Z) < w”(Z7). By substituting into (3.17), and recalling that w'(z) = ¢'(z), we
then obtain :

rw(z) — Lip(z) - fi(z) = 0,
which is the required supersolution inequality, and ends the proof. O

Remark 3.4 Since w = h on S, relation (3.14) means equivalently that h is a viscosity
supersolution to

rh—Lih—f; > 0 on int(S). (3.18)

Practically, Lemma 3.4 shall be used as follows in the next section : we consider two C*
functions v and h on (0, 00) s.t.

v(z) = h(x), v'(z) = h'(z), =z €08
v > h on C,

11



v is C? on C, solution to
ro—Lv—fi; = 0 on C,
and h is a viscosity supersolution to (3.18). Then, the function w defined on (0, 00) by :
B v(z), zeC
w(z) = { h(z), z€S8

satisfies the conditions of Lemma 3.4 and is so a viscosity solution to (3.15). This Lemma
combined with uniqueness viscosity solution result may be viewed as an alternative to the
classical verification approach in the identification of the value function. Moreover, with our
viscosity solutions approach, we shall see in subsection 4.2 that Lemma 3.3 and smooth-fit
property of the value functions in Theorem 3.2 provide a direct derivation for the structure
of the switching regions and then of the solution to our problem.

4 Explicit solution in the two regime case

In this section, we consider the case where d = 2. In this two-regimes case, we know
from Theorem 3.1 that the value functions v;, ¢ = 1,2, are the unique continuous viscosity
solutions with linear growth condition on (0, c0), and boundary conditions v;(0") = (—g;;)+
:= max(—g;;,0), j # 4, to the system :

min {rv, — Lyv, — f1,v, — (v, —g,,)} = 0 (4.1)
min {rv, — Lov, — fo,v, — (v, —¢g,,)} = 0.
Moreover, the switching regions are :
Si =8 = {x>0 :v(x) =vj(x) — g5}, 4,5=1,2,10#7].
We set

= infS§; € [0, 0] z; = supS; € [0,00],

*
X, 1

{2

with the usual convention that inf ) = oo
Let us also introduce some other notations. We consider the second order o.d.e for 7 =
1,2:

rv—Liv—fi = 0, (4.3)
whose general solution (without second member f;) is given by :
v(z) = Az™ + Bz™i

for some constants A, B, and where

~ b1 \/ b, 1 .,
m . g —_— — - — -
v 22 2 12 2 07;2
b; 1 b; 1 2r
+ 1
my = —— 4= —+f +— > 1
i 3 5 T \/ o2 2 o2



We also denote
Vi(z) = E[ / e”tfi(f(f’i)dt],
0

with X% the solution to the s.d.e. dXt = biXtdt + O'Z'Xtth, X[) = z. Actually, VZ is a
particular solution to ode (4.3), with boundary condition V;(0) = f;(0) = 0. It corresponds
to the reward function associated to the no switching strategy from initial state (x,4), and
SO VZ < ;.

Remark 4.1 If g;; > 0, then from (2.7), we have v;(07) =0 > (—gji)+ — gij = v;(07) — g;;.
Therefore, by continuity of the value functions on (0, 00), we get 7 > 0.

We now give the explicit solution to our problem in the following two situations :
* the diffusion operators are different and the running profit functions are identical.
* the diffusion operators are identical and the running profit functions are different

We also consider the cases for which both switching costs are positive, and for which
one of the two is negative, the other being then positive according to (2.7). This last case
is interesting in applications where a firm chooses between an open or closed activity, and
may regain a fraction of its opening costs when it decides to close.

4.1 Identical profit functions with different diffusion operators

In this subsection, we suppose that the running functions are identical in the form :
filx) = fa(x) = 27, 0<y<1, (4.4)

and the diffusion operators are different. A straightforward calculation shows that under
(4.4), we have

N 1
Vi(r) = K;x¥, with K; =
i(@) ‘ ’ r—by+ s0iy(1—7)

>0, i=1,2

We show that the structure of the switching regions depends actually only on the sign
of Ko — K7, and of the sign of the switching costs gi12 and go21. More precisely, we have the

following explicit result.

Theorem 4.1 Leti, j = 1,2, 1 # j.
1) If K; = Kj, then

A

'Uz(l') = VYZ(:E) + (_gij)Jr’ T € (0700)7

{ 0 if gij >0

S;

It is always optimal to switch from regime i to j if the corresponding swiching cost is

nonpositive, and never optimal to switch otherwise.

2) If K; > K, then we have the following situations depending on the switching costs :

13



a) gij <0 : we have S; = (0,00), S; = 0, and

vi = Vi—gij, v =V
b) gij >0 :
e if gji > 0, then S; = [z}, 00) with z} € (0,00), S; = 0, and
v *
vi(z) = { Ai:z;)t‘zg)’ i; (4.5)
v(@) = Vi), @ e 0,00 (4.6)

where the constants A and x; are determined by the continuity and smooth-fit condi-
tions of v; at x7, and explicitly given by :

N 1
X m; Jij K
2 = 4.7
- <mf—7KJ’—Ki> *1)
+

A = (K- K (@) (4.8)

1
3

When we are in regime t,it s optimal to switch to regime j whenever the state process
X exceeds the threshold x7, while when we are in regime j, it is optimal never to
switch.

if gji <0, then S; = [z}, 00) with z} € (0,00), S; = (O,JE;-], and

vi(z) = Azx™ 4 Vl(az), r <z} (4.9)
' vi(z) = gij, T >z} '
vi(x) = vil@) = giiv - TSI (4.10)

! Bx™i +Vj(x), = >z

where the constants A, B and T < z; are determined by the continuity and smooth-fit
conditions of v; and v; at z7 and T}, and explicitly given by :

1
_ + >
T . [ _mj (gjz' +gijymi ) !
= — —
’ (Ki — Kj)(y —m; ) (1 —y™ )
r = U
z, y
y—m s
B — (Kl - K])(m:— - ’Y)Ei T+ m;’—gijgi "
+ —_
m; —m;
',')’1,.7—771.+ o+ o+
A = BT (K- K = ga
%
with y solution in (0, (—%) ™y ) to the equation :
ij

— +_ -

mj('y - mj ) (1 - ymz PY) (gijme +gji>

— g +

+m; (mj_ =) (1 -y 7) (-gijyml +gji) =0

14



When we are in regime 1, it is optimal to switch to regime j whenever the state process
X exceeds the threshold x7, while when we are in regime j, it is optimal to switch to

regime i for values of the state process X under the threshold 7.

Economic interpretation.

In the particular case where 01 = o9, then K9 — K7 > 0 means that regime 2 provides a
higher expected return bs than the one b; of regime 1 for the same volatility coefficient o;.
Moreover, if the switching cost g,, from regime 2 to regime 1 is nonnegative, it is intuitively
clear that one has always interest to stay in regime 2, which is formalized by the property
that S, = (. However, if one receives some gain compensation to switch from regime 2
to regime 1, i.e. the corresponding cost g,, is negative, then one has interest to change of
regime for small values of the current state. This is formalized by the property that S
= (0,73]. On the other hand, in regime 1, one has interest to switch to regime 2, for all
current values of the state if the corresponding switching cost g,, is nonpositive, or from
a certain threshold z7 if the switching cost g,, is positive. A similar interpretation holds
when by = by, and Ky — K71 > 0, i.e. 09 < 01. Theorem 4.1 extends these results for general
coefficients b; and o;, and show that the critical parameter value determining the form of
the optimal strategy is given by the sign of Ko — K7 and the switching costs. The different
optimal strategy structures are depicted in Figure 1.

Proof of Theorem 4.1.

1) If K; = Kj, then vV, = V] We consider the smooth functions w; = V; + (—gij)+ for i, j
= 1,2 and j # 4. Since V; are solution to (4.3), we see that w; satisfy :

rw; — Lw; — fi = r(=gi5)+ (4.11)
w; — (wj — gij) = Gij T (—9ij)+ — (—gji)+- (4.12)

Notice that the Lh.s of (4.11) and (4.12) are both nonnegative by (2.7). Moreover, if g;; >
0, then the Lh.s. of (4.11) is zero, and if g;; < 0, then gj; > 0 and the Lh.s. of (4.12) is
zero. Therefore, w;, ¢ = 1,2 is solution to the system :

min {rw; — Lyw; — fi,w; — (w; — gij)} = 0.

Since V;(0T) = 0, we have w;(0T) = (—gij)+. Moreover, w; satisfy like V; a linear growth
condition. Therefore, from uniquenes of solution to the PDE system (4.1)-(4.2), we deduce
that v; = w;. As observed above, if g;; < 0, then the Lh.s. of (4.12) is zero, and so S; =
(0,00). Finally, if g;; > 0, then the Lh.s. of (4.12) is positive, and so S; = 0.

2) We now suppose w.l.o.g. that Ky > Kj.

a) Consider first the case where g,, < 0, and so g,, > 0. We set w; = Vo — g, and wy =
V. Then, by construction, we have w; = wy — g,, on (0, 00), and by definition of Vi and
Va :

Ky — Ky
—x

rwl(:E) - »Clwl(x) B fl(x) - K

T—rg, >0, YV >0.

On the other hand, we also have rwy — Lowy — fo = 0 on (0,00), and wy > w; — g,, since
915 + 95, > 0. Hence, w; and wy are smooth (hence viscosity) solutions to the system

15
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(4.1)-(4.2), with linear growth conditions and boundary conditions wq(0") = V1(01) — g,,
= (—=g,,) 1, wa(0T) = V(0T) = 0 = (—g,,)4+. By uniqueness result of Theorem 3.1, we
deduce that v = wy, v3 = we, and thus S; = (0,00), Sy = 0.

b) Consider now the case where g,, > 0. We already know from Remark 4.1 that 27 > 0, and
we claim that z7 < oco. Otherwise, v, should be equal to V,. Since v, > v, —g,, >V, —g,,,
this would imply (V, — V,)(z) = (K2 — K1)z? < g,, for all z > 0, an obvious contradiction.
By definition of z}, we have (0,z7) C C;. We shall prove actually the equality : (0,z7) =
C1,ie. 81 = [z},00). On the other hand, the form of Sy will depend on the sign of g,, .

e Case: g, > 0.

We shall prove that Co = (0,00), i.e. So = (. To this end, let us consider the function

w,(z) = Az™ +V (2), 0<az<u,
' ‘Z(x)_glzv 332.7}1,

where the positive constants A and z, satisfy

m7 9 9
A{L‘l T+ Vl(l'l) = 2($1) — 12 (4'13)

+ ~ ~
Amtam N V) = V), (4.14)

and are explicitly determined by :

my
(KQ — Kl)w’ly = ¥ g12 (4.15)
ml -
A = (Ky—Ky)—Loa) ™. (4.16)
my

Notice that by construction, w, is C? on (0,z,) U (z,,00), and C*! on z,.
* By using Lemma 3.4, we now show that w, is a viscosity solution to

min {rwl — Liw, — fi,w, — (V, — 912)} = 0, on (0,00). (4.17)

We first check that

w, () > Vy(z)—g, VO0<z<uz, (4.18)
ie.
G(z) = A;z:mf—F‘Afl(ac)—f/Q(:L‘)—i—g12 > 0, VO0<z<uz,.

Since A >0,0<y<1< mf, Ky — K1 > 0, a direct derivation shows that the second
derivative of G is positive, i.e. G is strictly convex. By (4.14), we have G'(z,) = 0 and so
G’ is negative, i.e. G is strictly decreasing on (0,z,). Now, by (4.13), we have G(z,) = 0
and thus G is positive on (0, x,), which proves (4.18).

By definition of w, on (0, z, ), we have in the classical sense

rw, — Liw, — fi = 0, on (0,z,). (4.19)
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We now check that
rw, — Liw, — f1 > 0, on (z,,00), (4.20)
holds true in the classical sense, and so a fortiori in the viscosity sense. By definition of w,
on (z,,00), and Ki, we have for all x > z,,
rw, (x) — Liw, (x) — fi(z) = KQI;K%U” — TG, YT >,
so that (4.20) is satisfied iff KQ}(;lKIxY —rg,, > 0 or equivalently by (4.15) :

+
mq T
> rK; = (4.21)
mi =7 r=biy + 501y(1 =)

Now, since v < 1 < mf, and by definition of mf, we have

1 1
iafmf(’y -1) < ia%mf(mf —-1) =r— blmf,

which proves (4.21) and thus (4.20).

Relations (4.13)-(4.14), (4.18)-(4.19)-(4.20) mean that conditions of Lemma 3.4 are
satisfied with C = (0,x,), h = V, — g,,, and we thus get the required assertion (4.17).

* On the other hand, we check that

V@) > w(@) =g, Vo0, (4.22)
which amounts to show
H(x) := A:Um1++171(:n)—f/2(a:)—921 < 0, VO0<z<uz,.

Since A >0,0<y<1< mf, Ky — K1 > 0, a direct derivation shows that the second
derivative of H is positive, i.e. H is strictly convex. By (4.14), we have H'(z,) = 0 and
so H' is negative, i.e. H is strictly decreasing on (0,z,). Now, we have H(0) = —g,, <
0 and thus H is negative on (0,z,), which proves (4.22). Recalling that V, is solution to
rV, — L2V, — fo = 0 on (0, 00), we deduce obviously from (4.22) that V, is a classical, hence
a viscosity solution to :

min {7“‘72 - [’2‘72 - f%vz - (wl - 921)} = 0, on (07 OO) (4'23)

* Since w, (07) = 0 = (—g,,)+, Vo(07) =0 = (—g,, )+, and w,, V, satisfy a linear growth
condition, we deduce from (4.17), (4.23), and uniqueness to the PDE system (4.1)-(4.2),
that

v, = w,, w, =V, on (0,00).
This proves 27 = z,, S, = [r,,00) and S, = 0.

e Case: g, <O.
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We shall prove that So = (0, 75]. To this end, let us consider the functions

w, () Az 4+ Vi(x), z< z
1 W, (%) = g1z Tz

w (x) _ wy (iv) _Ag21a TS T,
? Bx™2 +V,(z), x> I,,

where the positive constants A, B, z, > ,, solution to

+ ~ — A
A£T1 + V1<§1> = W, <§1> — G2 — Bi:nz + V2(£1) — G2 (4'24)
Amfg’fﬁfl + ‘71/@1) = wl(z,) = Bmyaz™ ' +V/(z)) (4.25)
_m7t S _ - N

Ax;nl +V1(x2) — 9y = w1($2> — 9o = BxZLQ + VQ( 2) (4'26)
AmbEmi V4 V(&) = w(Z,) = Bmya™ 4+ V/(x,), (4.27)

exist and are explicitly determined after some calculations by

N 1
_ - m ol

T, = My (g ¥ 908 (4.28)

(K1 = Ka)(y —my)(1 —y™ 77)

T2
Y—moy _
B — (K1 — Ka)(mf — z)&l _2 + mf_glg&l 2 (4.30)
my — My
A = Bg?%;_mr - (Kl - KQ)Q;y_mT - 912£1_m1+7 (4'31)
1
with y solution in <O, (—%) mf) to the equation :
12
mi(r=mz) (1= 9™ ) (9.5™ + 92 )

+my (mf —7) (1 y"e " ) (912ym1+ + 921> =0. (4.32)
Using (2.7), we have y < < gm)? < 1. As such, 0 < g < z;. Furthermore, by using

(4.29) and the equation (4.32) satisfied by y, we may easily check that A and B are positive

constants.

Notice that by construction, w, (resp. w,) is C? on (0,z,) U (z,,00) (resp. (0,Z,) U
(Z,,00)) and C* at z, (resp. Z,).

* By using Lemma 3.4, we now show that w;, ¢ = 1,2, is a viscosity solution to the

System :
min {rw; — Liw; — fi,w; — (wj —gi5)} = 0, on (0,00), 4,5 =1,2, j #i. (4.33)

Since the proof is similar for both w;, i = 1,2, we only prove the result for w;. We first
check that

wy > ws —g,, VO<z<um. (4.34)
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From the definition of w; and wy and using the fact that g,, +g,, > 0, it is straightforward
to see that

w12w2_9127 VO<9USEQ (435)
Now, we need to prove that
G(z) = Az™ + Vi(z) — Bz™ —V,(z)4¢g, >0, VI, <z< z,. (4.36)

We have G(z,) = g,, +9,, > 0and G(z,) = 0. Suppose that there exists some z, € (Z,,z,)

such that G(z,) = 0. We then deduce that there exists x, € (Z,,z,) such that G'(z,) = 0.

As such, the equation G'(z) = 0 admits at least three solutions in [Z,,z ] : {z,,z,,z,}.

However, a straightforward study of the function G shows that G’ can take the value zero

at most at two points in (0, 00). This leads to a contradiction, proving therefore (4.36).
By definition of w1, we have in the classical sense

rw; — Liwy; — f =0, on(0,z). (4.37)
‘We now check that
rwy — Liwy — f >0, on (gl,oo) (4.38)

holds true in the classical sense, and so a fortiori in the viscosity sense. By definition of w,
on (z,,00), and K1, we have for all z > z_,

Ky — K,

H(z) :=rwi(x) — Liwi(x) — f(x) e

27 +my LBx™ —rg,,, VY >z, (4.39)
where L = 1(03 — 0?)(my — 1) + by — by.

We distinguish two cases :

- First, if L > 0, the function H would be non-decreasing on (0, 00) with lim H(z) = —o0

z—0t
and lim H(x) = 4o00. As such, it suffices to show that H(z;) > 0. From (4.24)-(4.25), we
Tr—00
have
mf — My + _ + -
H(z)) = (K- K) T — (my —y)my L| —rgi2 +m{m; giaL.

Using relations (4.21), (4.24), (4.25), (4.29) and the definition of m] and m;, we then
obtain

H(z;) = mf(mf—mz_)_r>7mf —r>0
B Ki(mi —7) T Ki(mf—v) T

- Second, if L < 0, it suffices to show that

Ky — Ky

e ' —rgia >0, Vr>zx,

which is rather straightforward from (4.21) and (4.29) .
Relations (4.34), (4.37) (4.38) and the regularity of w;, i = 1,2, as constructed, mean that
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conditions of Lemma 3.4 are satisfied and we thus get the required assertion (4.33).

* Since w, (0%) = 0 = (—g,,)+, w,(0%) = —g,, = (=g, )+, and w,, V, satisfy a linear
growth condition, we deduce from (4.33) and uniqueness to the PDE system (4.1)-(4.2),
that

v, = w, v, =w,, on (0,00).

This proves 27 =z, S, = [z,,00) and T} = T2, S, = (0, T2].

4.2 Identical diffusion operators with different profit functions

In this subsection, we suppose that £ = L9 = L, i.e. by = by = b, 09 = 09 = 0 > 0. We

then set mt = m{ = m$, m~ = m; = m,, and X* = X®! = X2 Notice that in this

case, the set Q;;, 7, 7 = 1,2, ¢ # j, introduced in Lemma 3.3, satisfies :
Qi = {zeC :(f; - fi)(x) —rgy >0}
C Qij = {1‘ >0 : (f] — fl)(.’L') — 10ij > 0} . (4.40)

Once we are given the profit functions f;, f;, the set Qij can be explicitly computed.
Moreover, we prove in the next key Lemma that the structure of Qij, when it is connected,
determines the same structure for the switching region S;.

Lemma 4.1 Leti,j =1,2,1 # j.
1) Assume that

Sli%)(‘%—f/i)(x) > gij. (4.41)

o If there exists 0 < z;; < 0o such that

Qij = [z;5,00), (4.42)
then 0 < 7 < 00 and

Si = [z],00).
e If g;j < 0 and there exists 0 < T;; < oo such that

Qi = (0,1, (4.43)
then 0 < 7 < oo and

S = (0,7;].

2) If there exist 0 < x;; < ¥;; < 00 such that

A~

Qij = [z Tijl- (4.44)
Then 0 < 7 < 77 < oo and
S = [zi, 7).

3) Ifgij < 0 and Qij = (O’OO)} then S; = (O, OO) and Sj = 0.
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Proof. 1) e Consider the case of condition (4.42). Since S; C Q;; by Lemma 3.3, this
implies 2} := inf §; > Zi; > 0. We now claim that z7 < oo. On the contrary, the switching
region S; would be empty, and so v; would satisfy on (0, 00) :

rv; — Lv;— fi = 0, on (0,00).
Then, v; would be on the form :
vi(x) = Az™ + Ba™ + Vi(z), x>0.

Since 0 < v;(0") < 0o and v; is a nonnegative function satisfying a linear growth condition,
and using the fact that m~ < 0 and m™ > 1, we deduce that v; should be equal to V.
Now, since we have v; > v; — g;; > Vj — gij, this would imply :

Vi(z) = Vi(x) < gij, Vx>0

This contradicts condition (4.41) and so 0 < z} < oo.

By definition of z}, we already know that (0,z) C C;. We prove actually the equality,
ie. S = [z}, 00) or vi(z) = vj(z) — gi; for all z > x¥. Consider the function

vi (), O0<z<azf
wi(z) =
() { vi(z) — gij, T >z}

We now check that w; is a viscosity solution of
min {rw; — Lw; — fi , wi — (vj —g;;)} = 0 on (0,00). (4.45)

From Theorem 3.2, the function w; is C! on (0,00) and in particular at z} where w}(z}) =

vi(zf) = U;- (z}). We also know that w; = v; is C? on (0,z}) C C;, and satisfies rw; — Lw; — f;

=0, w; > (vj —gs5) on (0,zF). Hence, from Lemma 3.4, we only need to check the viscosity
supersolution property of w; to :

rw; — Lw; — f; > 0, on (zj,00). (4.46)

For this, take some point Z > x7 and some smooth test function ¢ s.t. Z is a local minimum
of w;j—¢. Then, 7 is a local minimum of v; — (¢ +g;;), and by the viscosity solution property
of v; to its Bellman PDE, we have

rv;(T) — Lo(T) — fj(T) > 0.

Now, since zj > z;;, we have T > x;; and so by (4.42), = € Q@J Hence,

Y

(fi = fi)@) —rgi; = 0.

By adding the two previous inequalities, we also obtain the required supersolution inequal-
ity :

rwi(z) — Lo(T) — fi(z) > 0,
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and so (4.45) is proved.

Since w;(0") = v;(0") and w; satisfies a linear growth condition, and from uniqueness
of viscosity solution to PDE (4.45), we deduce that w; is equal to v;. In particular, we have
vi(z) = vj(x) — gij for > zF, which shows that S; = [z}, 00).

e The case of condition (4.43) is dealt by same arguments as above : we first observe that
0 <z} :=supS; < oo under (4.41), and then show with Lemma 3.4 that the function

() — g 0 7
wilz) = vi(x) — gij, <z f*xl
vi (), x> I
is a viscosity solution to
min {rw; — Lw; — fi , w; — (v; —gi;)} = 0 on (0,00).

Then, under the condition that g;; < 0, we see that g;; > 0 by (2.7), and so v;(0") = —g;;
= (—gji)+ — 9ij = v;(07) — g;; = w;(0"). From uniqueness of viscosity solution to PDE
(4.45), we conclude that v; = w;, and so S; = (0, z}].

2) By Lemma 3.3 and (4.40), the condition (4.44) implies 0 < z,;; < x7 < 7] < Z;; < 00.
We claim that 2} < z7. Otherwise, S, = {Z}} and v; would satisfy rv; — Lv; — f; = 0 on
(0,z7) U (Z},00). By continuity and smooth-fit condition of v; at z}, this implies that v;
satisfies actually

ro,—Lv;, — f; = 0, x¢€ (0,00),
and so is in the form :
vi(x) = Az™ + Ba™ + Vi(z), e (0,00)

Since 0 < v;(0") < oo and v; is nonnegative function satisfying a linear growth condition,
this implies A = B = 0. Therefore, v; is equal to V;, which also means that S; = 0, a
contradiction.

We now prove that S; = [z, Z}]. Let us consider the function

wilz) = vi(z),  x€(0,z})U(Z],00)
' v;i(T) — gij, x € [z}, T]],

which is C! on (0, 00) and in particular on 27 and Z} from Theorem 3.2. Hence, by similar
arguments as in case 1), using Lemma 3.4, we then show that w; is a viscosity solution of

min {rw; — Lw; — fi , w; — (v; —gi5)} = 0. (4.47)
Since w;(0") = v;(0") and w; satisfies a linear growth condition, and from uniqueness of

viscosity solution to PDE (4.47), we deduce that w; is equal to v;. In particular, we have

vi(z) = vj(x) — gij for x € [xf, Z}], which shows that S; = [z, Z}].
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3) Suppose that g;; < 0 and Q;; = (0,00). We shall prove that S; = (0,00) and S; = 0.
To this end, we consider the smooth functions w; = VJ — gij and w; = VJ Then, recalling
the ode satisfied by Vj, and inequality (2.7), we get :

rw; — Lw; — f; =0, wj — (w; —g5) = gij +95 > 0.
Therefore w; is a smooth (and so a viscosity) solution to :
min [rw; — Lwj — fj,wj — (w; —gj)] = 0 on (0,00).
On the other hand, by definition of Qij, which is supposed equal to (0, 00), we have :

rwi(x) — Lwi(x) — fi(x) = rVi(x) = LVj(x) = fi(x) + fi(@) = filz) —rgi
= fi(x) = fi(x) —rgy; > 0, Vo >0.

Moreover, by construction we have w; = wj — gi;. Therefore w; is a smooth (and so a
viscosity) solution to :

min [rw; — Lw; — fi, w; — (wj - gij)} =0 on (0,00).

Notice also that gj; > 0 by (2.7) and since g;; < 0. Hence, w;(07) = —gij = (—gij)+ =
v;(0F), w;(0%) =0 = (—gji)+ = v;(07). From uniqueness result of Theorem 3.1, we deduce
that v; = w;, v; = wj, which proves that S; = (0,0), S; = 0. O

We shall now provide explicit solutions to the switching problem under general assump-
tions on the running profit functions, which include several interesting cases for applica-
tions :

(HF) There exists & € Ry s.t the function F := f, — f,
is decreasing on (0, %), increasing on [Z, 00),

and F(oc0) := lim F(x) >0, g¢,, > 0.

Under (HF), there exists some z € Ry (z > 2 if £ > 0 and Z = 0 if £ = 0) from which F
is positive : F(z) > 0 for x > Z. Economically speaking, condition (HF) means that the
profit in regime 2 is “better” than profit in regime 1 from a certain level Z, eventually equal
to zero, and the improvement becomes then better and better. Moreover, since profit in
regime 2 is better than the one in regime 1, it is natural to assume that the corresponding
switching cost g,, from regime 1 to 2 should be positive. However, we shall consider both
cases where g,, is positive and nonpositive. Notice that F(2) < 0if & > 0, F(z) = 0 if &
= 0, and we do not assume necessarily F'(co) = oo.

Example 4.1 A typical example of different running profit functions satisfying (HF) is
given by

file) = ka7, i=1,2, withO<y <y <1, k €R4, ko >0. (4.48)
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In this case, = (%)ﬁ, and limg . F(z) = oco.

Another example of profit functions of interest in applications is the case where the profit
function in regime 1 is f; = 0, and the other f5 is increasing. In this case, assumption (HF')
is satisfied with £ = 0.

The next proposition states the form of the switching regions in regimes 1 and 2, de-
pending on the parameter values.

Proposition 4.1 Assume that (HF) holds.

1) (i) If rg,, > F(c0), then ¥ = oo, i.e. S = ().

(ii) If rg,, < F(o0), then z7 € (0,00) and S, = [zF,00).

2) (i) If rg,, > —F(), then S, = (.

(ii) If 0 < rg,, < —F(Z), then 0 < z} <z} <z}, and S, = [2},T]].

=1 =2 2
(iii) If g,, < 0 and —F(o0) < rg,, < —F(Z), then 0 =z} <z} < z¥, and S, = (0,Z}].
(iv) If rg,, < —F(00), then Sy = (0, 00).
Proof. 1) From Lemma 3.3, we have

Q, = {t>0:F(x)>rg,}. (4.49)

Since g,, > 0, and f;(0) = 0, we have F'(0) = 0 < rg,,. Under (HF'), we then distinguish
the two following cases :
(i) If rg,, > F(c0), then Q,, = 0, and so by Lemma 3.3 and (4.40), S; = 0.

(ii) If rg,, < F(o0), then there exists #,, € (0,00) such that
Q12 = [Elga OO) (450)
Moreover, since
(Va—Vi)(z) = E [/ e"’tF(Xf)dt} , Yz >0,
0

and F' is lower-bounded, we obtain by Fatou’s lemma :

T—00

liminf(Va — Vi)(z) > E [ /0 - e—”F(oo)dt] = FS?‘” > gy

Hence, conditions (4.41)-(4.42) with ¢ = 1, j = 2, are satisfied, and we obtain the first
assertion by Lemma 4.1 1).

2) From Lemma 3.3, we have

~

QR = {2>0:-F(z) 2rg,}. (4.51)

Under (HF), we distinguish the following cases :
» (i1) If rg,, > —F (&), then Q,, = 0, and so S, = 0.
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(i2) If rg,, = —F(&), then either & = 0 and s0 Sp = Q,, = 0, or & > 0, and so Q,, = {&},
S, C {z}. In this last case, v, satisfies rv, — Lv, — f, = 0 on (0, %) U (Z,00). By continuity
and smooth-fit condition of v, at , this implies that v, satisfies actually

rv, —Lv, — f, = 0, z€(0,00),
and so is in the form :
v(x) = Az™ +Ba™ +V,(x), =€ /(0,00)

Recalling that 0 < v,(0") < co and v, is a nonnegative function satisfying a linear growth
condition, this implies A = B = 0. Therefore, v, is equal to V,, which also means that S,

= ®'
» If rg,, < —F(Z), we need to distinguish three subcases depending on g,, :

e If g,, > 0, then there exist 0 <z, <Z < T, < oo such that

Q21 = [lgl’jQI]’ (4'52)
We then conclude with Lemma 4.1 2) for i = 2, j = 1.

o If g,, <0 with rg,, > —F(c0), then there exists Z,, < oo s.t.

Q, = (07521]'

Moreover, we clearly have sup,-o(Vi — Va)(z) > (Vi — V2)(0) = 0 > g,,. Hence,
conditions (4.41) and (4.43) with ¢ = 2, 7 = 1 are satisfied, and we deduce from
Lemma 4.1 1) that So = (0, 23] with 0 < 3 < oo.

o If rg,, < —F(c0), then Q,, = (0,0), and we deduce from Lemma 4.1 3) for i = 2, j
= 1, that Sy = (0, 00).

Finally, in the two above subcases when So = [z}, )] or (0,Z}], we notice that z} < z7
since Sp C C1 = (0,00) \ S1, which is equal, from 1), either to (0,00) when z} = oo or to
(0, z%). O

!

Remark 4.2 In our viscosity solutions approach, the structure of the switching regions is
derived from the smooth fit property of the value functions, uniqueness result for viscosity
solutions and Lemma 3.3. This contrasts with the classical verification approach where
the structure of switching regions should be guessed ad-hoc and checked a posteriori by a
verification argument.

Economic interpretation.

The previous proposition shows that, under (HF'), the switching region in regime 1 has two
forms depending on the size of its corresponding positive switching cost : If g,, is larger
than the “maximum net” profit F'(co) that one can expect by changing of regime (case 1)
(i), which may occur only if F'(0c0) < 00), then one has no interest to switch of regime, and
one always stay in regime 1, i.e. C; = (0,00). However, if this switching cost is smaller
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than F'(oo) (case 1) (ii), which always holds true when F'(co) = oo ), then there is some
positive threshold from which it is optimal to change of regime.

The structure of the switching region in regime 2 exhibits several different forms de-
pending on the sign and size of its corresponding switching cost g,, with respect to the
values —F(0c0) < 0 and —F(&) > 0. If g,, is nonnegative larger than —F'(z) (case 2) (i)),
then one has no interest to switch of regime, and one always stay in regime 2, i.e. Co =
(0,00). If g,, is positive, but not too large (case 2) (ii)), then there exists some bounded
closed interval, which is not a neighborhood of zero, where it is optimal to change of regime.
Finally, when the switching cost g,, is negative, it is optimal to switch to regime 1 at least
for small values of the state. Actually, if the negative cost g,, is larger than —F'(co) (case
2) (iii), which always holds true for negative cost when F'(co0) = oo), then the switching
region is a bounded neighborhood of 0. Moreover, if the cost is negative large enough (case
2) (iv), which may occur only if F'(c0) < o0), then it is optimal to change of regime for
every values of the state.

By combining the different cases for regimes 1 and 2, and observing that case 2) (iv)
is not compatible with case 1) (ii) by (2.7), we then have a priori seven different forms
for both switching regions. These forms reduce actually to three when F(co) = oco. The
various structures of the switching regions are depicted in Figure II.

Finally, we complete results of Proposition 4.1 by providing the explicit solutions for
the value functions and the corresponding boundaries of the switching regions in the seven
different cases depending on the model parameter values.

Theorem 4.2 Assume that (HF) holds.
1) Ifrg,, < F(c0) and rg,, > —F(Z), then

@) = A AV, 2<n
' B UQ(x)_gma x>

=%

vy(2) = V,(x),
where the constants A and x7 are determined by the continuity and smooth-fit conditions
of v, at z} :

A@)™ + V(@) = V(@) — gy,

1
+ +—1 St R 72/
Am™(z)™ T+ Vi) = V()
In regime 1, it is optimal to switch to regime 2 whenever the state process X exceeds the

threshold z7, while when we are in regime 2, it is optimal never to switch.

2) If rg,, < F(o0) and 0 < rg,, < —F(&), then

v (@) = Aa™ + Vi (2), o< x¥ (4.53)
' Uz(x) — G125 x ZQT '
Agz™ 4V, (x), r <z
u@ = 0@-g, << (4.54)

Box™ +V,(z), x> i,
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where the constants Ay and 7 are determined by the continuity and smooth-fit conditions of
v, at 7, and the constants As, B, z;, T, are determined by the continuity and smooth-fit

.. * =% .
conditions of v, at x and T} :

A"+ V(@) = Baeh)™ + V(&) — g, (4.55)
A (@)™ T e V(@) = Bomo (@)™ T+ V() (4.56)
As(@)™ +V(zh) = Ai@)™ + V(2 — gn (4.57)
Apm™ (@)™ T 4 V(@) = Am (@)™ T+ V() (4.58)
M@ V(@) — g0 = Ba(@)™ +V,(z) (4.59)
AmF (@)™ L4 V(@) = Bom~(2)™ L4 V/(2). (4.60)

In regime 1, it is optimal to switch to regime 2 whenever the state process X exceeds the
threshold x7, while when we are in regime 2, it is optimal to switch to regime 1 whenever

the state process lies between x; and T;.

3) If rg,, < F(o0) and g,, < 0 with —F(c0) < rg,, < —F (&), then

o (z) = Azm" 4 Vl(:v), r <z

' B Uz(x) — 12> z ng
o(z) = vl(x)—ggla 0<z<z}

? Bx™ 4+ V,(z), x>z},

where the constants A and x7 are determined by the continuity and smooth-fit conditions
of v, at x7, and the constants B and T} are determined by the continuity and smooth-fit
conditions of v, at T} :

w\ym T > * N > *

A(ll) +‘/1(£1) = B(&l) +‘/2(£1)_912

Am* (@)™ T 4 V(@) = Bmo ()™ '+ V(@)
—sx\ymt Sk N O [k
A(wg) +‘/1($2) _921 = B(l’ ) +‘/2($2)

Am* (@)™ T e V(@) = Bmo (@)™ T+ V) (@).
4) If rg,, > F(c0) and rg,, > —F(&), then v, = Vi, v, = Va. It is optimal never to switch
in both regimes 1 and 2.
5) If rg,, > F(o0) and 0 < rg,, < —F(&), then

Az +V,(z), r <
Q]2(1') - ’Ul(x) _;921’ Q; <z < j;
Bx™ 4+ V,(z), x>z},

where the constants A, B, x}, T} are determined by the continuity and smooth-fit conditions
of v, at z} and T :

AH™ + V() = V(@) — g,
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Am* (@)™ T V(@) = V(@)
Vi(®) =g, = B@)™ +V,(z))
VI(z) = Bm~ (@)™ '+ V(@)

In regime 1, it is optimal never to switch, while when we are in regime 2, it is optimal to
switch to regime 1 whenever the state process lies between x; and T;.

6) Ifrg,, > F(o0) and g,, < 0 with —F(o0) < rg,, < —F (&), then

v(e) = Vi(z)

o(z) = vl(x)—ggla 0<z<Z}
? Bx™ 4 V,(z), x>},

where the constants B and T} are determined by the continuity and smooth-fit conditions
of v, at T :

Vi(#)) =g, = B@)™ +V,(z))

2
S i o, . | ) —
V@) = Bmo(@)m U+ V().
In regime 1, it is optimal never to switch, while when we are in regime 2, it is optimal to
switch to regime 1 whenever the state process lies below T
7) If rg,, > F(o0) and rg,, < —F(c0), thenv, =V, and v, = v, — g,,. In regime 1, it is
optimal never to switch, while when we are in regime 2, it is always optimal to switch to

regime 1.

Proof. We prove the result only for the case 2) since the other cases are dealt similarly
and are even simpler. This case 2) corresponds to the combination of cases 1) (ii) and 2)
(ii) in Proposition 4.1. We then have S, = [z],00), which means that v, = v, — g,, on
[z¥,00) and v, is solution to rv, —Lv, — f, = 0 on (0,z¥). Since 0 < v,(0%) < oo, v, should
have the form expressed in (4.53). Moreover, S, = [z}, Z}], which means that v, = v, — g,,
on [z, Z}], and vg satisfies on C, = (0,z}) U (Z},00) : rva — Lvg — f, = 0. Recalling again
that 0 < v,(07) < oo and v, satisfies a linear growth condition, we deduce that v, has
the form expressed in (4.54). Finally, the constants Ay, ¥, which characterize completely
v,, and the constants Ay, Bs, x7, ¥, which characterize completely v,, are determined by
the six relations (4.55)-(4.56)-(4.57)-(4.58)-(4.59)-(4.60) resulting from the continuity and
smooth-fit conditions of v, at z] and v, at z] and z}, and recalling that z] < z7. O

Remark 4.3 In the classical approach, for instance in the case 2), we construct a priori a
candidate solution in the form (4.53)-(4.54), and we have to check the existence of a sixtuple
solution to (4.55)-(4.56)-(4.57)-(4.58)-(4.59)-(4.60), which may be somewhat tedious! Here,
by the viscosity solutions approach, and since we already state the smooth-fit C! property
of the value functions, we know a priori the existence of a sixtuple solution to (4.55)-(4.56)-
(4.57)-(4.58)-(4.59)-(4.60).
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Appendix: proof of comparison principle

In this section, we prove a comparison principle for the system of variational inequalities
(3.8). The comparison result in [10] for switching problems in finite horizon does not apply
in our context. Inspired by [8], we first produce some suitable perturbation of viscosity
supersolution to deal with the switching obstacle, and then follow the general viscosity
solution technique, see e.g. [3].

Theorem 4.3 Suppose u;, © € Iy, are continuous viscosity subsolutions to the system of
variational inequalities (3.8) on (0,00), and w;, i € 1y, are continuous viscosity superso-
lutions to the system of variational inequalities (3.8) on (0,00), satisfying the boundary
conditions u;(07) < w;(01), i € I, and the linear growth condition :

lui(z)| + |wi(z)] < Ci1+4 Cozx, Vz € (0,00), i€ I, (A.1)
for some positive constants C1 and Co. Then,
u; < w;,  on (0,00), Viely.

Proof. Step 1. Let u; and w;, i € Iy, as in Theorem 4.3. We first construct strict superso-
lutions to the system (3.8) with suitable perturbations of w;, i € I;. We set

h(z) = C}+ChP, x>0,

where C, C% > 0 and p > 1 are positive constants to be determined later. We then define
for all A € (0,1), the continuous functions on (0, c0) by :

wf‘ = (1 — )\)wi + /\(h—l- Cki), 1 €1y,

where «o; = m;én gji- We then see that for all A € (0,1),4 € I :
jF#

w — I?QZX(W? —gij) = Ao+ (1= Nw; — T;,ljz?([(l = MN(wj = gij) + A — Agij]
> (1 Vs~ max(us — g)] + 3 (0 + it — o))
JFi J#i
> i . ] e ey
> A?elil <az + I;n;?(g” ag))
> A (A.2)

where v := min |a; + m?ién(gij — )| is a constant independent of i. We now check that v
1

i€ly i
> 0,ie v; = a; + m;n(gij —a;) > 0, Vi € I;. Indeed, fix i € I, and let k € Iz such that
J#i

m;n(gij — ) = git, — o and set i such that o; = m;ngji = gii- We then have
J#i J#i
Vi = Qi ik —ming;r > g —ming; > 0,
i 9ii + Gik £k ik Yik ik gjk =2

by (2.6) and thus v > 0.
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By definition of the Fenchel Legendre in (2.5), and by setting f(l) = maXel, fi(l), we
have for all i € I,

fil) < f)+x < fA)+1+aP, Va>0.

Moreover, recalling that r > b := max; b;, we can choose p > 1 s.t.

1
p=r=pb=goipp—1) > 0,

where we set 0 := max; 0; > 0. By choosing

2+ f(1)

cy > —miinai, cy, >

we then have for all i € I,

rh(z) — Lib(z) — fi(z) = rCl+ ChaPlr — phi — %U?p(p —1)] - fila)
TC{ + pC’é:cp — fi(zx)
1, Vz>0. (A.3)

(AVARAY]

From (A.2) and (A.3), we then deduce that for all i € Iy, A € (0,1), w} is a supersolution
to

min {rwi)‘ — Lo} — fi,w} — m;zx(w]f\ — gz-j)} > A, on (0,00), (A4)
jF#i

where 6 = v A1 > 0.

Step 2. In order to prove the comparison principle, it suffices to show that for all A € (0,1) :

max sup (uj—wj»‘) < 0
J€la (0,400)

since the required result is obtained by letting A to 0. We argue by contradiction and
suppose that there exists some A € (0,1) and i € I s.t.

6 := max sup (uj—wg\) = sup (u; —w}) > 0. (A.5)
7€la (0,400) (0,4-00)

From the linear growth condition (A.1), and since p > 1, we observe that u;(z) — w}(z)
goes to —oo when z goes to infinity. By choosing also €] > max; w;(0"), we then have
u;(01) — w}(0F) = u;(0F) — w;(0F) + A(w;(0F) — C}) < 0. Hence, by continuity of the
functions w; and w?, there exists zg € (0,00) s.t.

0 = wi(zo) —w(zo).
For any € > 0, we consider the functions

Pe(z,y) = wilz) —wy) - ¢:(z,y),

1 1
de(z,y) = 1|$ —xo|* + 2*€|33 —yl?,
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for all z,y € (0,00). By standard arguments in comparison principle, the function ®.
attains a maximum in (z.,y.) € (0,00)2, which converges (up to a subsequence) to (o, zo)
when € goes to zero. Moreover,

o 2
Tt WY (A.6)

e—0 S
Applying Theorem 3.2 in [3], we get the existence of M., N. € R such that:

(pvae) S J2’+Ui(xa)7
(QaNe) € J27_wi)\(ys)

where
pe = Dudelreys) = (e — ye) + (e — 2,)°
G = ~Dybuleey) = (e — )
and
(j\ge _?Vs> < D?o(ze,ye) + & (D22, 12)) (A7)
with

)

3(we —1y)2 + 1 -1
D2¢e(xa)ya) = ( ( © i)) N 15 )
€

By writing the viscosity subsolution property (3.9) of u; and the viscosity strict supersolu-
tion property (A.4) of wi)‘, we have the following inequalities:

win (o) = (e =)+ o =0 b — 0B, — i),

2 7

(o) < maxtuy — g)a) | <0 (A

J#l
min {50 = 2oz — vl — 32N~ (o)
W) - max(u ~ g} 2 (A9
We then distinguish the following two cases :
(1) wi(ze) — maxji(uj — gij) () < 0in (A.8).
By sending € — 0, this implies
ui(zo) — max(uj — gij)(zo) < 0. (A.10)

JFi
On the other hand, we have by (A.9) :

w) (ye) — njﬂgX( —gi))(ye) > A,
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so that by sending € to zero :

wMzo) — m;gx(w? — gij)(wo) = A6 (A.11)
] 1

Combining (A.10) and (A.11), we obtain :

0 = ui(zo) —wi(zg) < —Ao+ nj@g}(% — gij)(@o) — I?Qg((w? — 9i5)(20)
< —Ad + max(u; — w)(0)
j#i
< M40,

which is a contradiction.

(2) rug(ze) — (2(2e — o) + (xe — 20)3) bize — 30722 M. — f;(z) < 0 in (A.8).
Since by (A.9), we also have :

1 1
Twi)\(ye) - g(xs - ys)biys - §Ui2y§N5 - fi(ye) > A,

this yields by combining the above two inequalities :

1
rui(xS) - Twi)\(ye) - gbi(xa - ye>2 - (l's - mO)Sbixs

1
+=0?

1
SOWEN: = SoPaMe + fiye) = fiwe) < =M. (A.12)

2 K3

Now, from (A.7), we have :
L 5

1
*UZI‘QME — =0

3 3
5 i'e B zygNs < 701‘2(1'5 - ye>2 + 702*%?('%'6 - xO)Q (36(1'5 - xO)Q + 2) )

~ 2 27"
so that by plugging into (A.12) :

1 3
r(ue) —wdy)) < Zbilee —ye) + (2 — 20) bz + -0 (@ — )’

2e
3
+ 5033:?(905 —20)? (3e(xe — 20)* +2) + fi(y=) — filze) — A
By sending ¢ to zero, and using (A.6), continuity of f;, we obtain the required contradiction:
rf < —A§ < 0. This ends the proof of Theorem 4.3. O
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